Generic placeholder image

Letters in Functional Foods

Editor-in-Chief

ISSN (Print): 2666-9390
ISSN (Online): 2666-9404

Review Article

Nutraceuticals Health Benefits in Cancer

Author(s): Sunam Saha, Shivendra Kumar*, Bhawna Sharma, Shuchita Mishra, Shubham Singh, Arun Kumar Chaturvedi, Ravindra Patel and Mohit Agrawal

Volume 1, 2024

Published on: 25 January, 2024

Article ID: e250124226277 Pages: 13

DOI: 10.2174/0126669390272831231227110602

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is one of the leading causes of death worldwide, with multiple pathological components. Genetic abnormalities, infection or inflammation, poor diet, radiation exposure, work stress, and/or ingestion of toxic substances have all been associated with cancer development and progression. Early detection and treatment of cancer have been shown to increase the chances of survival and recovery and reduce the side effects of anticancer drugs. Anticancer drugs continue to cause negative side effects that negate treatment benefits in terms of hospitalization and survival. Many naturally occurring bioactive compounds are shown to have anticancer properties. That is, they can eliminate altered and cancer cells without harming their healthy counterparts. In particular, the following activities have been reported to support nutrition during cancer treatment: cell growth inhibition, antioxidant activity, anti-inflammatory activity, and minimized negative effects due to natural antioxidants. Keeping the side effects minimum helps patients adhere to anticancer therapy. Among currently available anticancer agents, dietary supplementation can be considered in conjunction with current chemotherapy to improve response and compliance in cancer patients. However, it should be noted that before discussing data from studies on bioactive plant supplements, it is important to ensure that the tests were performed according to protocol.

Keywords: Polyphenols, bergamot, oleuropein, quercetin, curcumin, apoptosis.

[1]
Calvani M, Pasha A, Favre C. Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species. Int J Mol Sci 2020; 21(6): 1936.
[http://dx.doi.org/10.3390/ijms21061936] [PMID: 32178382]
[2]
Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes 2014; 5(4): 444-70.
[http://dx.doi.org/10.4239/wjd.v5.i4.444] [PMID: 25126392]
[3]
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJA, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: A review. Acta Pharm Sin B 2014; 4(3): 173-81.
[http://dx.doi.org/10.1016/j.apsb.2014.04.002] [PMID: 26579381]
[4]
Pal D, Banerjee S, Ghosh AK. Dietary-induced cancer prevention: An expanding research arena of emerging diet related to healthcare system. J Adv Pharm Technol Res 2012; 3(1): 16-24.
[http://dx.doi.org/10.4103/2231-4040.93561] [PMID: 22470889]
[5]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[6]
AlAli M, Alqubaisy M, Aljaafari MN, et al. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules 2021; 26(9): 2540.
[http://dx.doi.org/10.3390/molecules26092540] [PMID: 33925346]
[7]
Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015; 20(12): 21138-56.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[8]
Stinton LM, Shaffer EA. Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 2012; 6(2): 172-87.
[http://dx.doi.org/10.5009/gnl.2012.6.2.172] [PMID: 22570746]
[9]
Laka K, Makgoo L, Mbita Z. Cholesterol-lowering phytochemicals: Targeting the mevalonate pathway for anticancer interventions. Front Genet 2022; 13: 841639.
[http://dx.doi.org/10.3389/fgene.2022.841639] [PMID: 35391801]
[10]
Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[11]
Garcia-Oliveira P, Otero P, Pereira AG, et al. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021; 14(2): 157.
[http://dx.doi.org/10.3390/ph14020157] [PMID: 33673021]
[12]
Donaldson MS. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr J 2004; 3(1): 19.
[http://dx.doi.org/10.1186/1475-2891-3-19] [PMID: 15496224]
[13]
Harvie M. Nutritional supplements and cancer: Potential benefits and proven harms. Am Soc Clin Oncol Educ Book 2014; 2014: e478-86.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.e478]
[14]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[15]
Willett WC, Koplan JP, Nugent R, Dusenbury C, Puska P, Gaziano TA. Prevention of chronic disease by means of diet and lifestyle changes. In: Disease Control Priorities in Developing Countries. (2nd ed..), Washington (DC): The International Bank for Reconstruction and Development / The World Bank 2006.
[16]
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional interventions in cancer cachexia: Evidence and perspectives from experimental models. Front Nutr 2020; 7: 601329.
[http://dx.doi.org/10.3389/fnut.2020.601329] [PMID: 33415123]
[17]
Gallie D. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 2013; 5(9): 3424-46.
[http://dx.doi.org/10.3390/nu5093424] [PMID: 23999762]
[18]
Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010; 15(4): 2103-13.
[http://dx.doi.org/10.3390/molecules15042103] [PMID: 20428030]
[19]
Granato D, Shahidi F, Wrolstad R, et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem 2018; 264: 471-5.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.012] [PMID: 29853403]
[20]
Black HS, Boehm F, Edge R, Truscott TG. The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms—a comprehensive review. Antioxidants 2020; 9(3): 264.
[http://dx.doi.org/10.3390/antiox9030264] [PMID: 32210038]
[21]
Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020; 9(8): 706.
[http://dx.doi.org/10.3390/antiox9080706] [PMID: 32759751]
[22]
Buscemi S, Corleo D, Di Pace F, Petroni M, Satriano A, Marchesini G. The effect of lutein on eye and extra-eye health. Nutrients 2018; 10(9): 1321.
[http://dx.doi.org/10.3390/nu10091321] [PMID: 30231532]
[23]
Saini R. Coenzyme Q10: The essential nutrient. J Pharm Bioallied Sci 2011; 3(3): 466-7.
[http://dx.doi.org/10.4103/0975-7406.84471] [PMID: 21966175]
[24]
Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic Acid. Front Pharmacol 2011; 2: 69.
[http://dx.doi.org/10.3389/fphar.2011.00069] [PMID: 22125537]
[25]
Parasuraman S, Anand David AV, Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev 2016; 10(20): 84-9.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[26]
Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A. A review on various uses of n-acetyl cysteine. Cell J 2017; 19(1): 11-7.
[http://dx.doi.org/10.22074/CELLJ.2016.4872] [PMID: 28367412]
[27]
Salehi B, Mishra A, Nigam M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018; 6(3): 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[28]
Rahman MA, Amin ARMR, Shin DM. Chemopreventive potential of natural compounds in head and neck cancer. Nutr Cancer 2010; 62(7): 973-87.
[http://dx.doi.org/10.1080/01635581.2010.509538] [PMID: 20924973]
[29]
Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med 2014; 5(12): 1487-99.
[PMID: 25709784]
[30]
Anders S, Schroeter C. The impact of nutritional supplement intake on diet behavior and obesity outcomes. PLoS One 2017; 12(10): e0185258.
[http://dx.doi.org/10.1371/journal.pone.0185258] [PMID: 28991921]
[31]
Inglis JE, Lin PJ, Kerns SL, et al. Nutritional interventions for treating cancer-related fatigue: A qualitative review. Nutr Cancer 2019; 71(1): 21-40.
[http://dx.doi.org/10.1080/01635581.2018.1513046] [PMID: 30688088]
[32]
Olivera A, Moore TW, Hu F, et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int Immunopharmacol 2012; 12(2): 368-77.
[http://dx.doi.org/10.1016/j.intimp.2011.12.009] [PMID: 22197802]
[33]
Buhrmann C, Shayan P, Popper B, Goel A, Shakibaei M. Sirt1 is required for resveratrol-mediated chemopreventive effects in colorectal cancer cells. Nutrients 2016; 8(3): 145.
[http://dx.doi.org/10.3390/nu8030145] [PMID: 26959057]
[34]
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of epigallocatechin-3-gallate on matrix metalloproteinases in terms of its anticancer activity. Molecules 2023; 28(2): 525.
[http://dx.doi.org/10.3390/molecules28020525] [PMID: 36677584]
[35]
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach. Int J Mol Sci 2021; 22(22): 12455.
[http://dx.doi.org/10.3390/ijms222212455] [PMID: 34830339]
[36]
Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/5438179] [PMID: 29977456]
[37]
Assar EA, Vidalle MC, Chopra M, Hafizi S. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells. Tumour Biol 2016; 37(7): 9375-85.
[http://dx.doi.org/10.1007/s13277-016-4798-3] [PMID: 26779636]
[38]
Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett 2008; 269(2): 226-42.
[http://dx.doi.org/10.1016/j.canlet.2008.03.052] [PMID: 18492603]
[39]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[40]
Syed D, Chamcheu JC, Adhami V, Mukhtar H. Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anticancer Agents Med Chem 2013; 13(8): 1149-61.
[http://dx.doi.org/10.2174/1871520611313080003] [PMID: 23094914]
[41]
Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res Int 2014; 2014: 1-19.
[http://dx.doi.org/10.1155/2014/761264] [PMID: 24587990]
[42]
Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 2021; 22: 4642.
[http://dx.doi.org/10.3390/ijms22094642]
[43]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453-62.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[44]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[45]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J 2015; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[46]
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 2020; 21(13): 4777.
[http://dx.doi.org/10.3390/ijms21134777] [PMID: 32640524]
[47]
Chen Y, Li Y, Huang L, et al. Antioxidative stress: Inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance. Oxid Med Cell Longev 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/6620306] [PMID: 33628367]
[48]
Maiuolo J, Gliozzi M, Carresi C, et al. Nutraceuticals and cancer: Potential for natural polyphenols. Nutrients 2021; 13(11): 3834.
[http://dx.doi.org/10.3390/nu13113834] [PMID: 34836091]
[49]
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Libr 2020; 2020(8): CD011737.
[http://dx.doi.org/10.1002/14651858.CD011737.pub3] [PMID: 32827219]
[50]
Gabriel A, Ninomiya K, Uneyama H. The role of the japanese traditional diet in healthy and sustainable dietary patterns around the world. Nutrients 2018; 10(2): 173.
[http://dx.doi.org/10.3390/nu10020173] [PMID: 29401650]
[51]
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants 2023; 12(6): 1217.
[http://dx.doi.org/10.3390/plants12061217] [PMID: 36986905]
[52]
Cao F, Liu T, Xu Y, Xu D, Feng S. Curcumin inhibits cell proliferation and promotes apoptosis in human osteoclastoma cell through MMP-9, NF-κB and JNK signaling pathways. Int J Clin Exp Pathol 2015; 8(6): 6037-45.
[PMID: 26261481]
[53]
Chai R, Fu H, Zheng Z, Liu T, Ji S, Li G. Resveratrol inhibits proliferation and migration through SIRT1 mediated post-translational modification of PI3K/AKT signaling in hepatocellular carcinoma cells. Mol Med Rep 2017; 16(6): 8037-44.
[http://dx.doi.org/10.3892/mmr.2017.7612] [PMID: 28983625]
[54]
Abotaleb M, Samuel S, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[55]
Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82(12): 1807-21.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[56]
Tuli HS, Tuorkey MJ, Thakral F, et al. Molecular mechanisms of action of genistein in cancer: Recent advances. Front Pharmacol 2019; 10: 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[57]
Holzapfel N, Holzapfel B, Champ S, Feldthusen J, Clements J, Hutmacher D. The potential role of lycopene for the prevention and therapy of prostate cancer: From molecular mechanisms to clinical evidence. Int J Mol Sci 2013; 14(7): 14620-46.
[http://dx.doi.org/10.3390/ijms140714620] [PMID: 23857058]
[58]
Amjad AI, Parikh RA, Appleman LJ, Hahm ER, Singh K, Singh SV. Broccoli-derived sulforaphane and chemoprevention of prostate cancer: From bench to bedside. Curr Pharmacol Rep 2015; 1(6): 382-90.
[http://dx.doi.org/10.1007/s40495-015-0034-x] [PMID: 26557472]
[59]
Shan J, Xuan Y, Zheng S, Dong Q, Zhang S. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. J Zhejiang Univ Sci B 2009; 10(9): 668-74.
[http://dx.doi.org/10.1631/jzus.B0920149] [PMID: 19735099]
[60]
Kasperczyk H, La Ferla-Brühl K, Westhoff MA, et al. Betulinic acid as new activator of NF-κB: molecular mechanisms and implications for cancer therapy. Oncogene 2005; 24(46): 6945-56.
[http://dx.doi.org/10.1038/sj.onc.1208842] [PMID: 16007147]
[61]
Kumar S, Mathew SO, Aharwal RP, et al. Withaferin A: A pleiotropic anticancer agent from the Indian medicinal plant withania somnifera (L.) dunal. Pharmaceuticals 2023; 16(2): 160.
[http://dx.doi.org/10.3390/ph16020160] [PMID: 37259311]
[62]
Pfeffer C, Singh A. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19(2): 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[63]
Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[64]
Tomko AM, Whynot EG, Ellis LD, Dupré DJ. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis. Cancers 2020; 12(7): 1985.
[http://dx.doi.org/10.3390/cancers12071985] [PMID: 32708138]
[65]
Musolino V, Gliozzi M, Scarano F, et al. Bergamot polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease. Sci Rep 2020; 10(1): 2565.
[http://dx.doi.org/10.1038/s41598-020-59485-3] [PMID: 32054943]
[66]
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 2018; 10(10): 1553.
[http://dx.doi.org/10.3390/nu10101553] [PMID: 30347782]
[67]
Pratheeshkumar P, Sreekala C, Zhang Z, et al. Cancer prevention with promising natural products: Mechanisms of action and molecular targets. Anticancer Agents Med Chem 2012; 12(10): 1159-84.
[http://dx.doi.org/10.2174/187152012803833035] [PMID: 22583402]
[68]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016: 1-23.
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[69]
Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol 2020; 11: 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[70]
Ahmad A, Prakash R, Khan MS, et al. Enhanced antioxidant effects of naringenin nanoparticles synthesized using the high-energy ball milling method. ACS Omega 2022; 7(38): 34476-84.
[http://dx.doi.org/10.1021/acsomega.2c04148] [PMID: 36188293]
[71]
Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients 2022; 14(9): 1712.
[http://dx.doi.org/10.3390/nu14091712] [PMID: 35565680]
[72]
Yang CS, Lambert JD, Sang S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 2009; 83(1): 11-21.
[http://dx.doi.org/10.1007/s00204-008-0372-0] [PMID: 19002670]
[73]
Salvioli S, Sikora E, Cooper EL, Franceschi C. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evid Based Complement Alternat Med 2007; 4(2): 181-90.
[http://dx.doi.org/10.1093/ecam/nem043] [PMID: 17549234]
[74]
Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy. Int J Mol Sci 2017; 18(12): 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[75]
Rather RA, Bhagat M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med 2020; 9(24): 9181-92.
[http://dx.doi.org/10.1002/cam4.1411] [PMID: 31568659]
[76]
Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020; 25(14): 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[77]
van Breemen RB, Pajkovic N. Multitargeted therapy of cancer by lycopene. Cancer Lett 2008; 269(2): 339-51.
[http://dx.doi.org/10.1016/j.canlet.2008.05.016] [PMID: 18585855]
[78]
Sharifi-Rad J, Quispe C, Castillo CMS, et al. Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential. Oxid Med Cell Longev 2022; 2022: 1-24.
[http://dx.doi.org/10.1155/2022/3848084] [PMID: 35237379]
[79]
Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011; 14(4): 308-17.
[PMID: 23492971]
[80]
Javed Z, Khan K, Herrera-Bravo J, et al. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21(1): 388.
[http://dx.doi.org/10.1186/s12935-021-02091-8] [PMID: 34289845]
[81]
Mansuy IM, Mohanna S. Epigenetics and the human brain: Where nurture meets nature. Cerebrum 2011; 2011: 8.
[PMID: 23447777]
[82]
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[83]
Handy DE, Castro R, Loscalzo J. Epigenetic modifications. Circulation 2011; 123(19): 2145-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[84]
Henning SM, Wang P, Carpenter CL, Heber D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics 2013; 5(6): 729-41.
[http://dx.doi.org/10.2217/epi.13.57] [PMID: 24283885]
[85]
Bag A, Bag N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J Nat Sci Biol Med 2018; 9(1): 2-5.
[http://dx.doi.org/10.4103/jnsbm.JNSBM_46_17] [PMID: 29456384]
[86]
Farhan M, Ullah M, Faisal M, et al. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines 2019; 6(1): 24.
[http://dx.doi.org/10.3390/medicines6010024] [PMID: 30781847]
[87]
Fabianowska-Majewska K, Kaufman-Szymczyk A, Szymanska-Kolba A, Jakubik J, Majewski G, Lubecka K. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients 2021; 13(2): 332.
[http://dx.doi.org/10.3390/nu13020332] [PMID: 33498667]
[88]
Sheng J, Shi W, Guo H, et al. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Mol 2019; 24: 2899.
[http://dx.doi.org/10.3390/molecules24162899]
[89]
Alnuqaydan AM. Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer. Am J Transl Res 2020; 12(7): 3531-56.
[PMID: 32774718]
[90]
Xie Q, Bai Q, Zou LY, et al. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014; 53(5): 422-31.
[http://dx.doi.org/10.1002/gcc.22154] [PMID: 24532317]
[91]
Ho E, Clarke JD, Dashwood RH. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 2009; 139(12): 2393-6.
[http://dx.doi.org/10.3945/jn.109.113332] [PMID: 19812222]
[92]
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 2010; 3(4): 228-37.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[93]
Hashiguchi A, Zhu W, Tian J, Komatsu S. Proteomics and metabolomics-driven pathway reconstruction of mung bean for nutraceutical evaluation. Biochim Biophys Acta Proteins Proteomics 2017; 1865(8): 1057-66.
[http://dx.doi.org/10.1016/j.bbapap.2017.05.006] [PMID: 28502799]
[94]
Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J 2004; 3(1): 5.
[http://dx.doi.org/10.1186/1475-2891-3-5] [PMID: 15140261]
[95]
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front Pharmacol 2021; 12: 710304.
[http://dx.doi.org/10.3389/fphar.2021.710304] [PMID: 34744708]
[96]
Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017; 6(4): 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[97]
Ndhlala A, Moyo M, Van Staden J. Natural antioxidants: Fascinating or mythical biomolecules? Molecules 2010; 15(10): 6905-30.
[http://dx.doi.org/10.3390/molecules15106905] [PMID: 20938402]
[98]
Budisan L, Gulei D, Zanoaga O, et al. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci 2017; 18(6): 1178.
[http://dx.doi.org/10.3390/ijms18061178] [PMID: 28587155]
[99]
Kang H. MicroRNA-mediated health-promoting effects of phytochemicals. Int J Mol Sci 2019; 20(10): 2535.
[http://dx.doi.org/10.3390/ijms20102535] [PMID: 31126043]
[100]
Bhaskaran M, Mohan M. MicroRNAs. Vet Pathol 2014; 51(4): 759-74.
[http://dx.doi.org/10.1177/0300985813502820] [PMID: 24045890]
[101]
Rogucki M, Buczyńska A, Krętowski AJ, Popławska-Kita A. The importance of miRNA in the diagnosis and prognosis of papillary thyroid cancer. J Clin Med 2021; 10(20): 4738.
[http://dx.doi.org/10.3390/jcm10204738] [PMID: 34682861]
[102]
Ganapathy A, Ezekiel U. Phytochemical modulation of MiRNAs in colorectal cancer. Medicines 2019; 6(2): 48.
[http://dx.doi.org/10.3390/medicines6020048] [PMID: 30959836]
[103]
Khan SA, Damanhouri G, Ali A, et al. Precipitating factors and targeted therapies in combating the perils of sickle cell disease--- A special nutritional consideration. Nutr Metab 2016; 13(1): 50.
[http://dx.doi.org/10.1186/s12986-016-0109-7] [PMID: 27508000]
[104]
Rajendran P, Abdelsalam SA, Renu K, Veeraraghavan V, Ben Ammar R, Ahmed EA. Polyphenols as potent epigenetics agents for cancer. Int J Mol Sci 2022; 23(19): 11712.
[http://dx.doi.org/10.3390/ijms231911712] [PMID: 36233012]
[105]
Surguchov A, Bernal L, Surguchev AA. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021; 11(5): 624.
[http://dx.doi.org/10.3390/biom11050624] [PMID: 33922207]
[106]
Li S, Wu H, Tollefsbol TO. Combined broccoli sprouts and green tea polyphenols contribute to the prevention of estrogen receptor–negative mammary cancer via cell cycle arrest and inducing apoptosis in HER2/neu mice. J Nutr 2021; 151(1): 73-84.
[http://dx.doi.org/10.1093/jn/nxaa315] [PMID: 33188406]
[107]
Castro-Muñoz L, Ulloa E, Sahlgren C, Lizano M, De La Cruz-Hernández E, Contreras-Paredes A. Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep 2023; 49(3): 59.
[http://dx.doi.org/10.3892/or.2023.8496] [PMID: 36799181]
[108]
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129: 375-87.
[http://dx.doi.org/10.1016/j.phrs.2017.12.008] [PMID: 29233676]
[109]
Carlos-Reyes Á, López-González JS, Meneses-Flores M, et al. Dietary compounds as epigenetic modulating agents in cancer. Front Genet 2019; 10: 79.
[http://dx.doi.org/10.3389/fgene.2019.00079] [PMID: 30881375]
[110]
Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity. Saudi Pharm J 2018; 26(2): 177-90.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[111]
Lopes CM, Dourado A, Oliveira R. Phytotherapy and nutritional supplements on breast cancer. BioMed Res Int 2017; 2017: 1-42.
[http://dx.doi.org/10.1155/2017/7207983] [PMID: 28845434]
[112]
Conklin KA. Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 2000; 37(1): 1-18.
[http://dx.doi.org/10.1207/S15327914NC3701_1] [PMID: 10965514]
[113]
Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid Med Cell Longev 2016; 2016: 1-19.
[http://dx.doi.org/10.1155/2016/6719534] [PMID: 26682013]
[114]
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, epigallocatechin gallate and curcumin for cancer therapy: Challenges from their pro-apoptotic properties. Life 2023; 13(2): 261.
[http://dx.doi.org/10.3390/life13020261] [PMID: 36836619]
[115]
Rudzińska A, Juchaniuk P, Oberda J, et al. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients 2023; 15(8): 1896.
[http://dx.doi.org/10.3390/nu15081896] [PMID: 37111115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy