Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Review Article

Acetaldehyde and Butyrate: Their Biological Effects on the Liver and the Gut Axis

Author(s): Lu Liu, Abhinav Kanwal, Shailendra Pratap Singh* and Avinash Kumar

Volume 3, 2024

Published on: 24 January, 2024

Article ID: e240124226057 Pages: 9

DOI: 10.2174/0126662906273512231201050937

Price: $65

Open Access Journals Promotions 2
Abstract

The gut is the most accommodating environment in the human body for bacteria. The microbial community there is both dense and varied. The gut microbe forms an axis with the human liver, according to the theory of liver disease causation. The portal vein, systemic circulation, and biliary tract all provide bidirectional connections between the liver and the intestines. The liver secretes bile acid and a wide variety of bioactive mediators into the biliary tract and general circulation.

On the other hand, the portal vein carries microbial-produced endogenous compounds from the colon to the liver, where they might disrupt liver function. Acetyl-aldehyde and butyrate are two of the many byproducts produced by the microbiota in the human gut in response to indigestible food. In addition, these two waste products alter liver function and play an important role in maintaining intestinal health in humans. This paper reviews the literature on the link between butyrate and acetyl-aldehyde production in the human gut and the organ's role in the development of liver disease. Butyrate, acetyl-aldehyde, and liver disease all play roles in the gut-liver axis.

Keywords: Butyrate, acetyl-aldehyde, liver, gut, microbiota, SCFA.

[1]
Qin Y, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54(2): 134-42.
[http://dx.doi.org/10.1038/s41588-021-00991-z] [PMID: 35115689]
[2]
Abenavoli L, Scarlata GGM, Paravati MR, Boccuto L, Luzza F, Scarpellini E. Gut microbiota and liver transplantation: Immune mechanisms behind the rejection. Biomedicines 2023; 11(7): 1792.
[http://dx.doi.org/10.3390/biomedicines11071792] [PMID: 37509432]
[3]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[4]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[5]
Advances in experimental medicine and biology. In: Goldberg, G.; Prentice, A.; Prentice, A.; Filteau, S.; Simondon, K., Eds.; Breast-Feeding: Early Influences on Later Health. Dordrecht: Springer Netherlands 2009; 639.
[http://dx.doi.org/10.1007/978-1-4020-8749-3]
[6]
Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial ecology along the gastrointestinal tract. Microbes Environ 2017; 32(4): 300-13.
[http://dx.doi.org/10.1264/jsme2.ME17017] [PMID: 29129876]
[7]
Carlotta De F, Duccio C, Monica DP, Paolo L. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Biol Sci 2010; 107(33): 14691-6.
[8]
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[9]
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek 2020; 113(12): 2019-40.
[http://dx.doi.org/10.1007/s10482-020-01474-7] [PMID: 33136284]
[10]
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262-7.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[11]
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 2020; 72(3): 558-77.
[http://dx.doi.org/10.1016/j.jhep.2019.10.003] [PMID: 31622696]
[12]
Tripathi A, Debelius J, Brenner DA, et al. The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15(7): 397-411.
[http://dx.doi.org/10.1038/s41575-018-0011-z] [PMID: 29748586]
[13]
Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8(2): 172-84.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[14]
Yiew KH, Chatterjee TK, Hui DY, Weintraub NL. Histone deacetylases and cardiometabolic diseases. Arterioscler Thromb Vasc Biol 2015; 35(9): 1914-9.
[http://dx.doi.org/10.1161/ATVBAHA.115.305046] [PMID: 26183616]
[15]
Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol 2013; 164: 77-116.
[http://dx.doi.org/10.1007/112_2013_13]
[16]
Ichimura A, Hasegawa S, Kasubuchi M, Kimura I. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol 2014; 5: 236.
[http://dx.doi.org/10.3389/fphar.2014.00236]
[17]
Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7(4): 198-206.
[http://dx.doi.org/10.1007/s13668-018-0248-8] [PMID: 30264354]
[18]
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800-12.
[http://dx.doi.org/10.1038/nrc3610] [PMID: 24132111]
[19]
Hague A, Butt AJ, Paraskeva C. The role of butyrate in human colonic epithelial cells: An energy source or inducer of differentiation and apoptosis? Proc Nutr Soc 1996; 55(3): 937-43.
[http://dx.doi.org/10.1079/PNS19960090] [PMID: 9004335]
[20]
Mollica MP, Mattace Raso G, Cavaliere G, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017; 66(5): 1405-18.
[http://dx.doi.org/10.2337/db16-0924] [PMID: 28223285]
[21]
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci 2014; 111(6): 2247-52.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[22]
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1): 128-39.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[23]
Samelson SL, Nelson RL, Nyhus LM. Protective role of faecal pH in experimental colon carcinogenesis. J R Soc Med 1985; 78(3): 230-3.
[http://dx.doi.org/10.1177/014107688507800311] [PMID: 3973888]
[24]
Han Y. Butyrate mitigates weanling piglets from lipopolysaccharide-induced colitis by regulating microbiota and energy metabolism of the gut–liver axis. Front Microbiol 2020; 11: 588666.
[http://dx.doi.org/10.3389/fmicb.2020.588666]
[25]
Gálfi P, Bokori J. Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Vet Hung 1990; 38(1-2): 3-17.
[PMID: 2100936]
[26]
Van Immerseel F, Russell JB, Flythe MD, et al. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol 2006; 35(3): 182-8.
[http://dx.doi.org/10.1080/03079450600711045] [PMID: 16753609]
[27]
Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. Molecular ecological analysis of the gastrointestinal microbiota: A review. J Nutr 2004; 134(2): 465-72.
[http://dx.doi.org/10.1093/jn/134.2.465] [PMID: 14747690]
[28]
van Winsen RL, Urlings BAP, Lipman LJA, et al. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol 2001; 67(7): 3071-6.
[http://dx.doi.org/10.1128/AEM.67.7.3071-3076.2001] [PMID: 11425724]
[29]
Manzanilla EG, Nofrarías M, Anguita M, et al. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs1. J Anim Sci 2006; 84(10): 2743-51.
[http://dx.doi.org/10.2527/jas.2005-509] [PMID: 16971576]
[30]
Canibe N, Højberg O, Højsgaard S, Jensen BB. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J Anim Sci 2005; 83(6): 1287-302.
[http://dx.doi.org/10.2527/2005.8361287x] [PMID: 15890806]
[31]
Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 2020; 8(3): 50.
[http://dx.doi.org/10.3390/biomedicines8030050] [PMID: 32143280]
[32]
Barry RE, McGivan JD. Acetaldehyde alone may initiate hepatocellular damage in acute alcoholic liver disease. Gut 1985; 26(10): 1065-9.
[http://dx.doi.org/10.1136/gut.26.10.1065] [PMID: 4054705]
[33]
Seo YS, Shah VH. The role of gut-liver axis in the pathogenesis of liver cirrhosis and portal hypertension. Clin Mol Hepatol 2012; 18(4): 337-46.
[http://dx.doi.org/10.3350/cmh.2012.18.4.337] [PMID: 23323248]
[34]
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr 2018; 57(1): 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[35]
Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6(2): 121-31.
[http://dx.doi.org/10.1038/nrmicro1817] [PMID: 18180751]
[36]
Flint HJ, Duncan SH, Scott KP, Louis P. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 2007; 9(5): 1101-11.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x] [PMID: 17472627]
[37]
Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2007; 102(5): 1197-208.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03322.x] [PMID: 17448155]
[38]
Ingerslev AK, Theil PK, Hedemann MS, Lærke HN, Bach Knudsen KE. Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. Br J Nutr 2014; 111(9): 1564-76.
[http://dx.doi.org/10.1017/S0007114513004066] [PMID: 24507768]
[39]
Nielsen TS, Lærke HN, Theil PK, et al. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. Br J Nutr 2014; 112(11): 1837-49.
[http://dx.doi.org/10.1017/S000711451400302X] [PMID: 25327182]
[40]
Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 1987; 45(5): 1243-55.
[http://dx.doi.org/10.1093/ajcn/45.5.1243] [PMID: 3034048]
[41]
Bach Knudsen KE. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr 2015; 6(2): 206-13.
[http://dx.doi.org/10.3945/an.114.007450] [PMID: 25770259]
[42]
Shinohara R, Sasaki K, Inoue J, et al. Butyryl-CoA:acetate CoA-transferase gene associated with the genus <i>Roseburia</i> is decreased in the gut microbiota of Japanese patients with ulcerative colitis. Biosci Microbiota Food Health 2019; 38(4): 159-63.
[http://dx.doi.org/10.12938/bmfh.18-029] [PMID: 31763119]
[43]
Knudsen KEB. Effect of dietary non-digestible carbohydrates on the rate of SCFA delivery to peripheral tissues. Foods Food Ingred J Jpn 2005; 210(11): 1008-17.
[44]
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017; 19(1): 29-41.
[http://dx.doi.org/10.1111/1462-2920.13589] [PMID: 27928878]
[45]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[46]
Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016; 352(6285): 565-9.
[http://dx.doi.org/10.1126/science.aad3369] [PMID: 27126040]
[47]
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[48]
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294(1): 1-8.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x] [PMID: 19222573]
[49]
Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 2014; 5(2): e00889-14.
[http://dx.doi.org/10.1128/mBio.00889-14] [PMID: 24757212]
[50]
Bui TPN, Ritari J, Boeren S, de Waard P, Plugge CM, de Vos WM. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun 2015; 6(1): 10062.
[http://dx.doi.org/10.1038/ncomms10062] [PMID: 26620920]
[51]
Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 2019; 59(S1): S130-52.
[http://dx.doi.org/10.1080/10408398.2018.1542587]
[52]
Blaak EE, Canfora EE, Theis S, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11(5): 411-55.
[http://dx.doi.org/10.3920/BM2020.0057] [PMID: 32865024]
[53]
Nedjadi T, Moran AW, Al-Rammahi MA, Shirazi-Beechey SP. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol 2014; 99(10): 1335-47.
[http://dx.doi.org/10.1113/expphysiol.2014.077982] [PMID: 25172888]
[54]
Takebe K, Nio J, Morimatsu M, et al. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (Slc5a8) in the intestine and kidney of the mouse. Biomed Res 2005; 26(5): 213-21.
[http://dx.doi.org/10.2220/biomedres.26.213] [PMID: 16295698]
[55]
Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr Res Rev 2010; 23(2): 366-84.
[http://dx.doi.org/10.1017/S0954422410000247] [PMID: 20937167]
[56]
Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40(3): 235-43.
[http://dx.doi.org/10.1097/00004836-200603000-00015] [PMID: 16633129]
[57]
Liu H, Wang J, He T, et al. Butyrate: a double-edged sword for health? Adv Nutr 2018; 9(1): 21-9.
[http://dx.doi.org/10.1093/advances/nmx009] [PMID: 29438462]
[58]
Boets E, Gomand SV, Deroover L, et al. Systemic availability and metabolism of colonic‐derived short‐chain fatty acids in healthy subjects: A stable isotope study. J Physiol 2017; 595(2): 541-55.
[http://dx.doi.org/10.1113/JP272613] [PMID: 27510655]
[59]
Smith EA, Macfarlane GT. Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe 1997; 3(5): 327-37.
[http://dx.doi.org/10.1006/anae.1997.0121] [PMID: 16887608]
[60]
Dai ZL, Wu G, Zhu W-Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front Biosci 2011; 16(1): 1768-86.
[http://dx.doi.org/10.2741/3820] [PMID: 21196263]
[61]
Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 2013; 114(1): 11-24.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05434.x] [PMID: 22924898]
[62]
Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2014; 16(6): 770-7.
[http://dx.doi.org/10.1016/j.chom.2014.11.003] [PMID: 25498344]
[63]
Yoshida Y, Sato M, Kezuka Y, et al. Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis. Arch Biochem Biophys 2016; 596: 138-48.
[http://dx.doi.org/10.1016/j.abb.2016.03.014] [PMID: 27013206]
[64]
Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021; 66: 103293.
[http://dx.doi.org/10.1016/j.ebiom.2021.103293]
[65]
Le Gall M, Gallois M, Sève B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. Br J Nutr 2009; 102(9): 1285-96.
[http://dx.doi.org/10.1017/S0007114509990213] [PMID: 19480733]
[66]
Kotunia A, Woliński J, Laubitz D, et al. Effect of sodium butyrate on the small intestine development in Neonatal piglets fed [correction of feed] by artificial sow. J Physiol Pharmacol 2004; 55(S2): 59-68.
[PMID: 15608361]
[67]
Bartholome AL, Albin DM, Baker DH, Holst JJ, Tappenden KA. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in Neonatal piglets. JPEN J Parenter Enteral Nutr 2004; 28(4): 210-22.
[http://dx.doi.org/10.1177/0148607104028004210] [PMID: 15291402]
[68]
Frankel W, Lew J, Su B, et al. Butyrate increases colonocyte protein synthesis in ulcerative colitis. J Surg Res 1994; 57(1): 210-4.
[http://dx.doi.org/10.1006/jsre.1994.1133] [PMID: 8041140]
[69]
Scheppach W, Bartram P, Richter A, et al. Effect of short-chain fatty acids on the human colonic mucosa in vitro. JPEN J Parenter Enteral Nutr 1992; 16(1): 43-8.
[http://dx.doi.org/10.1177/014860719201600143] [PMID: 1738218]
[70]
Yu C, Liu S, Chen L, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J Endocrinol 2019; 243(2): 125-35.
[http://dx.doi.org/10.1530/JOE-19-0122] [PMID: 31454784]
[71]
Luciano L, Groos S, Busche R, von Engelhardt W, Reale E. Massive apoptosis of colonocytes induced by butyrate deprivation overloads resident macrophages and promotes the recruitment of circulating monocytes. Cell Tissue Res 2002; 309(3): 393-407.
[http://dx.doi.org/10.1007/s00441-002-0593-0] [PMID: 12195296]
[72]
Mariadason JM, Kilias D, Catto-Smith A, Gibson PR. Effect of butyrate on paracellular permeability in rat distal colonic mucosa ex vivo. J Gastroenterol Hepatol 1999; 14(9): 873-9.
[http://dx.doi.org/10.1046/j.1440-1746.1999.01972.x] [PMID: 10535468]
[73]
Cook SI, Sellin JH. Review article: Short chain fatty acids in health and disease. Aliment Pharmacol Ther 1998; 12(6): 499-507.
[http://dx.doi.org/10.1046/j.1365-2036.1998.00337.x] [PMID: 9678808]
[74]
Roediger WEW. The colonic epithelium in ulcerative colitis: An energy-deficiency disease? Lancet 1980; 316(8197): 712-5.
[http://dx.doi.org/10.1016/S0140-6736(80)91934-0] [PMID: 6106826]
[75]
Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980; 21(9): 793-8.
[http://dx.doi.org/10.1136/gut.21.9.793] [PMID: 7429343]
[76]
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med 2021; 53(2): 168-88.
[http://dx.doi.org/10.1038/s12276-021-00561-7] [PMID: 33568752]
[77]
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I–molecular mechanisms of activation and regulation. Front Immunol 2015; 6: 262.
[http://dx.doi.org/10.3389/fimmu.2015.00262] [PMID: 26082779]
[78]
Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res 2017; 38(2): 147-61.
[PMID: 28988570]
[79]
Wei X, Shi X, Zhong W, et al. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: Analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling. PLoS One 2013; 8(2): e55382.
[http://dx.doi.org/10.1371/journal.pone.0055382] [PMID: 23405143]
[80]
Zhang W, Zhong W, Sun X, et al. Visceral white adipose tissue is susceptible to alcohol-induced lipodystrophy in rats: role of acetaldehyde. Alcohol Clin Exp Res 2015; 39(3): 416-23.
[http://dx.doi.org/10.1111/acer.12646] [PMID: 25703837]
[81]
Wang W, Wang C, Xu H, Gao Y. Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci 2020; 16(6): 921-34.
[http://dx.doi.org/10.7150/ijbs.42300] [PMID: 32140062]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy