Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Review Article

Agile 3+ and Metabolic Dysfunction-Associated Fatty Liver Disease: Detecting Advanced Fibrosis based on Reported Liver Stiffness Measurement in FibroScan and Laboratory Findings

Author(s): Mohammadjavad Sotoudeheian*

Volume 3, 2024

Published on: 27 June, 2024

Article ID: e270624231398 Pages: 12

DOI: 10.2174/0126662906302851240604042954

Price: $65

Open Access Journals Promotions 2
Abstract

Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), formerly known as Non-alcoholic fatty liver disease (NAFLD), is characterized by fat accumulation in the liver and is associated with obesity, insulin resistance, and metabolic syndrome. Early detection and intervention are crucial to prevent disease progression to advanced fibrosis, cirrhosis, and liver failure. Non-invasive tests like transient elastography (TE), the Fibrosis-4 (FIB-4) index, the Enhanced Liver Fibrosis (ELF) score, and magnetic resonance imaging (MRI) are safer and more convenient than invasive procedures like liver biopsy for detecting advanced fibrosis in MAFLD patients. Agile 3+ is a non-invasive test that combines liver stiffness measurement (LSM) with clinical and laboratory findings to detect advanced fibrosis in MAFLD patients. It has shown high accuracy in detecting advanced fibrosis in MAFLD patients. The combination of LSM and laboratory findings provides a more accurate assessment of disease severity, making Agile 3+ a reliable, noninvasive test for assessing liver fibrosis in MAFLD patients. In summary, MAFLD is a common condition that can progress to advanced fibrosis and liver failure if left untreated. Non-invasive tests such as Agile 3+ have emerged as valuable tools for detecting advanced fibrosis in MAFLD patients, providing a more accurate assessment of disease severity and making it a reliable noninvasive test for assessing liver fibrosis in MAFLD patients.

Keywords: Area under curve, assessment, transient elastography, accuracy, noninvasive tools, liver cirrhosis, elasticity imaging techniques.

[1]
Mokhtare M, Abdi A, Sadeghian AM, Sotoudeheian M, Namazi A, Khalighi Sikaroudi M. Investigation about the correlation between the severity of metabolic-associated fatty liver disease and adherence to the Mediterranean diet. Clin Nutr ESPEN 2023; 58: 221-7.
[http://dx.doi.org/10.1016/j.clnesp.2023.10.001] [PMID: 38057010]
[2]
Mokhtare M, Sadeghian AM, Sotoudeheian M. S1390 the accuracy and reliability of AST to platelet ratio index, FIB-4, FIB-5, and NAFLD fibrosis scores in detecting advanced fibrosis in patients with metabolic-associated fatty liver disease. Am J Gastroenterol 2023; 118: S1064-5.
[3]
Lim GEH, Tang A, Ng CH, Chin YH, Lim WH, Tan DJH. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clinical Gastroenterology and Hepatology 2023; 21: 619-29.
[http://dx.doi.org/10.1016/j.cgh.2021.11.038]
[4]
Liu J, Ayada I, Zhang X, et al. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin Gastroenterol Hepatol 2022; 20(3): e573-82.
[http://dx.doi.org/10.1016/j.cgh.2021.02.030] [PMID: 33618024]
[5]
Ziamanesh F, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mosallanejad A, Larijani B. Unraveling the link between insulin resistance and Non-alcoholic fatty liver disease (or metabolic dysfunction-associated steatotic liver disease): A Narrative Review. J Diabetes Metab Disord 2023; 22(2): 1083-94.
[http://dx.doi.org/10.1007/s40200-023-01293-3] [PMID: 37975107]
[6]
Mastromauro C, Polidori N, Giannini C. Metabolic dysfunction-associated fatty liver disease in obese youth with insulin resistance and type 2 diabetes. Curr Opin Pediatr 2022; 34(4): 414-22.
[http://dx.doi.org/10.1097/MOP.0000000000001138] [PMID: 35836399]
[7]
Gofton C, Upendran Y, Zheng MH, George J. MAFLD: How is it different from NAFLD? Clin Mol Hepatol 2023; 29 (Suppl.): S17-31.
[http://dx.doi.org/10.3350/cmh.2022.0367] [PMID: 36443926]
[8]
Mantovani A. MAFLD vs. NAFLD: Where are we? Dig Liver Dis 2021; 53(10): 1368-72.
[http://dx.doi.org/10.1016/j.dld.2021.05.014] [PMID: 34108096]
[9]
Nguyen VH, Le MH, Cheung RC, Nguyen MH. Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD. Clinical Gastroenterology and Hepatology 2021; 19: 2172-81.
[10]
Lin S, Huang J, Wang M, et al. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int 2020; 40(9): 2082-9.
[http://dx.doi.org/10.1111/liv.14548] [PMID: 32478487]
[11]
Fouad Y, Elwakil R, Elsahhar M, et al. The NAFLD‐MAFLD debate: Eminence vs evidence. Liver Int 2021; 41(2): 255-60.
[http://dx.doi.org/10.1111/liv.14739] [PMID: 33220154]
[12]
Younossi ZM, Rinella ME, Sanyal AJ, et al. From NAFLD to MAFLD: Implications of a premature change in terminology. Hepatology 2021; 73(3): 1194-8.
[http://dx.doi.org/10.1002/hep.31420] [PMID: 32544255]
[13]
Yamamura S, Eslam M, Kawaguchi T, et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 2020; 40(12): 3018-30.
[http://dx.doi.org/10.1111/liv.14675] [PMID: 32997882]
[14]
Bianco C, Romeo S, Petta S, Long MT, Valenti L. MAFLD vs NAFLD: Let the contest begin!. Wiley Online Library 2020; pp. 2079-81.
[15]
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr 2020; 14(6): 1875-87.
[http://dx.doi.org/10.1016/j.dsx.2020.09.026] [PMID: 32998095]
[16]
Boccatonda A, Andreetto L, D’Ardes D, et al. From NAFLD to MAFLD: Definition, pathophysiological basis and cardiovascular implications. Biomedicines 2023; 11(3): 883.
[http://dx.doi.org/10.3390/biomedicines11030883] [PMID: 36979861]
[17]
Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in MAFLD. Int J Mol Sci 2021; 22(8): 4156.
[http://dx.doi.org/10.3390/ijms22084156] [PMID: 33923817]
[18]
Pal SC, Méndez-Sánchez N. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis. World J Gastroenterol 2023; 29(25): 3999-4008.
[http://dx.doi.org/10.3748/wjg.v29.i25.3999] [PMID: 37476582]
[19]
Kaya E, Yilmaz Y. Epidemiology, natural history, and diagnosis of metabolic dysfunction-associated fatty liver disease: A comparative review with nonalcoholic fatty liver disease. Ther Adv Endocrinol Metab 2022; 13.
[http://dx.doi.org/10.1177/20420188221139650] [PMID: 36533185]
[20]
Huang SC, Su HJ, Kao JH, et al. Clinical and histologic features of patients with biopsy-proven metabolic dysfunction-associated fatty liver disease. Gut Liver 2021; 15(3): 451-8.
[http://dx.doi.org/10.5009/gnl20218] [PMID: 33431715]
[21]
Chowdhury AB, Mehta KJ. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin Exp Med 2022; 23(2): 273-85.
[http://dx.doi.org/10.1007/s10238-022-00799-z] [PMID: 35192111]
[22]
Huang J, Xue W, Wang M, et al. MAFLD criteria may overlook a subtype of patient with steatohepatitis and significant fibrosis. Diabetes Metab Syndr Obes 2021; 14: 3417-25.
[http://dx.doi.org/10.2147/DMSO.S316096] [PMID: 34349535]
[23]
Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51(3): 433-45.
[http://dx.doi.org/10.1016/j.jhep.2009.05.023] [PMID: 19604596]
[24]
Stern C, Castera L. Non-invasive diagnosis of hepatic steatosis. Hepatol Int 2017; 11(1): 70-8.
[http://dx.doi.org/10.1007/s12072-016-9772-z] [PMID: 27783208]
[25]
Zhang YN, Fowler KJ, Hamilton G, et al. Liver fat imaging—a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol 2018; 91(1089): 20170959.
[http://dx.doi.org/10.1259/bjr.20170959] [PMID: 29722568]
[26]
Petzold G. Role of ultrasound methods for the assessment of NAFLD. J Clin Med 2022; 11(15): 4581.
[http://dx.doi.org/10.3390/jcm11154581] [PMID: 35956196]
[27]
Contreras D, González-Rocha A, Clark P, Barquera S, Denova-Gutiérrez E. Diagnostic accuracy of blood biomarkers and non-invasive scores for the diagnosis of NAFLD and NASH: Systematic review and meta-analysis. Ann Hepatol 2023; 28(1): 100873.
[http://dx.doi.org/10.1016/j.aohep.2022.100873] [PMID: 36371077]
[28]
Maximos M, Bril F, Portillo Sanchez P, et al. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 2015; 61(1): 153-60.
[http://dx.doi.org/10.1002/hep.27395] [PMID: 25145475]
[29]
Sanyal D, Mukherjee P, Raychaudhuri M, Ghosh S, Mukherjee S, Chowdhury S. Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes. Indian J Endocrinol Metab 2015; 19(5): 597-601.
[http://dx.doi.org/10.4103/2230-8210.163172] [PMID: 26425466]
[30]
Huang TD, Behary J, Zekry A. Non‐alcoholic fatty liver disease: A review of epidemiology, risk factors, diagnosis and management. Intern Med J 2020; 50(9): 1038-47.
[http://dx.doi.org/10.1111/imj.14709] [PMID: 31760676]
[31]
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 2019; 7(4): 313-24.
[http://dx.doi.org/10.1016/S2213-8587(18)30154-2] [PMID: 30174213]
[32]
Berger D, Desai V, Janardhan S. Con: Liver biopsy remains the gold standard to evaluate fibrosis in patients with nonalcoholic fatty liver disease. Clin Liver Dis 2019; 13(4): 114-6.
[http://dx.doi.org/10.1002/cld.740] [PMID: 31061705]
[33]
Sumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2014; 20(2): 475-85.
[http://dx.doi.org/10.3748/wjg.v20.i2.475] [PMID: 24574716]
[34]
Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020; 111: 154170.
[http://dx.doi.org/10.1016/j.metabol.2020.154170] [PMID: 32006558]
[35]
Männistö VT, Salomaa V, Färkkilä M, et al. Incidence of liver‐related morbidity and mortality in a population cohort of non‐alcoholic fatty liver disease. Liver Int 2021; 41(11): 2590-600.
[http://dx.doi.org/10.1111/liv.15004] [PMID: 34219352]
[36]
Wong GLH. Non‐invasive assessments for liver fibrosis: The crystal ball we long for. J Gastroenterol Hepatol 2018; 33(5): 1009-15.
[http://dx.doi.org/10.1111/jgh.14103] [PMID: 29380413]
[37]
Anstee QM, Castera L, Loomba R. Impact of non-invasive biomarkers on hepatology practice: Past, present and future. J Hepatol 2022; 76(6): 1362-78.
[http://dx.doi.org/10.1016/j.jhep.2022.03.026] [PMID: 35589256]
[38]
Agbim U, Asrani SK. Non-invasive assessment of liver fibrosis and prognosis: An update on serum and elastography markers. Expert Rev Gastroenterol Hepatol 2019; 13(4): 361-74.
[http://dx.doi.org/10.1080/17474124.2019.1579641] [PMID: 30791772]
[39]
Mansour AMF, Bayoumy EM, ElGhandour AM, El-Talkawy MD, Badr SM, Ahmed AEM. Assessment of hepatic fibrosis and steatosis by vibration-controlled transient elastography and controlled attenuation parameter versus non-invasive assessment scores in patients with non-alcoholic fatty liver disease. Egyptian Liver Journal 2020; 10(1): 33.
[http://dx.doi.org/10.1186/s43066-020-00044-w]
[40]
Long MT, Gandhi S, Loomba R. Advances in non-invasive biomarkers for the diagnosis and monitoring of non-alcoholic fatty liver disease. Metabolism 2020; 111: 154259.
[http://dx.doi.org/10.1016/j.metabol.2020.154259] [PMID: 32387227]
[41]
Chengxi L, Rentao L, Wei Z. Progress in non-invasive detection of liver fibrosis. Cancer Biol Med 2018; 15(2): 124-36.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0018] [PMID: 29951337]
[42]
Thanapirom K, Suksawatamnuay S, Tanpowpong N, et al. Non-invasive tests for liver fibrosis assessment in patients with chronic liver diseases: A prospective study. Sci Rep 2022; 12(1): 4913.
[http://dx.doi.org/10.1038/s41598-022-08955-x] [PMID: 35318425]
[43]
Petroni ML, Brodosi L, Bugianesi E, Marchesini G. Management of non-alcoholic fatty liver disease. BMJ 2021; 372: m4747.
[http://dx.doi.org/10.1136/bmj.m4747] [PMID: 33461969]
[44]
McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010; 59(9): 1265-9.
[http://dx.doi.org/10.1136/gut.2010.216077] [PMID: 20801772]
[45]
Vali Y, Lee J, Boursier J, et al. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J Hepatol 2020; 73(2): 252-62.
[http://dx.doi.org/10.1016/j.jhep.2020.03.036] [PMID: 32275982]
[46]
Patel K, Sebastiani G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Reports 2020; 2(2): 100067.
[http://dx.doi.org/10.1016/j.jhepr.2020.100067] [PMID: 32118201]
[47]
Castera L. Non‐invasive tests for liver fibrosis in NAFLD: Creating pathways between primary healthcare and liver clinics. Liver Int 2020; 40(S1) (Suppl. 1): 77-81.
[http://dx.doi.org/10.1111/liv.14347] [PMID: 32077617]
[48]
Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J Hepatol 2018; 68(2): 305-15.
[http://dx.doi.org/10.1016/j.jhep.2017.11.013] [PMID: 29154965]
[49]
Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L. Magnetic resonance elastography vs. transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 2017; 152: 598-607.
[50]
Gaia S, Carenzi S, Barilli AL, et al. Reliability of transient elastography for the detection of fibrosis in Non-Alcoholic Fatty Liver Disease and chronic viral hepatitis. J Hepatol 2011; 54(1): 64-71.
[http://dx.doi.org/10.1016/j.jhep.2010.06.022] [PMID: 20932598]
[51]
Berzigotti A, Castera L. Update on ultrasound imaging of liver fibrosis. J Hepatol 2013; 59(1): 180-2.
[http://dx.doi.org/10.1016/j.jhep.2012.12.028] [PMID: 23333447]
[52]
Nagarajan K. Efficacy of ultrasound elastography in characterizing focal liver lesions with histopathologic correlation. Chennai: Madras Medical College 2019.
[53]
Tapper EB, Loomba R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD. Nat Rev Gastroenterol Hepatol 2018; 15(5): 274-82.
[http://dx.doi.org/10.1038/nrgastro.2018.10] [PMID: 29463906]
[54]
Grąt K, Grąt M, Rowiński O. Usefulness of different imaging modalities in evaluation of patients with non-alcoholic fatty liver disease. Biomedicines 2020; 8(9): 298.
[http://dx.doi.org/10.3390/biomedicines8090298] [PMID: 32839409]
[55]
Trujillo MJ, Chen J, Rubin JM, Gao J. Non-invasive imaging biomarkers to assess nonalcoholic fatty liver disease: A review. Clin Imaging 2021; 78: 22-34.
[http://dx.doi.org/10.1016/j.clinimag.2021.02.039] [PMID: 33721575]
[56]
Cobbold JFL, Patel D, Taylor-Robinson SD. Assessment of inflammation and fibrosis in non‐alcoholic fatty liver disease by imaging‐based techniques. J Gastroenterol Hepatol 2012; 27(8): 1281-92.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07127.x] [PMID: 22432836]
[57]
Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: A prospective study. Hepatology 2014; 60(6): 1920-8.
[http://dx.doi.org/10.1002/hep.27362] [PMID: 25103310]
[58]
Schaapman JJ, Tushuizen ME, Coenraad MJ, Lamb HJ. Multiparametric MRI in patients with nonalcoholic fatty liver disease. J Magn Reson Imaging 2021; 53(6): 1623-31.
[http://dx.doi.org/10.1002/jmri.27292] [PMID: 32822095]
[59]
Permutt Z, Le TA, Peterson MR, et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non‐alcoholic fatty liver disease – MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 2012; 36(1): 22-9.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05121.x] [PMID: 22554256]
[60]
Thiele M, Madsen BS, Hansen JF, Detlefsen S, Antonsen S, Krag A. Accuracy of the enhanced liver fibrosis test vs FibroTest, elastography, and indirect markers in detection of advanced fibrosis in patients with alcoholic liver disease. Gastroenterology 2018; 154(5): 1369-79.
[http://dx.doi.org/10.1053/j.gastro.2018.01.005] [PMID: 29317276]
[61]
Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020; 69(7): 1343-52.
[http://dx.doi.org/10.1136/gutjnl-2018-317593] [PMID: 32066623]
[62]
Halfon P, Munteanu M, Poynard T. FibroTest-ActiTest as a non-invasive marker of liver fibrosis. Gastroenterol Clin Biol 2008; 32(6) (Suppl. 1): 22-39.
[http://dx.doi.org/10.1016/S0399-8320(08)73991-5] [PMID: 18973844]
[63]
Friedrich-Rust M, Rosenberg W, Parkes J, Herrmann E, Zeuzem S, Sarrazin C. Comparison of ELF, fibrotest and fibroscan for the non-invasive assessment of liver fibrosis. BMC Gastroenterol 2010; 10(1): 103.
[http://dx.doi.org/10.1186/1471-230X-10-103] [PMID: 20828377]
[64]
Vali Y, Lee J, Boursier J, et al. FibroTest for evaluating fibrosis in non-alcoholic fatty liver disease patients: A systematic review and meta-analysis. J Clin Med 2021; 10(11): 2415.
[http://dx.doi.org/10.3390/jcm10112415] [PMID: 34072480]
[65]
Boursier J, Guillaume M, Leroy V, et al. New sequential combinations of non-invasive fibrosis tests provide an accurate diagnosis of advanced fibrosis in NAFLD. J Hepatol 2019; 71(2): 389-96.
[http://dx.doi.org/10.1016/j.jhep.2019.04.020] [PMID: 31102719]
[66]
Oeda S, Takahashi H, Imajo K, et al. Diagnostic accuracy of FibroScan‐AST score to identify non‐alcoholic steatohepatitis with significant activity and fibrosis in Japanese patients with non‐alcoholic fatty liver disease: Comparison between M and XL probes. Hepatol Res 2020; 50(7): 831-9.
[http://dx.doi.org/10.1111/hepr.13508] [PMID: 32337818]
[67]
Newsome PN, Sasso M, Deeks JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol Hepatol 2020; 5(4): 362-73.
[http://dx.doi.org/10.1016/S2468-1253(19)30383-8] [PMID: 32027858]
[68]
Kumari B, Kumar R, Sharma S, et al. Diagnostic accuracy of FIB-4 and FIB-5 scores as compared to fibroscan for assessment of liver fibrosis in patients with non-alcoholic fatty liver disease. Cureus 2021; 13(8): e17622.
[http://dx.doi.org/10.7759/cureus.17622] [PMID: 34646672]
[69]
Aykut UE, Akyuz U, Yesil A, et al. A comparison of FibroMeter™ NAFLD Score, NAFLD fibrosis score, and transient elastography as noninvasive diagnostic tools for hepatic fibrosis in patients with biopsy-proven non-alcoholic fatty liver disease. Scand J Gastroenterol 2014; 49(11): 1343-8.
[http://dx.doi.org/10.3109/00365521.2014.958099] [PMID: 25259621]
[70]
Van Dijk AM, Vali Y, Mak AL, et al. Systematic review with meta-analyses: Diagnostic accuracy of FibroMeter tests in patients with non-alcoholic fatty liver disease. J Clin Med 2021; 10(13): 2910.
[http://dx.doi.org/10.3390/jcm10132910] [PMID: 34209858]
[71]
Dincses E, Yilmaz Y. Diagnostic usefulness of FibroMeter VCTE for hepatic fibrosis in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27(10): 1149-53.
[http://dx.doi.org/10.1097/MEG.0000000000000409] [PMID: 26049712]
[72]
Cardoso AC, Tovo CV, Leite NC, et al. Validation and performance of FibroScan®-AST (fast) score on a Brazilian population with nonalcoholic fatty liver disease. Dig Dis Sci 2022; 67(11): 5272-9.
[http://dx.doi.org/10.1007/s10620-021-07363-x] [PMID: 35091842]
[73]
Ravaioli F, Dajti E, Mantovani A, Newsome PN, Targher G, Colecchia A. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: A systematic review and meta-analysis. Gut 2023; 72(7): 1399-409.
[http://dx.doi.org/10.1136/gutjnl-2022-328689] [PMID: 36599683]
[74]
Sumida Y, Yoneda M, Tokushige K, et al. FIB-4 first in the diagnostic algorithm of metabolic-dysfunction-associated fatty liver disease in the era of the global metabodemic. Life 2021; 11(2): 143.
[http://dx.doi.org/10.3390/life11020143] [PMID: 33672864]
[75]
Xu X, Jiang L, Wu C, et al. The role of fibrosis index FIB-4 in predicting liver fibrosis stage and clinical prognosis: A diagnostic or screening tool? J Formos Med Assoc 2022; 121(2): 454-66.
[http://dx.doi.org/10.1016/j.jfma.2021.07.013] [PMID: 34325952]
[76]
Day JW, Rosenberg WM. The enhanced liver fibrosis (ELF) test in diagnosis and management of liver fibrosis. Br J Hosp Med 2018; 79(12): 694-9.
[http://dx.doi.org/10.12968/hmed.2018.79.12.694] [PMID: 30526098]
[77]
Chen C, Wang L, Wu J, et al. Circulating collagen metabolites and the enhanced liver fibrosis (ELF) score as fibrosis markers in systemic sclerosis. Front Pharmacol 2022; 13: 805708.
[http://dx.doi.org/10.3389/fphar.2022.805708] [PMID: 35177989]
[78]
Maroto-García J, Moreno Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Serum biomarkers for liver fibrosis assessment. Advances in Laboratory Medicine 2023.
[http://dx.doi.org/10.1515/almed-2023-0081]
[79]
Laurent S, Jennifer O, Cécile B, Céline F, Véronique M, Sebastian M. Non-invasive assessment of liver fibrosis by vibration-controlled transient elastography (Fibroscan®). Liver biopsy 2011.
[80]
Rinaldi L, Giorgione C, Mormone A, et al. Non-invasive measurement of hepatic fibrosis by transient elastography: A narrative review. Viruses 2023; 15(8): 1730.
[http://dx.doi.org/10.3390/v15081730] [PMID: 37632072]
[81]
Lorée H, Bastard C, Miette V, Sandrin L. Vibration-guided transient elastography: A novel fibroscan® examination with improved guidance for liver stiffness measurement. Ultrasound Med Biol 2020; 46(9): 2193-206.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.04.010] [PMID: 32536508]
[82]
Cao Y, Xiang L, Qi F, Zhang Y, Chen Y, Zhou X. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. EClinicalMedicine 2022; 51: 101547.
[http://dx.doi.org/10.1016/j.eclinm.2022.101547] [PMID: 35844772]
[83]
Braude M, Roberts S, Majeed A, et al. Liver stiffness (Fibroscan®) is a predictor of all‐cause mortality in people with non‐alcoholic fatty liver disease. Liver Int 2023; 43(1): 90-9.
[http://dx.doi.org/10.1111/liv.15415] [PMID: 36050821]
[84]
Oeda S, Tanaka K, Oshima A, Matsumoto Y, Sueoka E, Takahashi H. Diagnostic accuracy of FibroScan and factors affecting measurements. Diagnostics 2020; 10(11): 940.
[http://dx.doi.org/10.3390/diagnostics10110940] [PMID: 33198092]
[85]
Oeda S, Takahashi H, Imajo K, et al. Accuracy of liver stiffness measurement and controlled attenuation parameter using FibroScan® M/XL probes to diagnose liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease: A multicenter prospective study. J Gastroenterol 2020; 55(4): 428-40.
[http://dx.doi.org/10.1007/s00535-019-01635-0] [PMID: 31654131]
[86]
Salmi A, di Filippo L, Ferrari C, Frara S, Giustina A. Ultrasound and fibroscan® controlled attenuation parameter in patients with MAFLD: Head to head comparison in assessing liver steatosis. Endocrine 2022; 78(2): 262-9.
[http://dx.doi.org/10.1007/s12020-022-03157-x] [PMID: 35980569]
[87]
Yilmaz Y, Kaya E. The role of FibroScan in the era of metabolic (dysfunction)-associated fatty liver disease. Hepatology Forum 2023; 4(2): 1-2.
[88]
Eddowes PJ, Sasso M, Allison M, et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2019; 156(6): 1717-30.
[http://dx.doi.org/10.1053/j.gastro.2019.01.042] [PMID: 30689971]
[89]
Xu N, Xie Q, Li J, Gao Y, Li X. Improvement in liver stiffness measurement for diagnosis of liver fibrosis in patients with concurrent chronic hepatitis B and nonalcoholic fatty liver disease. J Int Med Res 2020; 48(2)
[http://dx.doi.org/10.1177/0300060520903667] [PMID: 32070159]
[90]
Mikolasevic I, Lukenda Zanko V, Jakopcic I, et al. Prospective evaluation of non-alcoholic fatty liver disease by elastographic methods of liver steatosis and fibrosis; controlled attenuation parameter and liver stiffness measurements. J Diabetes Complications 2020; 34(3): 107512.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107512] [PMID: 31882273]
[91]
Mikolasevic I, Orlic L, Franjic N, Hauser G, Stimac D, Milic S. Transient elastography (FibroScan ®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand? World J Gastroenterol 2016; 22(32): 7236-51.
[http://dx.doi.org/10.3748/wjg.v22.i32.7236] [PMID: 27621571]
[92]
Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 2011; 43(8): 617-49.
[http://dx.doi.org/10.3109/07853890.2010.518623] [PMID: 21039302]
[93]
Pais R, Lupşor M, Poantă L, et al. Liver biopsy versus noninvasive methods--fibroscan and fibrotest in the diagnosis of non-alcoholic fatty liver disease: A review of the literature. Rom J Intern Med 2009; 47(4): 331-40.
[PMID: 21179914]
[94]
Degos F, Perez P, Roche B, et al. Diagnostic accuracy of FibroScan and comparison to liver fibrosis biomarkers in chronic viral hepatitis: A multicenter prospective study (the FIBROSTIC study). J Hepatol 2010; 53(6): 1013-21.
[http://dx.doi.org/10.1016/j.jhep.2010.05.035] [PMID: 20850886]
[95]
Matthews K, MacGilchrist A, Coulter-Smith M, Jones J, Cetnarskyj R. A nurse‐led FibroScan ® outreach clinic encourages socially deprived heavy drinkers to engage with liver services. J Clin Nurs 2019; 28(3-4): 650-62.
[http://dx.doi.org/10.1111/jocn.14660] [PMID: 30182502]
[96]
Patel K, Wilder J. Fibroscan. Clin Liver Dis 2014; 4(5): 97-101.
[http://dx.doi.org/10.1002/cld.407] [PMID: 30992931]
[97]
Armstrong MJ, Corbett C, Hodson J, et al. Operator training requirements and diagnostic accuracy of Fibroscan in routine clinical practice. Postgrad Med J 2013; 89(1058): 685-92.
[http://dx.doi.org/10.1136/postgradmedj-2012-131640] [PMID: 23924687]
[98]
de Lédinghen V, Vergniol J. Transient elastography (FibroScan). Gastroenterol Clin Biol 2008; 32(6) (Suppl. 1): 58-67.
[http://dx.doi.org/10.1016/S0399-8320(08)73994-0] [PMID: 18973847]
[99]
Mueller S, Sandrin L. Liver stiffness: A novel parameter for the diagnosis of liver disease. Hepat Med 2010; 2: 49-67.
[http://dx.doi.org/10.2147/HMER.S7394] [PMID: 24367208]
[100]
Matthews K. Advancing nursing practice in the field of hepatology through a prospective observational research study implementing innovative screening for liver disease in a community alcohol service with a portable FibroScan® device. Edinburgh: Queen Margaret University 2019.
[101]
Wong GLH. Update of liver fibrosis and steatosis with transient elastography (Fibroscan). Gastroenterol Rep 2013; 1(1): 19-26.
[http://dx.doi.org/10.1093/gastro/got007] [PMID: 24759663]
[102]
Rajakannu M. Impact of Fibroscan in the management of liver tumors. Université Paris Saclay 2017.
[103]
Mortimore G. FibroScan: Assessing cirrhosis and advanced fibrosis with vibration-controlled transient elastography. Gastrointest Nurs 2016; 14(Sup10): S10-5.
[http://dx.doi.org/10.12968/gasn.2016.14.Sup10.S10]
[104]
Aubé C, Bazeries P, Lebigot J, Cartier V, Boursier J. Liver fibrosis, cirrhosis, and cirrhosis-related nodules: Imaging diagnosis and surveillance. Diagn Interv Imaging 2017; 98(6): 455-68.
[http://dx.doi.org/10.1016/j.diii.2017.03.003] [PMID: 28461073]
[105]
Baranova A, Lal P, Birerdinc A, Younossi ZM. Non-Invasive markers for hepatic fibrosis. BMC Gastroenterol 2011; 11(1): 91.
[http://dx.doi.org/10.1186/1471-230X-11-91] [PMID: 21849046]
[106]
Augustin S, Ahmed A, Alkhouri N, et al. Identification of patients with advanced fibrosis due to nonalcoholic fatty liver disease: Considerations for best practice. J Gastrointestin Liver Dis 2020; 29(2): 235-45.
[http://dx.doi.org/10.15403/jgld-775] [PMID: 32530991]
[107]
Pennisi G, Enea M, Pandolfo A, Celsa C, Antonucci M, Ciccioli C. AGILE 3+ score for the diagnosis of advanced fibrosis and for predicting liver-related events in NAFLD. Clinical Gastroenterology and Hepatology 2023; 21: 1293-302.
[108]
Solomon A, Negrea MO, Cipăian CR, Boicean A, Mihaila R, Rezi C. Interactions between metabolic syndrome, MASLD, and arterial stiffening: A single-center cross-sectional study. Healthcare 2023; 11(19): 2696.
[109]
Shi Y, Fan JG. Surveillance of the progression and assessment of treatment endpoints for nonalcoholic steatohepatitis. Clin Mol Hepatol 2023; 29 (Suppl.): S228-43.
[http://dx.doi.org/10.3350/cmh.2022.0401] [PMID: 36521452]
[110]
Miura K, Hayashi H, Kamada Y, et al. Agile 3+ and Agile 4, noninvasive tests for liver fibrosis, are excellent formulae to predict liver‐related events in nonalcoholic fatty liver disease. Hepatol Res 2023; 53(10): 978-88.
[http://dx.doi.org/10.1111/hepr.13938] [PMID: 37353881]
[111]
Sanyal AJ, Foucquier J, Younossi ZM, et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J Hepatol 2023; 78(2): 247-59.
[http://dx.doi.org/10.1016/j.jhep.2022.10.034] [PMID: 36375686]
[112]
Gjini K, Armandi A, Caviglia GP, et al. The use of AGILE 3+ and AGILE 4 for the prediction of advanced fibrosis and cirrhosis in patients with Non-Alcoholic Fatty Liver Disease. Dig Liver Dis 2023; 55: S31-2.
[http://dx.doi.org/10.1016/j.dld.2023.01.060]
[113]
Miura K, Maeda H, Morimoto N, et al. Utility of FibroScan-based scoring systems to narrow the risk group of nonalcoholic fatty liver disease with comorbidities. World J Gastrointest Pathophysiol 2022; 13(3): 96-106.
[http://dx.doi.org/10.4291/wjgp.v13.i3.96] [PMID: 35720167]
[114]
Castéra L, Fournier-Poizat C, Foucquier J, et al. Treatment monitoring with the Agile 3+ score in patients with non-alcoholic steatohepatitis: Analysis of data from a randomised placebo-controlled trial of semaglutide. J Hepatol 2023; 78: S817-8.
[http://dx.doi.org/10.1016/S0168-8278(23)02279-1]
[115]
Tang LJ, Li G, Eslam M, et al. N-terminal propeptide of type 3 collagen-based sequential algorithm can identify high-risk steatohepatitis and fibrosis in MAFLD. Hepatol Int 2023; 17(1): 190-201.
[http://dx.doi.org/10.1007/s12072-022-10420-w] [PMID: 36152131]
[116]
Pennisi G, Enea M, Falco V, et al. Noninvasive assessment of liver disease severity in patients with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Hepatology 2023; 78(1): 195-211.
[http://dx.doi.org/10.1097/HEP.0000000000000351] [PMID: 36924031]
[117]
Tincopa MA, Loomba R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol 2023; 8(7): 660-70.
[http://dx.doi.org/10.1016/S2468-1253(23)00066-3] [PMID: 37060912]
[118]
Boursier J, Roux M, Sanyal AJ. Agile3+ and Agile4: Two diagnostic scores that synergize for the prognostic assessment in NAFLD. J Hepatol 2023.
[119]
Sun C, Goh GB-B, Chow W-C, Chan W-K, Wong GL-H, Seto W-K. Prevalence and risk factors for impaired renal function among Asian patients with nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2023.
[PMID: 37620227]
[120]
Yilmaz Y, Toraman AE, Alp C, et al. Impairment of patient‐reported outcomes among patients with non‐alcoholic fatty liver disease: A registry‐based study. Aliment Pharmacol Ther 2023; 57(2): 215-23.
[http://dx.doi.org/10.1111/apt.17301] [PMID: 36369643]
[121]
Pennisi G, Enea M, Pandolfo A, et al. AGILE-3 Score for the diagnosis of advanced fibrosis and for predicting liver-related events in nonalcoholic fatty liver disease. Dig Liver Dis 2022; 54: S17-8.
[http://dx.doi.org/10.1016/j.dld.2022.01.033]
[122]
Ferreira LF, Mânica M, Villela Nogueira C, Tovo CV. Patients with uncertain advanced fibrosis and cirrhosis diagnosis by Agile3+ and Agile4 scores cannot be excluded in validation studies. Hepatol Res 2023.
[PMID: 38041561]
[123]
Alkhouri N, Almomani A, Le P, Payne JY, Asaad I, Polanco P. The prevalence of nonalcoholic steatohepatitis (NASH)-related advanced fibrosis and cirrhosis in the United States population utilizing AGILE 3+ and AGILE 4+ scores: Analysis of the NHANES 2017-2018 cycle. Am J Gastroenterol 2023; 112(4): 581-7.
[124]
Leff P, Polanco P, Chatha Y, Garg P, Lantz KA, Raman A. Tu1311: External validation of the agile3+ score as a predictor of advanced fibrosis in a cohort of us adults with biopsyproven nafld. Gastroenterology 2022; 162: S-1271.
[125]
Liguori A, Zoncapè M, Roccarina D, et al. Validation of elastography criteria and cACLD risk model for diagnosis of compensated advanced chronic liver disease (cACLD) in NAFLD patients. Dig Liver Dis 2023; 55: S15-6.
[http://dx.doi.org/10.1016/j.dld.2023.01.028]
[126]
Oeda S, Seko Y, Hayashi H, et al. Validation of the utility of Agile scores to identify advanced fibrosis and cirrhosis in Japanese patients with nonalcoholic fatty liver disease. Hepatol Res 2023; 53(6): 489-96.
[http://dx.doi.org/10.1111/hepr.13890] [PMID: 36807720]
[127]
Romero A, Romero J, Nguyen N, Oniyide O, Sanchez J, Egwim C. S1570 utility of novel fibroscan-based scores in the diagnosis of advanced fibrosis in nonalcoholic fatty liver disease. Am J Gastroenterol 2023; 118: S1186.
[http://dx.doi.org/10.14309/01.ajg.0000955920.50337.b9]
[128]
Boursier J, Roux M, Costentin C, et al. Practical diagnosis of cirrhosis in non-alcoholic fatty liver disease using currently available non-invasive fibrosis tests. Nat Commun 2023; 14(1): 5219.
[http://dx.doi.org/10.1038/s41467-023-40328-4] [PMID: 37633932]
[129]
Taru V, Taru MG, Petrushev B, et al. Recently validated non-invasive tests for liver fibrosis assessment have great performance in identifying NASH patients at risk for decompensation. J Hepatol 2023; 78: S295-6.
[http://dx.doi.org/10.1016/S0168-8278(23)00887-5]
[130]
Nakatsuka T, Tateishi R, Sato M, Fujishiro M, Koike K. Agile scores are a good predictor of liver-related events in patients with NAFLD. J Hepatol 2023; 79(3): e126-7.
[http://dx.doi.org/10.1016/j.jhep.2023.02.029] [PMID: 36870612]
[131]
Noureddin M, Mena E, Vuppalanchi R, et al. Increased accuracy in identifying NAFLD with advanced fibrosis and cirrhosis: Independent validation of the Agile 3+ and 4 scores. Hepatol Commun 2023; 7(5): 7.
[http://dx.doi.org/10.1097/HC9.0000000000000055] [PMID: 37141504]
[132]
Arora U, Goyal RM, Teh KKJ, et al. Poor performance of non-invasive tests for advanced fibrosis in nonalcoholic fatty liver disease: A multicentric Asian study. Dig Dis Sci 2023; 68(12): 4485-98.
[http://dx.doi.org/10.1007/s10620-023-08085-y] [PMID: 37733130]
[133]
Dalbeni A, Lombardi R, Henrique M, Zoncapè M, Pennisi G, Petta S. Diagnostic accuracy of AGILE3+ score for advanced fibrosis in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Hepatology 2023; 10: 1097.
[PMID: 38088890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy