Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Mini-Review Article

Navigating the Gut-brain Axis: Insights into the Pathogenesis of Hepatic Encephalopathy

Author(s): Victory Aghogho Emojevwe, Arman Shahriari* and Hamidreza Mahboobi

Volume 3, 2024

Published on: 06 May, 2024

Article ID: e060524229714 Pages: 7

DOI: 10.2174/0126662906301568240427100342

Price: $65

Open Access Journals Promotions 2
Abstract

Hepatic encephalopathy is a neurological condition that affects people who have an insufficient liver function. However, its pathophysiology is yet unclear. For hepatic encephalopathy, pharmacotherapy is the primary treatment choice. Lowering ammonia levels, enhancing neurotransmitter signal transduction, and modifying gut microbiota, tackles the pathophysiology of hepatic encephalopathy. The intestinal microbiota of liver disease patients differs greatly from that of healthy people, and this difference is linked to the development of hepatic encephalopathy. Additionally, gut microbiota is intimately linked to several theories in the pathophysiology of hepatic encephalopathy, such as the GABA-ergic tone hypothesis, bile acid circulation, ammonia poisoning theory, and neuroinflammation, all of which exacerbate patients' cognitive and motor impairments. Providing some probiotics or reestablishing the intestinal bacteria's balance has a substantial impact on neurological illnesses in hepatic encephalopathy. The goal of this review is to determine the possible metabolic impacts and microbiological pathways in the gut-brain axis mediated progression of hepatic encephalopathy, as well as its potential function as a therapeutic target.

Keywords: Gut-brain axis, hepatic encephalopathy, neuroinflammation, neurotransmitter signaling, probiotics, brain homestasis.

[1]
Michalska CI, Szczepanek M, Słowik A, Mach T. Pathogenesis of hepatic encephalopathy. Gastroenterol Res Pract 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/642108] [PMID: 23316223]
[2]
Hadjihambi A, Arias N, Sheikh M, Jalan R. Hepatic encephalopathy: A critical current review. Hepatol Int 2018; 12(S1): 135-47.
[http://dx.doi.org/10.1007/s12072-017-9812-3] [PMID: 28770516]
[3]
Chen Z, Ruan J, Li D, et al. The role of intestinal bacteria and gut–brain axis in hepatic encephalopathy. Front Cell Infect Microbiol 2021; 10: 595759.
[http://dx.doi.org/10.3389/fcimb.2020.595759] [PMID: 33553004]
[4]
Frederick RT. Current concepts in the pathophysiology and management of hepatic encephalopathy. Gastroenterol Hepatol 2011; 7(4): 222-33.
[PMID: 21857820]
[5]
Jaffe A, Lim JK, Jakab SS. Pathophysiology of hepatic encephalopathy. Clin Liver Dis 2020; 24(2): 175-88.
[http://dx.doi.org/10.1016/j.cld.2020.01.002] [PMID: 32245525]
[6]
Alsahhar JS, Rahimi RS. Updates on the pathophysiology and therapeutic targets for hepatic encephalopathy. Curr Opin Gastroenterol 2019; 35(3): 145-54.
[http://dx.doi.org/10.1097/MOG.0000000000000527] [PMID: 30893082]
[7]
Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: Role of ammonia and systemic inflammation. J Clin Exp Hepatol 2015; 5(S1): S7-S20.
[http://dx.doi.org/10.1016/j.jceh.2014.06.004] [PMID: 26041962]
[8]
Ferenci P. Hepatic encephalopathy. Gastroenterol Rep 2017; 5(2): 138-47.
[http://dx.doi.org/10.1093/gastro/gox013] [PMID: 28533911]
[9]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[10]
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin Pract 2017; 7(4): 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[11]
Dash S, Syed YA, Khan MR. Understanding the role of the gut microbiome in brain development and its association with neurodevelopmental psychiatric disorders. Front Cell Dev Biol 2022; 10: 880544.
[http://dx.doi.org/10.3389/fcell.2022.880544] [PMID: 35493075]
[12]
Rocco A, Sgamato C, Compare D, Coccoli P, Nardone OM, Nardone G. gut microbes and hepatic encephalopathy: from the old concepts to new perspectives. Front Cell Dev Biol 2021; 9: 748253.
[http://dx.doi.org/10.3389/fcell.2021.748253] [PMID: 34900994]
[13]
Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_3] [PMID: 24997029]
[14]
Hu B, Arya AK. Brain–gut axis after stroke. Brain Circ 2018; 4(4): 165-73.
[http://dx.doi.org/10.4103/bc.bc_32_18] [PMID: 30693343]
[15]
Liang J, Liu B, Dong X, et al. Decoding the role of gut microbiota in Alzheimer’s pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17: 1242254.
[http://dx.doi.org/10.3389/fnins.2023.1242254] [PMID: 37790586]
[16]
Mittal R, Debs LH, Patel AP, et al. Neurotransmitters: The critical modulators regulating gut–brain axis. J Cell Physiol 2017; 232(9): 2359-72.
[http://dx.doi.org/10.1002/jcp.25518] [PMID: 27512962]
[17]
Chen M, Ruan G, Chen L, et al. Neurotransmitter and intestinal interactions: focus on the microbiota-gut-brain axis in irritable bowel syndrome. Front Endocrinol 2022; 13: 817100.
[http://dx.doi.org/10.3389/fendo.2022.817100] [PMID: 35250873]
[18]
Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the gut bacterial composition in people of different nationalities and religions. Microorganisms 2022; 10(9): 1866.
[http://dx.doi.org/10.3390/microorganisms10091866] [PMID: 36144468]
[19]
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[20]
Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5(1): 8096.
[http://dx.doi.org/10.1038/srep08096] [PMID: 25644696]
[21]
Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol 2015; 1(3): 275-84.
[http://dx.doi.org/10.1016/j.jcmgh.2015.04.003] [PMID: 26090511]
[22]
Jasirwan COM, Lesmana CRA, Hasan I, Sulaiman AS, Gani RA. The role of gut microbiota in non-alcoholic fatty liver disease: Pathways of mechanisms. Biosci Microbiota Food Health 2019; 38(3): 81-8.
[http://dx.doi.org/10.12938/bmfh.18-032] [PMID: 31384519]
[23]
Zhu L, Xiao M, Luo J, et al. Polysaccharides from Ostrea rivularis rebuild the balance of gut microbiota to ameliorate non-alcoholic fatty liver disease in ApoE−/− mice. Int J Biol Macromol 2023; 235: 123853.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123853] [PMID: 36863676]
[24]
Zhang XL, Chen L, Yang J, et al. Vitamin D alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism. Front Microbiol 2023; 14: 1117644.
[http://dx.doi.org/10.3389/fmicb.2023.1117644] [PMID: 36819064]
[25]
Maestri M, Santopaolo F, Pompili M, Gasbarrini A, Ponziani FR. Gut microbiota modulation in patients with non-alcoholic fatty liver disease: Effects of current treatments and future strategies. Front Nutr 2023; 10: 1110536.
[http://dx.doi.org/10.3389/fnut.2023.1110536] [PMID: 36875849]
[26]
Lin D, Sun Q, Liu Z, et al. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med 2023; 195: 199-218.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.087] [PMID: 36586452]
[27]
Huang X, Chen Q, Fan Y, et al. Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159: 114300.
[http://dx.doi.org/10.1016/j.biopha.2023.114300] [PMID: 36696803]
[28]
Tang Y, Chen B, Huang X, et al. Fu brick tea alleviates high fat induced non-alcoholic fatty liver disease by remodeling the gut microbiota and liver metabolism. Front Nutr 2022; 9: 1062323.
[http://dx.doi.org/10.3389/fnut.2022.1062323] [PMID: 36618677]
[29]
Cao F, Ding Q, Zhuge H, et al. Lactobacillus plantarum ZJUIDS14 alleviates non-alcoholic fatty liver disease in mice in association with modulation in the gut microbiota. Front Nutr 2023; 9: 1071284.
[http://dx.doi.org/10.3389/fnut.2022.1071284] [PMID: 36698477]
[30]
Dahl S, Kircheis G, Häussinger D. Hepatic encephalopathy as a complication of liver disease. World J Gastroenterol 2001; 7(2): 152-6.
[http://dx.doi.org/10.3748/wjg.v7.i2.152] [PMID: 11819754]
[31]
Dhiman RK. Gut microbiota and hepatic encephalopathy. Metab Brain Dis 2013; 28(2): 321-6.
[http://dx.doi.org/10.1007/s11011-013-9388-0] [PMID: 23463489]
[32]
Shahbazi A, Sepehrinezhad A, Vahdani E, et al. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11(5): 1272.
[http://dx.doi.org/10.3390/biomedicines11051272] [PMID: 37238943]
[33]
Tang W, Zhu H, Feng Y, Guo R, Wan D. The Impact of Gut Microbiota Disorders on the Blood–Brain Barrier. Infect Drug Resist 2020; 13: 3351-63.
[http://dx.doi.org/10.2147/IDR.S254403] [PMID: 33061482]
[34]
De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol 2018; 195(1): 74-85.
[http://dx.doi.org/10.1111/cei.13158] [PMID: 29920643]
[35]
Gasaly N, de Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol 2021; 12: 658354.
[http://dx.doi.org/10.3389/fimmu.2021.658354] [PMID: 34122415]
[36]
Sittipo P, Choi J, Lee S, Lee YK. The function of gut microbiota in immune-related neurological disorders: A review. J Neuroinflammation 2022; 19(1): 154.
[http://dx.doi.org/10.1186/s12974-022-02510-1] [PMID: 35706008]
[37]
Biesmans S, Meert TF, Bouwknecht JA, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/271359] [PMID: 23935246]
[38]
Azhari H, Swain MG. Role of Peripheral Inflammation in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8(3): 281-5.
[http://dx.doi.org/10.1016/j.jceh.2018.06.008] [PMID: 30302045]
[39]
Dhiman RK. Gut microbiota, inflammation and hepatic encephalopathy: A puzzle with a solution in sight. J Clin Exp Hepatol 2012; 2(3): 207-10.
[http://dx.doi.org/10.1016/j.jceh.2012.08.004] [PMID: 25755435]
[40]
Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303(6): G675-85.
[http://dx.doi.org/10.1152/ajpgi.00152.2012] [PMID: 22821944]
[41]
Lapides DA, McDonald MM. Inflammatory manifestations of systemic diseases in the central nervous system. Curr Treat Options Neurol 2020; 22(9): 26.
[http://dx.doi.org/10.1007/s11940-020-00636-2] [PMID: 32834714]
[42]
Silva YP, Bernardi A, Frozza RL. The Role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 2020; 11: 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[43]
van de Wouw M, Boehme M, Lyte JM, et al. Short‐chain fatty acids: Microbial metabolites that alleviate stress‐induced brain–gut axis alterations. J Physiol 2018; 596(20): 4923-44.
[http://dx.doi.org/10.1113/JP276431] [PMID: 30066368]
[44]
Wu G, Jiang Z, Pu Y, et al. Serum short-chain fatty acids and its correlation with motor and non-motor symptoms in Parkinson’s disease patients. BMC Neurol 2022; 22(1): 13.
[http://dx.doi.org/10.1186/s12883-021-02544-7] [PMID: 34996385]
[45]
Huang P, Zhang P, Du J, et al. Association of fecal short-chain fatty acids with clinical severity and gut microbiota in essential tremor and its difference from Parkinson’s disease. NPJ Parkinsons Dis 2023; 9(1): 115.
[http://dx.doi.org/10.1038/s41531-023-00554-5] [PMID: 37460569]
[46]
Yang X, Ai P, He X, et al. Parkinson’s disease is associated with impaired gut–blood barrier for short‐chain fatty acids. Mov Disord 2022; 37(8): 1634-43.
[http://dx.doi.org/10.1002/mds.29063] [PMID: 35607987]
[47]
Dasarathy S, Mookerjee RP, Rackayova V, et al. Ammonia toxicity: From head to toe? Metab Brain Dis 2017; 32(2): 529-38.
[http://dx.doi.org/10.1007/s11011-016-9938-3] [PMID: 28012068]
[48]
Jin Y, Singh P, Chung HJ, Hong ST. blood ammonia as a possible etiological agent for alzheimer’s disease. Nutrients 2018; 10(5): 564.
[http://dx.doi.org/10.3390/nu10050564] [PMID: 29734664]
[49]
Averina OV, Zorkina YA, Yunes RA, et al. bacterial metabolites of human gut microbiota correlating with depression. Int J Mol Sci 2020; 21(23): 9234.
[http://dx.doi.org/10.3390/ijms21239234] [PMID: 33287416]
[50]
Won SM, Oh KK, Gupta H, et al. The link between gut microbiota and hepatic encephalopathy. Int J Mol Sci 2022; 23(16): 8999.
[http://dx.doi.org/10.3390/ijms23168999] [PMID: 36012266]
[51]
Portincasa P, Bonfrate L, Vacca M, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 2022; 23(3): 1105.
[http://dx.doi.org/10.3390/ijms23031105] [PMID: 35163038]
[52]
Periyalwar P, Dasarathy S. Malnutrition in cirrhosis: Contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 2012; 16(1): 95-131.
[http://dx.doi.org/10.1016/j.cld.2011.12.009] [PMID: 22321468]
[53]
Zhu R, Liu L, Zhang G, Dong J, Ren Z, Li Z. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut–liver–brain axis. Biosci Rep 2023; 43(6): BSR20222524.
[http://dx.doi.org/10.1042/BSR20222524] [PMID: 37279097]
[54]
Kalaitzakis E, Björnsson E. Hepatic encephalopathy in patients with liver cirrhosis: Is there a role of malnutrition? World J Gastroenterol 2008; 14(21): 3438-9.
[http://dx.doi.org/10.3748/wjg.14.3438] [PMID: 18528945]
[55]
Kalaitzakis E, Olsson R, Henfridsson P, et al. Malnutrition and diabetes mellitus are related to hepatic encephalopathy in patients with liver cirrhosis. Liver Int 2007; 27(9): 1194-201.
[http://dx.doi.org/10.1111/j.1478-3231.2007.01562.x] [PMID: 17919230]
[56]
Silk DB. Malnutrition in liver disease and its relationship to hepatic encephalopathy. Acta Chir Scand Suppl 1981; 507: 106-11.
[PMID: 6797170]
[57]
Campion D, Giovo I, Ponzo P, Saracco GM, Balzola F, Alessandria C. Dietary approach and gut microbiota modulation for chronic hepatic encephalopathy in cirrhosis. World J Hepatol 2019; 11(6): 489-512.
[http://dx.doi.org/10.4254/wjh.v11.i6.489] [PMID: 31293718]
[58]
Shukla S, Shukla A, Mehboob S, Guha S. Meta-analysis: The effects of gut flora modulation using prebiotics, probiotics and synbiotics on minimal hepatic encephalopathy. Aliment Pharmacol Ther 2011; 33(6): 662-71.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04574.x] [PMID: 21251030]
[59]
Dazıroğlu MEC, Yıldıran H. Intestinal dysbiosis and probiotic use: Its place in hepatic encephalopathy in cirrhosis. Ann Gastroenterol 2023; 36(2): 141-8.
[PMID: 36864944]
[60]
Yossef S, Clark F, Bubeck SS, et al. An oral formulation of the probiotic, Bacillus subtilis HU58, was safe and well tolerated in a pilot study of patients with hepatic encephalopathy. Evid Based Complement Alternat Med 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/1463108] [PMID: 32714397]
[61]
Gonzales AD, Reinert JP. Zinc and probiotic therapy for management of hepatic encephalopathy. Sr Care Pharm 2020; 35(4): 171-5.
[http://dx.doi.org/10.4140/TCP.n.2020.171] [PMID: 32192566]
[62]
Cao Q, Yu CB, Yang SG, et al. Effect of probiotic treatment on cirrhotic patients with minimal hepatic encephalopathy: A meta-analysis. Hepatobiliary Pancreat Dis Int 2018; 17(1): 9-16.
[http://dx.doi.org/10.1016/j.hbpd.2018.01.005] [PMID: 29428113]
[63]
Sharma BC, Singh J. Probiotics in management of hepatic encephalopathy. Metab Brain Dis 2016; 31(6): 1295-301.
[http://dx.doi.org/10.1007/s11011-016-9826-x] [PMID: 27121846]
[64]
Pratap Mouli V, Benjamin J, Singh BM, et al. Effect of probiotic VSL #3 in the treatment of minimal hepatic encephalopathy: A non‐inferiority randomized controlled trial. Hepatol Res 2015; 45(8): 880-9.
[http://dx.doi.org/10.1111/hepr.12429] [PMID: 25266207]
[65]
Shavakhi A, Hashemi H, Tabesh E, et al. Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy. J Res Med Sci 2014; 19(8): 703-8.
[PMID: 25422653]
[66]
Gupta S, Vercoe AE, Petrof EO. Fecal microbiota transplantation: In perspective. Therap Adv Gastroenterol 2016; 9(2): 229-39.
[http://dx.doi.org/10.1177/1756283X15607414] [PMID: 26929784]
[67]
Bajaj JS. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014; 5(3): 397-403.
[http://dx.doi.org/10.4161/gmic.28684] [PMID: 24690956]
[68]
Nielsen AB, Gluud LL, Gluud C. Non-absorbable disaccharides for hepatic encephalopathy: Systematic review of randomised trials. BMJ 2004; 328(7447): 1046.
[http://dx.doi.org/10.1136/bmj.38048.506134.EE] [PMID: 15054035]
[69]
Wu D, Wu SM, Lu J, Zhou YQ, Xu L, Guo CY. rifaximin versus nonabsorbable disaccharides for the treatment of hepatic encephalopathy: A meta-analysis. Gastroenterol Res Pract 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/236963] [PMID: 23653636]
[70]
Mangini C, Montagnese S. new therapies of liver diseases: hepatic encephalopathy. J Clin Med 2021; 10(18): 4050.
[http://dx.doi.org/10.3390/jcm10184050] [PMID: 34575157]
[71]
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21(1): 395.
[http://dx.doi.org/10.1186/s12967-023-04262-9] [PMID: 37330571]
[72]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy