Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Scoping Review

Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review

Author(s): Tommaso Barlattani, Paolo Grandinetti, Alexsander Di Cintio, Alessio Montemagno, Roberta Testa, Chiara D’Amelio, Luigi Olivieri, Carmine Tomasetti, Alessandro Rossi, Francesca Pacitti* and Domenico De Berardis

Volume 22, Issue 12, 2024

Published on: 31 January, 2024

Page: [2016 - 2033] Pages: 18

DOI: 10.2174/1570159X22666240130091235

Price: $65

conference banner
Abstract

Background: Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders.

Methods: We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications.

Results: Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder.

Conclusion: This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.

Keywords: Glymphatic system, aquaporin-4, astrocytes, psychiatric disorders, mood disorders, depression.

Graphical Abstract
[1]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[2]
Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res., 2015, 40(12), 2583-2599.
[http://dx.doi.org/10.1007/s11064-015-1581-6] [PMID: 25947369]
[3]
Mathiisen, T.M.; Lehre, K.P.; Danbolt, N.C.; Ottersen, O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 2010, 58(9), 1094-1103.
[http://dx.doi.org/10.1002/glia.20990] [PMID: 20468051]
[4]
Troili, F.; Cipollini, V.; Moci, M.; Morena, E.; Palotai, M.; Rinaldi, V.; Romano, C.; Ristori, G.; Giubilei, F.; Salvetti, M.; Orzi, F.; Guttmann, C.R.G.; Cavallari, M. Perivascular Unit: This must be the place. the anatomical crossroad between the immune, vascular and nervous system. Front. Neuroanat., 2020, 14, 17.
[http://dx.doi.org/10.3389/fnana.2020.00017] [PMID: 32372921]
[5]
Iadecola, C.; Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci., 2007, 10(11), 1369-1376.
[http://dx.doi.org/10.1038/nn2003] [PMID: 17965657]
[6]
Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.A.; Martens, E.A.; Mori, Y.; Nägerl, U.V.; Nicholson, C.; Tannenbaum, A.; Thomas, J.H.; Tithof, J.; Benveniste, H.; Iliff, J.J.; Kelley, D.H.; Nedergaard, M. The glymphatic system: Current understanding and modeling. iSci., 2022, 25(9), 104987.
[http://dx.doi.org/10.1016/j.isci.2022.104987] [PMID: 36093063]
[7]
Iliff, J.J.; Wang, M.; Zeppenfeld, D.M.; Venkataraman, A.; Plog, B.A.; Liao, Y.; Deane, R.; Nedergaard, M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci., 2013, 33(46), 18190-18199.
[http://dx.doi.org/10.1523/JNEUROSCI.1592-13.2013] [PMID: 24227727]
[8]
Mestre, H.; Kostrikov, S.; Mehta, R.I.; Nedergaard, M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci., 2017, 131(17), 2257-2274.
[http://dx.doi.org/10.1042/CS20160381] [PMID: 28798076]
[9]
Cherian, I.; Beltran, M.; Kasper, E.; Bhattarai, B.; Munokami, S.; Grasso, G. Exploring the Virchow-Robin spaces function: A unified theory of brain diseases. Surg. Neurol. Int., 2016, 7(27)(26), 711.
[http://dx.doi.org/10.4103/2152-7806.192486] [PMID: 27857861]
[10]
Barisano, G.; Lynch, K.M.; Sibilia, F.; Lan, H.; Shih, N.C.; Sepehrband, F.; Choupan, J. Imaging perivascular space structure and function using brain MRI. Neuroimage, 2022, 257, 119329.
[http://dx.doi.org/10.1016/j.neuroimage.2022.119329] [PMID: 35609770]
[11]
Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999.
[http://dx.doi.org/10.1084/jem.20142290] [PMID: 26077718]
[12]
Iliff, J.J.; Goldman, S.A.; Nedergaard, M. Implications of the discovery of brain lymphatic pathways. Lancet Neurol., 2015, 14(10), 977-979.
[http://dx.doi.org/10.1016/S1474-4422(15)00221-5] [PMID: 26376966]
[13]
Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[14]
Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391.
[http://dx.doi.org/10.1038/s41593-018-0227-9] [PMID: 30224810]
[15]
Yankova, G.; Bogomyakova, O.; Tulupov, A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev. Neurosci., 2021, 32(7), 693-705.
[http://dx.doi.org/10.1515/revneuro-2020-0106] [PMID: 33618444]
[16]
Kida, S.; Pantazis, A.; Weller, R.O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol., 1993, 19(6), 480-488.
[http://dx.doi.org/10.1111/j.1365-2990.1993.tb00476.x] [PMID: 7510047]
[17]
Cabezas, R.; Avila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado Coronel, J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci., 2014, 8, 211.
[http://dx.doi.org/10.3389/fncel.2014.00211] [PMID: 25136294]
[18]
Ikeshima-Kataoka, H. Neuroimmunological implications of AQP4 in astrocytes. Int. J. Mol. Sci., 2016, 17(8), 1306.
[http://dx.doi.org/10.3390/ijms17081306] [PMID: 27517922]
[19]
Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun., 2018, 9(1), 4878.
[http://dx.doi.org/10.1038/s41467-018-07318-3] [PMID: 30451853]
[20]
Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; Plog, B.A.; Ding, F.; Deane, R.; Nedergaard, M. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol., 2014, 76(6), 845-861.
[http://dx.doi.org/10.1002/ana.24271] [PMID: 25204284]
[21]
Bellesi, M.; de Vivo, L.; Tononi, G.; Cirelli, C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol., 2015, 13(1), 66.
[http://dx.doi.org/10.1186/s12915-015-0176-7] [PMID: 26303010]
[22]
Tso, M.C.F.; Herzog, E.D. Was Cajal right about sleep? BMC Biol., 2015, 13(1), 67.
[http://dx.doi.org/10.1186/s12915-015-0178-5] [PMID: 26303078]
[23]
Pizarro, A.; Hayer, K.; Lahens, N.F.; Hogenesch, J.B. CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res., 2012, 41(D1), D1009-D1013.
[http://dx.doi.org/10.1093/nar/gks1161] [PMID: 23180795]
[24]
Kruyer, A.; Kalivas, P.W.; Scofield, M.D. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology, 2023, 48(1), 21-36.
[http://dx.doi.org/10.1038/s41386-022-01338-w] [PMID: 35577914]
[25]
Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389.
[http://dx.doi.org/10.1152/physrev.00042.2016] [PMID: 29351512]
[26]
Chiareli, R.A.; Carvalho, G.A.; Marques, B.L.; Mota, L.S.; Oliveira-Lima, O.C.; Gomes, R.M.; Birbrair, A.; Gomez, R.S.; Simão, F.; Klempin, F.; Leist, M.; Pinto, M.C.X. The role of astrocytes in the neurorepair process. Front. Cell Dev. Biol., 2021, 9, 665795.
[http://dx.doi.org/10.3389/fcell.2021.665795] [PMID: 34113618]
[27]
Koehler, R.C.; Roman, R.J.; Harder, D.R. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci., 2009, 32(3), 160-169.
[http://dx.doi.org/10.1016/j.tins.2008.11.005] [PMID: 19162338]
[28]
Masamoto, K.; Unekawa, M.; Watanabe, T.; Toriumi, H.; Takuwa, H.; Kawaguchi, H.; Kanno, I.; Matsui, K.; Tanaka, K.F.; Tomita, Y.; Suzuki, N. Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep., 2015, 5(1), 11455.
[http://dx.doi.org/10.1038/srep11455] [PMID: 26076820]
[29]
Fultz, N.E.; Bonmassar, G.; Setsompop, K.; Stickgold, R.A.; Rosen, B.R.; Polimeni, J.R.; Lewis, L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science, 2019, 366(6465), 628-631.
[http://dx.doi.org/10.1126/science.aax5440] [PMID: 31672896]
[30]
van Veluw, S.J.; Hou, S.S.; Calvo-Rodriguez, M.; Arbel-Ornath, M.; Snyder, A.C.; Frosch, M.P.; Greenberg, S.M.; Bacskai, B.J. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron, 2020, 105(3), 549-561.e5.
[http://dx.doi.org/10.1016/j.neuron.2019.10.033] [PMID: 31810839]
[31]
Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun., 2020, 11(1), 4411.
[http://dx.doi.org/10.1038/s41467-020-18115-2] [PMID: 32879313]
[32]
Hablitz, L.M.; Nedergaard, M. The glymphatic system: A novel component of fundamental neurobiology. J. Neurosci., 2021, 41(37), 7698-7711.
[http://dx.doi.org/10.1523/JNEUROSCI.0619-21.2021] [PMID: 34526407]
[33]
Liu, G.; Mestre, H.; Sweeney, A.M.; Sun, Q.; Weikop, P.; Du, T.; Nedergaard, M. Direct measurement of cerebrospinal fluid production in mice. Cell Rep., 2020, 33(12), 108524.
[http://dx.doi.org/10.1016/j.celrep.2020.108524] [PMID: 33357428]
[34]
O’Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S.; Nedergaard, M. Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res., 2012, 37(11), 2496-2512.
[http://dx.doi.org/10.1007/s11064-012-0818-x] [PMID: 22717696]
[35]
Nilsson, C.; Lindvall-Axelsson, M.; Owman, C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Brain Res. Rev., 1992, 17(2), 109-138.
[http://dx.doi.org/10.1016/0165-0173(92)90011-A] [PMID: 1393190]
[36]
Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; Takano, T.; Deane, R.; Nedergaard, M. Sleep drives metabolite clearance from the adult brain. Science, 2013, 342(6156), 373-377.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[37]
Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491.
[http://dx.doi.org/10.3390/ijms22147491] [PMID: 34299111]
[38]
Lundgaard, I.; Li, B.; Xie, L.; Kang, H.; Sanggaard, S.; Haswell, J.D.R.; Sun, W.; Goldman, S.; Blekot, S.; Nielsen, M.; Takano, T.; Deane, R.; Nedergaard, M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun., 2015, 6(1), 6807.
[http://dx.doi.org/10.1038/ncomms7807] [PMID: 25904018]
[39]
Thrane, V.R.; Thrane, A.S.; Plog, B.A.; Thiyagarajan, M.; Iliff, J.J.; Deane, R.; Nagelhus, E.A.; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep., 2013, 3(1), 2582.
[http://dx.doi.org/10.1038/srep02582] [PMID: 24002448]
[40]
Achariyar, T.M.; Li, B.; Peng, W.; Verghese, P.B.; Shi, Y.; McConnell, E.; Benraiss, A.; Kasper, T.; Song, W.; Takano, T.; Holtzman, D.M.; Nedergaard, M.; Deane, R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener., 2016, 11(1), 74.
[http://dx.doi.org/10.1186/s13024-016-0138-8] [PMID: 27931262]
[41]
Natale, G.; Limanaqi, F.; Busceti, C.L.; Mastroiacovo, F.; Nicoletti, F.; Puglisi-Allegra, S.; Fornai, F. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front. Neurosci., 2021, 15, 639140.
[http://dx.doi.org/10.3389/fnins.2021.639140] [PMID: 33633540]
[42]
Buccellato, F.R.; D’Anca, M.; Serpente, M.; Arighi, A.; Galimberti, D. The role of glymphatic system in alzheimer’s and parkinson’s disease pathogenesis. Biomedicines, 2022, 10(9), 2261.
[http://dx.doi.org/10.3390/biomedicines10092261] [PMID: 36140362]
[43]
Reeves, B.C.; Karimy, J.K.; Kundishora, A.J.; Mestre, H.; Cerci, H.M.; Matouk, C.; Alper, S.L.; Lundgaard, I.; Nedergaard, M.; Kahle, K.T. Glymphatic system impairment in alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol. Med., 2020, 26(3), 285-295.
[http://dx.doi.org/10.1016/j.molmed.2019.11.008] [PMID: 31959516]
[44]
Schubert, J.J.; Veronese, M.; Marchitelli, L.; Bodini, B.; Tonietto, M.; Stankoff, B.; Brooks, D.J.; Bertoldo, A.; Edison, P.; Turkheimer, F.E. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in alzheimer disease and multiple sclerosis. J. Nucl. Med., 2019, 60(10), 1452-1460.
[http://dx.doi.org/10.2967/jnumed.118.223834] [PMID: 30850505]
[45]
Carotenuto, A.; Cacciaguerra, L.; Pagani, E.; Preziosa, P.; Filippi, M.; Rocca, M.A. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain, 2022, 145(8), 2785-2795.
[http://dx.doi.org/10.1093/brain/awab454] [PMID: 34919648]
[46]
Hesdorffer, D.C. Comorbidity between neurological illness and psychiatric disorders. CNS Spectr., 2016, 21(3), 230-238.
[http://dx.doi.org/10.1017/S1092852915000929] [PMID: 26898322]
[47]
Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[48]
Zhang, X.Y.; Yao, J.K. Oxidative stress and therapeutic implications in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 197-199.
[http://dx.doi.org/10.1016/j.pnpbp.2013.03.003] [PMID: 23523744]
[49]
Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflammation, 2013, 10(1), 816.
[http://dx.doi.org/10.1186/1742-2094-10-43] [PMID: 23547920]
[50]
Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis., 2021, 36(7), 1591-1626.
[http://dx.doi.org/10.1007/s11011-021-00806-4] [PMID: 34387831]
[51]
Krystal, A.D. Psychiatric disorders and sleep. Neurol. Clin., 2012, 30(4), 1389-1413.
[http://dx.doi.org/10.1016/j.ncl.2012.08.018] [PMID: 23099143]
[52]
Steele, T.A.; St Louis, E.K.; Videnovic, A.; Auger, R.R. Circadian rhythm sleep–wake disorders: A contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics, 2021, 18(1), 53-74.
[http://dx.doi.org/10.1007/s13311-021-01031-8] [PMID: 33844152]
[53]
Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol., 2019, 18(3), 307-318.
[http://dx.doi.org/10.1016/S1474-4422(18)30461-7] [PMID: 30784558]
[54]
Jones, S.G.; Benca, R.M. Circadian disruption in psychiatric disorders. Sleep Med. Clin., 2015, 10(4), 481-493.
[http://dx.doi.org/10.1016/j.jsmc.2015.07.004] [PMID: 26568124]
[55]
Zhang, X.; Alnafisah, R.S.; Hamoud, A.R.A.; Shukla, R.; McCullumsmith, R.E.; O’Donovan, S.M. Astrocytes in neuropsychiatric disorders: A review of postmortem evidence. Adv. Neurobiol., 2021, 26, 153-172.
[http://dx.doi.org/10.1007/978-3-030-77375-5_8] [PMID: 34888835]
[56]
McConnell, H.L.; Li, Z.; Woltjer, R.L.; Mishra, A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem. Int., 2019, 128, 70-84.
[http://dx.doi.org/10.1016/j.neuint.2019.04.005] [PMID: 30986503]
[57]
Zhang, D.; Li, X.; Li, B. Glymphatic system dysfunction in central nervous system diseases and mood disorders. Front. Aging Neurosci., 2022, 14, 873697.
[http://dx.doi.org/10.3389/fnagi.2022.873697] [PMID: 35547631]
[58]
Gu, S.; Li, Y.; Jiang, Y.; Huang, J.H.; Wang, F. Glymphatic dysfunction induced oxidative stress and neuro-inflammation in major depression disorders. Antioxidants, 2022, 11(11), 2296.
[http://dx.doi.org/10.3390/antiox11112296] [PMID: 36421482]
[59]
Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; Hempel, S.; Akl, E.A.; Chang, C.; McGowan, J.; Stewart, L.; Hartling, L.; Aldcroft, A.; Wilson, M.G.; Garritty, C.; Lewin, S.; Godfrey, C.M.; Macdonald, M.T.; Langlois, E.V.; Soares-Weiser, K.; Moriarty, J.; Clifford, T.; Tunçalp, Ö.; Straus, S.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med., 2018, 169(7), 467-473.
[http://dx.doi.org/10.7326/M18-0850] [PMID: 30178033]
[60]
Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol., 2018, 18(1), 143.
[http://dx.doi.org/10.1186/s12874-018-0611-x] [PMID: 30453902]
[61]
Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol., 2005, 8(1), 19-32.
[http://dx.doi.org/10.1080/1364557032000119616]
[62]
Wu, Y.F.; Sytwu, H.K.; Lung, F.W. Polymorphisms in the human aquaporin 4 gene are associated with schizophrenia in the southern chinese han population: A case–control study. Front. Psychiatry, 2020, 11, 596.
[http://dx.doi.org/10.3389/fpsyt.2020.00596] [PMID: 32676041]
[63]
Wu, Y.F.; Sytwu, H.K.; Lung, F.W. Human aquaporin 4 gene polymorphisms and haplotypes are associated with Serum S100B level and negative symptoms of schizophrenia in a southern chinese han population. Front. Psychiatry, 2018, 9, 657.
[http://dx.doi.org/10.3389/fpsyt.2018.00657] [PMID: 30618856]
[64]
Li, X.; Ruan, C.; Zibrila, A.I.; Musa, M.; Wu, Y.; Zhang, Z.; Liu, H.; Salimeen, M. Children with autism spectrum disorder present glymphatic system dysfunction evidenced by diffusion tensor imaging along the perivascular space. Medicine, 2022, 101(48), e32061.
[http://dx.doi.org/10.1097/MD.0000000000032061] [PMID: 36482590]
[65]
Liu, X.; Hao, J.; Yao, E.; Cao, J.; Zheng, X.; Yao, D.; Zhang, C.; Li, J.; Pan, D.; Luo, X.; Wang, M.; Wang, W. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav. Immun., 2020, 89, 357-370.
[http://dx.doi.org/10.1016/j.bbi.2020.07.022] [PMID: 32717402]
[66]
Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3), 365-379.
[http://dx.doi.org/10.1007/s00213-016-4473-9] [PMID: 27837334]
[67]
Ranti, D.L.; Warburton, A.J.; Rutland, J.W.; Dullea, J.T.; Markowitz, M.; Smith, D.A.; Kligler, S.Z.K.; Rutter, S.; Langan, M.; Arrighi-Allisan, A.; George, I.; Verma, G.; Murrough, J.W.; Delman, B.N.; Balchandani, P.; Morris, L.S. Perivascular spaces as a marker of psychological trauma in depression: A 7‐Tesla MRI study. Brain Behav., 2022, 12(7), 32598.
[http://dx.doi.org/10.1002/brb3.2598] [PMID: 35672958]
[68]
Chen, H.; Wan, H.; Zhang, M.; Liu, G.; Wang, X.; Wang, Z.; Ma, H.; Pan, Y.; Feng, T.; Wang, Y. Cerebral small vessel disease may worsen motor function, cognition, and mood in Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 83, 86-92.
[http://dx.doi.org/10.1016/j.parkreldis.2020.12.025] [PMID: 33493785]
[69]
Liu, D.; He, X.; Wu, D.; Zhang, Q.; Yang, C.; Liang, F.; He, X.; Dai, G.; Pei, Z.; Lan, Y.; Xu, G. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci. Lett., 2017, 653, 189-194.
[http://dx.doi.org/10.1016/j.neulet.2017.05.064] [PMID: 28576566]
[70]
Vasciaveo, V.; Iadarola, A.; Casile, A.; Dante, D.; Morello, G.; Minotta, L.; Tamagno, E.; Cicolin, A.; Guglielmotto, M. Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models. Acta Neuropathol. Commun., 2023, 11(1), 16.
[http://dx.doi.org/10.1186/s40478-022-01498-2] [PMID: 36653878]
[71]
Zhang, R.; Liu, Y.; Chen, Y.; Li, Q.; Marshall, C.; Wu, T.; Hu, G.; Xiao, M. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci. Ther., 2020, 26(2), 228-239.
[http://dx.doi.org/10.1111/cns.13194] [PMID: 31364823]
[72]
Siow, T.Y.; Toh, C.H.; Hsu, J.L.; Liu, G.H.; Lee, S.H.; Chen, N.H.; Fu, C.J.; Castillo, M.; Fang, J.T. Association of sleep, neuropsychological performance, and gray matter volume with glymphatic function in community-dwelling older adults. Neurology, 2022, 98(8), e829-e838.
[http://dx.doi.org/10.1212/WNL.0000000000013215] [PMID: 34906982]
[73]
Wang, X.X.; Cao, Q.C.; Teng, J.F.; Wang, R.F.; Yang, Z.T.; Wang, M.G.; Cao, Z.H. MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur. Radiol., 2022, 32(8), 5446-5457.
[http://dx.doi.org/10.1007/s00330-022-08649-y] [PMID: 35286409]
[74]
Rainey-Smith, S.R.; Mazzucchelli, G.N.; Villemagne, V.L.; Brown, B.M.; Porter, T.; Weinborn, M.; Bucks, R.S.; Milicic, L.; Sohrabi, H.R.; Taddei, K.; Ames, D.; Maruff, P.; Masters, C.L.; Rowe, C.C.; Salvado, O.; Martins, R.N.; Laws, S.M. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl. Psychiatry, 2018, 8(1), 47.
[http://dx.doi.org/10.1038/s41398-018-0094-x] [PMID: 29479071]
[75]
Piantino, J.; Schwartz, D.L.; Luther, M.; Newgard, C.; Silbert, L.; Raskind, M.; Pagulayan, K.; Kleinhans, N.; Iliff, J.; Peskind, E. Link between mild traumatic brain injury, poor sleep, and magnetic resonance imaging: Visible perivascular spaces in veterans. J. Neurotrauma, 2021, 38(17), 2391-2399.
[http://dx.doi.org/10.1089/neu.2020.7447] [PMID: 33599176]
[76]
Shokri-Kojori, E.; Wang, G.J.; Wiers, C.E.; Demiral, S.B.; Guo, M.; Kim, S.W.; Lindgren, E.; Ramirez, V.; Zehra, A.; Freeman, C.; Miller, G.; Manza, P.; Srivastava, T.; De Santi, S.; Tomasi, D.; Benveniste, H.; Volkow, N.D. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci., 2018, 115(17), 4483-4488.
[http://dx.doi.org/10.1073/pnas.1721694115] [PMID: 29632177]
[77]
Eide, P.K.; Ringstad, G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res., 2021, 1772, 147669.
[http://dx.doi.org/10.1016/j.brainres.2021.147669] [PMID: 34587499]
[78]
Chen, W.; Huang, P.; Zeng, H.; Lin, J.; Shi, Z.; Yao, X. Cocaine-induced structural and functional impairments of the glymphatic pathway in mice. Brain Behav. Immun., 2020, 88, 97-104.
[http://dx.doi.org/10.1016/j.bbi.2020.04.057] [PMID: 32335199]
[79]
Lundgaard, I.; Wang, W.; Eberhardt, A.; Vinitsky, H.S.; Reeves, B.C.; Peng, S.; Lou, N.; Hussain, R.; Nedergaard, M. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci. Rep., 2018, 8(1), 2246.
[http://dx.doi.org/10.1038/s41598-018-20424-y] [PMID: 29396480]
[80]
Liu, Q.; Yan, L.; Huang, M.; Zeng, H.; Satyanarayanan, S.K.; Shi, Z.; Chen, D.; Lu, J.H.; Pei, Z.; Yao, X.; Su, H. Experimental alcoholism primes structural and functional impairment of the glymphatic pathway. Brain Behav. Immun., 2020, 85, 106-119.
[http://dx.doi.org/10.1016/j.bbi.2019.06.029] [PMID: 31247290]
[81]
Li, B.; Zhang, D.; Verkhratsky, A. Astrocytes in post-traumatic stress disorder. Neurosci. Bull., 2022, 38(8), 953-965.
[http://dx.doi.org/10.1007/s12264-022-00845-6] [PMID: 35349095]
[82]
Van Praag, H.M.; Asnis, G.M.; Kahn, R.S.; Brown, S.L.; Korn, M.; Friedman, J.M.H.; Wetzler, S. Monoamines and abnormal behaviour. A multi-aminergic perspective. Br. J. Psychiatry, 1990, 157(5), 723-734.
[http://dx.doi.org/10.1192/bjp.157.5.723] [PMID: 1980627]
[83]
Li, C.T.; Yang, K.C.; Lin, W.C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front. Psychiatry, 2019, 9, 767.
[http://dx.doi.org/10.3389/fpsyt.2018.00767] [PMID: 30733690]
[84]
Tay, T.L.; Béchade, C.; D’Andrea, I.; St-Pierre, M.K.; Henry, M.S.; Roumier, A.; Tremblay, M.E. Microglia gone rogue: Impacts on psychiatric disorders across the lifespan. Front. Mol. Neurosci., 2018, 10, 421.
[http://dx.doi.org/10.3389/fnmol.2017.00421] [PMID: 29354029]
[85]
Chong, P.L.H.; Garic, D.; Shen, M.D.; Lundgaard, I.; Schwichtenberg, A.J. Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review. Sleep Med. Rev., 2022, 61, 101572.
[http://dx.doi.org/10.1016/j.smrv.2021.101572] [PMID: 34902819]
[86]
Mestre, H.; Hablitz, L.M.; Xavier, A.L.R.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Castellanos Rivera, R.M.; Simon, M.J.; Pike, M.M.; Plá, V.; Du, T.; Kress, B.T.; Wang, X.; Plog, B.A.; Thrane, A.S.; Lundgaard, I.; Abe, Y.; Yasui, M.; Thomas, J.H.; Xiao, M.; Hirase, H.; Asokan, A.; Iliff, J.J.; Nedergaard, M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife, 2018, 7, e40070.
[http://dx.doi.org/10.7554/eLife.40070] [PMID: 30561329]
[87]
Peng, S.; Liu, J.; Liang, C.; Yang, L.; Wang, G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol. Dis., 2023, 179, 106035.
[http://dx.doi.org/10.1016/j.nbd.2023.106035] [PMID: 36796590]
[88]
Taoka, T.; Ito, R.; Nakamichi, R.; Kamagata, K.; Sakai, M.; Kawai, H.; Nakane, T.; Abe, T.; Ichikawa, K.; Kikuta, J.; Aoki, S.; Naganawa, S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn. J. Radiol., 2022, 40(2), 147-158.
[http://dx.doi.org/10.1007/s11604-021-01187-5] [PMID: 34390452]
[89]
Walz, R.; Diaz, A.; Martins, E.T.; Rufino, A.; Amante, L.N.; Thais, M.E.; Quevedo, J.; Hohl, A.; Linhares, M.N.; Walz, R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat., 2008, 4(4), 797-816.
[http://dx.doi.org/10.2147/NDT.S2653] [PMID: 19043523]
[90]
Bryant, R.A.; O’Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Clark, C.R.; Silove, D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry, 2010, 167(3), 312-320.
[http://dx.doi.org/10.1176/appi.ajp.2009.09050617] [PMID: 20048022]
[91]
Richmond-Rakerd, L.S.; D’Souza, S.; Milne, B.J.; Caspi, A.; Moffitt, T.E. Longitudinal associations of mental disorders with dementia. JAMA Psychiat., 2022, 79(4), 333-340.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.4377] [PMID: 35171209]
[92]
Pancheri, C.; Verdolini, N.; Pacchiarotti, I.; Samalin, L.; Delle Chiaie, R.; Biondi, M.; Carvalho, A.F.; Valdes, M.; Ritter, P.; Vieta, E.; Murru, A. A systematic review on sleep alterations anticipating the onset of bipolar disorder. Eur. Psychiatry, 2019, 58, 45-53.
[http://dx.doi.org/10.1016/j.eurpsy.2019.02.003] [PMID: 30818134]
[93]
Ritter, P.S.; Höfler, M.; Wittchen, H.U.; Lieb, R.; Bauer, M.; Pfennig, A.; Beesdo-Baum, K. Disturbed sleep as risk factor for the subsequent onset of bipolar disorder: Data from a 10-year prospective-longitudinal study among adolescents and young adults. J. Psychiatr. Res., 2015, 68, 76-82.
[http://dx.doi.org/10.1016/j.jpsychires.2015.06.005] [PMID: 26228404]
[94]
Bersani, F.S.; Iannitelli, A.; Pacitti, F.; Bersani, G. Sleep and biorythm disturbances in schizophrenia, mood and anxiety disorders: A review. Riv. Psichiatr., 2012, 47(5), 365-375.
[http://dx.doi.org/10.1708/1175.13027] [PMID: 23160047]
[95]
Yan, T.; Qiu, Y.; Yu, X.; Yang, L. Glymphatic dysfunction: A bridge between sleep disturbance and mood disorders. Front. Psychiatry, 2021, 12, 658340.
[http://dx.doi.org/10.3389/fpsyt.2021.658340] [PMID: 34025481]
[96]
Jorm, A.F. History of depression as a risk factor for dementia: An updated review. Aust. N. Z. J. Psychiatry, 2001, 35(6), 776-781.
[http://dx.doi.org/10.1046/j.1440-1614.2001.00967.x] [PMID: 11990888]
[97]
Medina, A.; Watson, S.J.; Bunney, W., Jr; Myers, R.M.; Schatzberg, A.; Barchas, J.; Akil, H.; Thompson, R.C. Evidence for alterations of the glial syncytial function in major depressive disorder. J. Psychiatr. Res., 2016, 72, 15-21.
[http://dx.doi.org/10.1016/j.jpsychires.2015.10.010] [PMID: 26519765]
[98]
Iwamoto, K.; Kakiuchi, C.; Bundo, M.; Ikeda, K.; Kato, T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol. Psychiatry, 2004, 9(4), 406-416.
[http://dx.doi.org/10.1038/sj.mp.4001437] [PMID: 14743183]
[99]
Althubaity, N.; Schubert, J.; Martins, D.; Yousaf, T.; Nettis, M.A.; Mondelli, V.; Pariante, C.; Harrison, N.A.; Bullmore, E.T.; Dima, D.; Turkheimer, F.E.; Veronese, M. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. Neuroimage Clin., 2022, 33, 102926.
[http://dx.doi.org/10.1016/j.nicl.2021.102926] [PMID: 34972034]
[100]
Bernard, R.; Kerman, I.A.; Thompson, R.C.; Jones, E.G.; Bunney, W.E.; Barchas, J.D.; Schatzberg, A.F.; Myers, R.M.; Akil, H.; Watson, S.J. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol. Psychiatry, 2011, 16(6), 634-646.
[http://dx.doi.org/10.1038/mp.2010.44] [PMID: 20386568]
[101]
Gos, T.; Schroeter, M.L.; Lessel, W.; Bernstein, H.G.; Dobrowolny, H.; Schiltz, K.; Bogerts, B.; Steiner, J. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: A postmortem study. J. Psychiatr. Res., 2013, 47(11), 1694-1699.
[http://dx.doi.org/10.1016/j.jpsychires.2013.07.005] [PMID: 23896207]
[102]
Michel, M.; Fiebich, B.L.; Kuzior, H.; Meixensberger, S.; Berger, B.; Maier, S.; Nickel, K.; Runge, K.; Denzel, D.; Pankratz, B.; Schiele, M.A.; Domschke, K.; van Elst, L.T.; Endres, D. Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl. Psychiatry, 2021, 11(1), 308.
[http://dx.doi.org/10.1038/s41398-021-01423-6] [PMID: 34021122]
[103]
Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramanieapillai, M.; Fan, B.; Lu, C.; McIntyre, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry, 2019, 9(1), 190.
[http://dx.doi.org/10.1038/s41398-019-0515-5] [PMID: 31383846]
[104]
Genel, O.; Pariante, C.M.; Borsini, A. The role of AQP4 in the pathogenesis of depression, and possible related mechanisms. Brain Behav. Immun., 2021, 98, 366-377.
[http://dx.doi.org/10.1016/j.bbi.2021.08.232] [PMID: 34474133]
[105]
Zhou, X.; Xiao, Q.; Xie, L.; Yang, F.; Wang, L.; Tu, J. Astrocyte, a promising target for mood disorder interventions. Front. Mol. Neurosci., 2019, 12, 136.
[http://dx.doi.org/10.3389/fnmol.2019.00136] [PMID: 31231189]
[106]
Kim, Y.K.; Jeon, S.W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr. Neuropharmacol., 2018, 16(5), 574-582.
[http://dx.doi.org/10.2174/1570159X15666170913110426] [PMID: 28901278]
[107]
Steiner, J.; Bielau, H.; Bernstein, H-G.; Bogerts, B.; Wunderlich, M.T. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry, 2006, 77(11), 1284-1287.
[http://dx.doi.org/10.1136/jnnp.2006.093427] [PMID: 17043297]
[108]
Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Sologova, S.S.; Mukhortova, P.; Levushkin, D.; Somasundaram, S.G.; Kirkland, C.E.; Bachurin, S.O.; Aliev, G. Alterations of astrocytes in the context of schizophrenic dementia. Front. Pharmacol., 2020, 10, 1612.
[http://dx.doi.org/10.3389/fphar.2019.01612] [PMID: 32116664]
[109]
Hubbard, J.A.; Hsu, M.S.; Seldin, M.M.; Binder, D.K. Expression of the astrocyte water channel aquaporin-4 in the mouse brain. ASN Neuro, 2015, 7(5), 1759091415605486.
[http://dx.doi.org/10.1177/1759091415605486] [PMID: 26489685]
[110]
Periyasamy, P.; Guo, M.L.; Buch, S. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy, 2016, 12(8), 1310-1329.
[http://dx.doi.org/10.1080/15548627.2016.1183844] [PMID: 27337297]
[111]
Miguel-Hidalgo, J.J. Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front. Mol. Neurosci., 2018, 11, 78.
[http://dx.doi.org/10.3389/fnmol.2018.00078] [PMID: 29615864]
[112]
Shen, M.D.; Nordahl, C.W.; Li, D.D.; Lee, A.; Angkustsiri, K.; Emerson, R.W.; Rogers, S.J.; Ozonoff, S.; Amaral, D.G. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: A case-control study. Lancet Psychiatry, 2018, 5(11), 895-904.
[http://dx.doi.org/10.1016/S2215-0366(18)30294-3] [PMID: 30270033]
[113]
Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Lee, S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse, 2008, 62(7), 501-507.
[http://dx.doi.org/10.1002/syn.20519] [PMID: 18435417]
[114]
Hendrickson, R.C.; Raskind, M.A.; Millard, S.P.; Sikkema, C.; Terry, G.E.; Pagulayan, K.F.; Li, G.; Peskind, E.R. Evidence for altered brain reactivity to norepinephrine in Veterans with a history of traumatic stress. Neurobiol. Stress, 2018, 8, 103-111.
[http://dx.doi.org/10.1016/j.ynstr.2018.03.001] [PMID: 29888305]
[115]
Arent, C.O.; Valvassori, S.S.; Steckert, A.V.; Resende, W.R.; Dal-Pont, G.C.; Lopes-Borges, J.; Amboni, R.T.; Bianchini, G.; Quevedo, J. The effects of n-acetylcysteine and/or deferoxamine on manic-like behavior and brain oxidative damage in mice submitted to the paradoxal sleep deprivation model of mania. J. Psychiatr. Res., 2015, 65, 71-79.
[http://dx.doi.org/10.1016/j.jpsychires.2015.04.011] [PMID: 25937502]
[116]
Benedetti, F.; Fresi, F.; MacCioni, P.; Smeraldi, E. Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav. Brain Res., 2008, 187(2), 221-227.
[http://dx.doi.org/10.1016/j.bbr.2007.09.012] [PMID: 17950929]
[117]
da Rosa, M.I.; Simon, C.; Grande, A.J.; Barichello, T.; Oses, J.P.; Quevedo, J. Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J. Affect. Disord., 2016, 206, 210-215.
[http://dx.doi.org/10.1016/j.jad.2016.07.030] [PMID: 27475892]
[118]
Chen, Y.; Wang, M.; Su, S. The structural and fuctional changes of glymphatic system in children with attention-deficit/hyperactivity disorder. Res. Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1922962/v1]
[119]
Abdolizadeh, A.; Carmona, E.T.; Ueno, F.; Nakajima, S.; Tarumi, R.; Tsugawa, S.; Honda, S.; Matsushita, K.; Caravaggio, F.; Song, J.; Chavez, S.; Noda, Y.; Uchida, H.; Remington, G.; Gerretsen, P.; Graff-Guerrero, Ariel P548 Glymphatic system in schizophrenia: An H-MRS high-molecular-weight macromolecules study. Biolog. Psychiat., 2022, 91(9), S310-S311.
[http://dx.doi.org/10.1016/j.biopsych.2022.02.785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy