Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease

Author(s): Wei Guan, Yan Chen and Yan Fan*

Volume 31, Issue 18, 2024

Published on: 09 January, 2024

Page: [2550 - 2570] Pages: 21

DOI: 10.2174/0109298673271808231116075056

Price: $65

Abstract

MicroRNA-26a (miR-26a) belongs to small non-coding regulatory RNA molecules emerging as fundamental post-transcriptional regulators inhibiting gene expression that plays vital roles in various processes of human diseases such as depression, renal ischemia and reperfusion injury, liver injury and some refractory cancer. In this review, we expound on the results of studies about miR-26a with emphasis on its function in animal models or in vitro cell culture to simulate the most common human disease in the clinic. Furthermore, we also illustrate the underlying mechanisms of miR-26a in strengthening the antitumor activity of antineoplastic drugs. Importantly, dysregulation of miR-26a has been related to many chronic and malignant diseases, especially in neurological disorders in the brain such as depression and neurodegenerative diseases as well as cancers such as papillary thyroid carcinoma, hepatocellular carcinoma and so on. It follows that miR-26a has a strong possibility to be a potential therapeutic target for the treatment of neurological disorders and cancers. Although the research of miRNAs has made great progress in the last few decades, much is yet to be discovered, especially regarding their underlying mechanisms and roles in the complex diseases of humans. Consequently, miR-26a has been analyzed in chronic and malignant diseases, and we discuss the dysregulation of miR-26a and functional roles in the development and pathogenesis of these diseases, which is very helpful for understanding their mechanisms as new biomarkers for diagnosing and curing diseases in the near future.

Keywords: miR-26a, biomarkers, human diseases, expression levels, target gene, cardiac fibrosis.

[1]
Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci., 2019, 20(24), 6249.
[http://dx.doi.org/10.3390/ijms20246249] [PMID: 31835747]
[2]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[3]
Ginckels, P.; Holvoet, P. Oxidative stress and inflammation in cardiovascular diseases and cancer: Role of non- coding RNAs. Yale J. Biol. Med., 2022, 95(1), 129-152.
[PMID: 35370493]
[4]
Wang, B.; Zhang, A.; Wang, H.; Klein, J.D.; Tan, L.; Wang, Z.M.; Du, J.; Naqvi, N.; Liu, B.C.; Wang, X.H. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics, 2019, 9(7), 1864-1877.
[http://dx.doi.org/10.7150/thno.29579] [PMID: 31037144]
[5]
Cai, B.; Qu, X.; Kan, D.; Luo, Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle, 2022, 21(6), 618-629.
[http://dx.doi.org/10.1080/15384101.2022.2030168] [PMID: 35073820]
[6]
Li, Y.; Fan, C.; Wang, L.; Lan, T.; Gao, R.; Wang, W.; Yu, S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest., 2021, 131(16), e148853.
[http://dx.doi.org/10.1172/JCI148853] [PMID: 34228643]
[7]
Chen, B.; Deng, Y.; Wang, X.; Xia, Z.; He, Y.; Zhang, P.; Syed, S.E.; Li, Q.; Liang, S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett., 2021, 521, 1-13.
[http://dx.doi.org/10.1016/j.canlet.2021.08.017] [PMID: 34419497]
[8]
Shen, B.; Mei, M.; Pu, Y.; Zhang, H.; Liu, H.; Tang, M.; Pan, Q.; He, Y.; Wu, X.; Zhao, H. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 Signaling. Mol. Ther. Nucleic Acids, 2019, 17, 701-713.
[http://dx.doi.org/10.1016/j.omtn.2019.06.025] [PMID: 31422287]
[9]
Kong, B.; Qin, Z.; Ye, Z.; Yang, X.; Li, L.; Su, Q. microRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1. J. Cell. Biochem., 2019, 120(6), 10756-10766.
[http://dx.doi.org/10.1002/jcb.28367] [PMID: 30652345]
[10]
Su, Y.; Deng, M.F.; Xiong, W.; Xie, A.J.; Guo, J.; Liang, Z.H.; Hu, B.; Chen, J.G.; Zhu, X.; Man, H.Y.; Lu, Y.; Liu, D.; Tang, B.; Zhu, L.Q. MicroRNA-26a/Death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in parkinson’s disease. Biol. Psychiatry, 2019, 85(9), 769-781.
[http://dx.doi.org/10.1016/j.biopsych.2018.12.008] [PMID: 30718039]
[11]
Li, C.; Li, Y.; Lu, Y.; Niu, Z.; Zhao, H.; Peng, Y.; Li, M. miR-26 family and its target genes in tumorigenesis and development. Crit. Rev. Oncol. Hematol., 2021, 157, 103124.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103124] [PMID: 33254041]
[12]
Li, X.; Pan, X.; Fu, X.; Yang, Y.; Chen, J.; Lin, W. MicroRNA-26a: An emerging regulator of renal biology and disease. Kidney Blood Press. Res., 2019, 44(3), 287-297.
[http://dx.doi.org/10.1159/000499646] [PMID: 31163420]
[13]
Icli, B.; Dorbala, P.; Feinberg, M.W. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc. Med., 2014, 24(6), 241-248.
[http://dx.doi.org/10.1016/j.tcm.2014.06.003] [PMID: 25066487]
[14]
Pelletier, D.; Rivera, B.; Fabian, M.R.; Foulkes, W.D. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet., 2023, 39(5), 401-414.
[http://dx.doi.org/10.1016/j.tig.2023.01.009] [PMID: 36863945]
[15]
Zeng, Y.; Yi, R.; Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J., 2005, 24(1), 138-148.
[http://dx.doi.org/10.1038/sj.emboj.7600491] [PMID: 15565168]
[16]
Saito, K.; Ishizuka, A.; Siomi, H.; Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol., 2005, 3(7), e235.
[http://dx.doi.org/10.1371/journal.pbio.0030235] [PMID: 15918769]
[17]
Fukunaga, R.; Han, B.W.; Hung, J.H.; Xu, J.; Weng, Z.; Zamore, P.D. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell, 2012, 151(3), 533-546.
[http://dx.doi.org/10.1016/j.cell.2012.09.027] [PMID: 23063653]
[18]
Jiang, F.; Zong, Y.; Ma, X.; Jiang, C.; Shan, H.; Lin, Y.; Xia, W.; Yin, F.; Wang, N.; Zhou, L.; Zhou, Z.; Yu, X. miR-26a attenuated bone-specific insulin resistance and bone quality in diabetic mice. Mol. Ther. Nucleic Acids, 2020, 20, 459-467.
[http://dx.doi.org/10.1016/j.omtn.2020.03.010] [PMID: 32278305]
[19]
Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res., 2020, 53(2), e9106.
[http://dx.doi.org/10.1590/1414-431x20199106] [PMID: 31994603]
[20]
Cheng, C.; Chen, X.; Wang, Y.; Cheng, W.; Zuo, X.; Tang, W.; Huang, W. MSCs-derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol. Med., 2021, 27(1), 67.
[http://dx.doi.org/10.1186/s10020-021-00324-0] [PMID: 34215174]
[21]
Gao, S.; Bian, T.; Su, M.; Liu, Y.; Zhang, Y. miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12. Oncol. Rep., 2020, 43(1), 368-374.
[PMID: 31789414]
[22]
Gong, Y.; Wu, W.; Zou, X.; Liu, F.; Wei, T.; Zhu, J. MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am. J. Cancer Res., 2018, 8(6), 1030-1039.
[PMID: 30034940]
[23]
Wang, H.; Hu, Z.; Chen, L. Enhanced plasma miR-26a-5p promotes the progression of bladder cancer via targeting PTEN. Oncol. Lett., 2018, 16(4), 4223-4228.
[http://dx.doi.org/10.3892/ol.2018.9163] [PMID: 30197668]
[24]
Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med., 2014, 44(10), 2029-2040.
[http://dx.doi.org/10.1017/S0033291713002535] [PMID: 24168753]
[25]
Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci., 2020, 21(20), 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[26]
Wu, Z.; Cai, Z.; Shi, H.; Huang, X.; Cai, M.; Yuan, K.; Huang, P.; Shi, G.; Yan, T.; Li, Z. Effective biomarkers and therapeutic targets of nerve-immunity interaction in the treatment of depression: An integrated investigation of the miRNA-mRNA regulatory networks. Aging, 2022, 14(8), 3569-3596.
[http://dx.doi.org/10.18632/aging.204030] [PMID: 35468096]
[27]
Homorogan, C.; Enatescu, V.R.; Nitusca, D.; Marcu, A.; Seclaman, E.; Marian, C. Distribution of microRNAs associated with major depressive disorder among blood compartments. J. Int. Med. Res., 2021, 49(4), 03000605211006633.
[http://dx.doi.org/10.1177/03000605211006633] [PMID: 33827323]
[28]
Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol., 2013, 23(7), 602-611.
[http://dx.doi.org/10.1016/j.euroneuro.2012.06.013] [PMID: 22925464]
[29]
Carrillo, M.C.; Brashear, H.R.; Logovinsky, V.; Ryan, J.M.; Feldman, H.H.; Siemers, E.R.; Abushakra, S.; Hartley, D.M.; Petersen, R.C.; Khachaturian, A.S.; Sperling, R.A. Can we prevent Alzheimer’s disease? Secondary “prevention” trials in Alzheimer’s disease. Alzheimers Dement., 2013, 9(2), 123-131.e1.
[http://dx.doi.org/10.1016/j.jalz.2012.12.004] [PMID: 23411394]
[30]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[31]
Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol., 2010, 11(4), 252-263.
[http://dx.doi.org/10.1038/nrm2868] [PMID: 20216554]
[32]
Li, B.; Sun, H. miR-26a promotes neurite outgrowth by repressing PTEN expression. Mol. Med. Rep., 2013, 8(2), 676-680.
[http://dx.doi.org/10.3892/mmr.2013.1534] [PMID: 23783805]
[33]
Demuro, S.; Di Martino, R.M.C.; Ortega, J.A.; Cavalli, A. GSK-3β, FYN, and DYRK1A: Master regulators in neurodegenerative pathways. Int. J. Mol. Sci., 2021, 22(16), 9098.
[http://dx.doi.org/10.3390/ijms22169098] [PMID: 34445804]
[34]
Liu, Y.; Wang, L.; Xie, F.; Wang, X.; Hou, Y.; Wang, X.; Liu, J. Overexpression of miR-26a-5p suppresses tau phosphorylation and Aβ accumulation in the Alzheimer’s disease mice by targeting DYRK1A. Curr. Neurovasc. Res., 2020, 17(3), 241-248.
[http://dx.doi.org/10.2174/1567202617666200414142637] [PMID: 32286945]
[35]
Xie, T.; Pei, Y.; Shan, P.; Xiao, Q.; Zhou, F.; Huang, L.; Wang, S. Identification of miRNA–mRNA Pairs in the Alzheimer’s disease expression profile and explore the effect of miR-26a-5p/PTGS2 on amyloid-β induced neurotoxicity in Alzheimer’s disease cell model. Front. Aging Neurosci., 2022, 14, 909222.
[http://dx.doi.org/10.3389/fnagi.2022.909222] [PMID: 35783137]
[36]
Paredes, C.; Hsu, R.C.; Tong, A.; Johnson, J.R. Obesity and pregnancy. Neoreviews, 2021, 22(2), e78-e87.
[http://dx.doi.org/10.1542/neo.22-2-e78] [PMID: 33526637]
[37]
Marcelin, G.; Silveira, A.L.M.; Martins, L.B.; Ferreira, A.V.M.; Clément, K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest., 2019, 129(10), 4032-4040.
[http://dx.doi.org/10.1172/JCI129192] [PMID: 31498150]
[38]
Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Amarri, S.; Street, M.E. Obesity, insulin resistance, and colorectal cancer: Could miRNA dysregulation play a role? Int. J. Mol. Sci., 2019, 20(12), 2922.
[http://dx.doi.org/10.3390/ijms20122922] [PMID: 31207998]
[39]
Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P.; Meng, Z.; Wang, X.; Pattou, F.; Han, W.; Wang, X.; Lou, F.; Jove, R.; Staels, B.; Moore, D.D.; Huang, W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest., 2015, 125(6), 2497-2509.
[http://dx.doi.org/10.1172/JCI75438] [PMID: 25961460]
[40]
Acharya, A.; Berry, D.C.; Zhang, H.; Jiang, Y.; Jones, B.T.; Hammer, R.E.; Graff, J.M.; Mendell, J.T. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev., 2019, 33(19-20), 1367-1380.
[http://dx.doi.org/10.1101/gad.328955.119] [PMID: 31488578]
[41]
Kim, N.H.; Ahn, J.; Choi, Y.M.; Son, H.J.; Choi, W.H.; Cho, H.J.; Yu, J.H.; Seo, J.A.; Jang, Y.J.; Jung, C.H.; Ha, T.Y. Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin. Nutr., 2020, 39(3), 910-916.
[http://dx.doi.org/10.1016/j.clnu.2019.03.033] [PMID: 31003790]
[42]
Hsieh, C.H.; Rau, C.S.; Wu, S.C.; Yang, J.C.S.; Wu, Y.C.; Lu, T.H.; Tzeng, S.L.; Wu, C.J.; Lin, C.W. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC Genomics, 2015, 16(1), 699.
[http://dx.doi.org/10.1186/s12864-015-1896-3] [PMID: 26377847]
[43]
Blagosklonny, M.V. Once again on rapamycin-induced insulin resistance and longevity: Despite of or owing to. Aging, 2012, 4(5), 350-358.
[http://dx.doi.org/10.18632/aging.100461] [PMID: 22683661]
[44]
Osna, N.A.; Donohue, T.M., Jr; Kharbanda, K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res., 2017, 38(2), 147-161.
[PMID: 28988570]
[45]
Lackner, C.; Tiniakos, D. Fibrosis and alcohol-related liver disease. J. Hepatol., 2019, 70(2), 294-304.
[http://dx.doi.org/10.1016/j.jhep.2018.12.003] [PMID: 30658730]
[46]
Zhao, Z.; Lin, C.Y.; Cheng, K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl. Res., 2019, 214, 17-29.
[http://dx.doi.org/10.1016/j.trsl.2019.07.007] [PMID: 31476281]
[47]
Wang, X.; He, Y.; Mackowiak, B.; Gao, B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 2021, 70(4), 784-795.
[http://dx.doi.org/10.1136/gutjnl-2020-322526] [PMID: 33127832]
[48]
Blaya, D.; Pose, E.; Coll, M.; Lozano, J.J.; Graupera, I.; Schierwagen, R.; Jansen, C.; Castro, P.; Fernandez, S.; Sidorova, J.; Vasa-Nicotera, M.; Solà, E.; Caballería, J.; Trebicka, J.; Ginès, P.; Sancho-Bru, P. Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Reports, 2021, 3(2), 100233.
[http://dx.doi.org/10.1016/j.jhepr.2021.100233] [PMID: 33665588]
[49]
Zhou, J.; Li, Z.; Huang, Y.; Ju, W.; Wang, D.; Zhu, X.; He, X. MicroRNA-26a targets the mdm2/p53 loop directly in response to liver regeneration. Int. J. Mol. Med., 2019, 44(4), 1505-1514.
[http://dx.doi.org/10.3892/ijmm.2019.4282] [PMID: 31364731]
[50]
Kalayinia, S.; Goodarzynejad, H.; Maleki, M.; Mahdieh, N. Next generation sequencing applications for cardiovascular disease. Ann. Med., 2018, 50(2), 91-109.
[http://dx.doi.org/10.1080/07853890.2017.1392595] [PMID: 29027470]
[51]
Huang, Y. The novel regulatory role of lnc RNA -mi RNA-MRNA axis in cardiovascular diseases. J. Cell. Mol. Med., 2018, 22(12), 5768-5775.
[http://dx.doi.org/10.1111/jcmm.13866] [PMID: 30188595]
[52]
Kalayinia, S.; Arjmand, F.; Maleki, M.; Malakootian, M.; Singh, C.P. MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc. Pathol., 2021, 50, 107296.
[http://dx.doi.org/10.1016/j.carpath.2020.107296] [PMID: 33022373]
[53]
Lu, D.; Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol., 2019, 16(11), 661-674.
[http://dx.doi.org/10.1038/s41569-019-0218-x] [PMID: 31186539]
[54]
Shi, H.; Li, H.; Zhang, F.; Xue, H.; Zhang, Y.; Han, Q. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol. Int., 2021, 45(11), 2357-2367.
[http://dx.doi.org/10.1002/cbin.11685] [PMID: 34370360]
[55]
Tang, L.; Xie, J.; Yu, X.; Zheng, Y. MiR-26a-5p inhibits GSK3β expression and promotes cardiac hypertrophy in vitro. PeerJ, 2020, 8, e10371.
[http://dx.doi.org/10.7717/peerj.10371] [PMID: 33240671]
[56]
Deng, S.; Solinas, A.; Calvisi, D.F. Cabozantinib for HCC Treatment, from clinical back to experimental models. Front. Oncol., 2021, 11, 756672.
[http://dx.doi.org/10.3389/fonc.2021.756672] [PMID: 34722310]
[57]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9(1), 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[58]
Wang, Y.; Sun, B.; Sun, H.; Zhao, X.; Wang, X.; Zhao, N.; Zhang, Y.; Li, Y.; Gu, Q.; Liu, F.; Shao, B.; An, J. Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumour Biol., 2016, 37(8), 10965-10979.
[http://dx.doi.org/10.1007/s13277-016-4964-7] [PMID: 26891666]
[59]
Zhang, Y.F.; Zhang, A.R.; Zhang, B.C.; Rao, Z.G.; Gao, J.F.; Lv, M.H.; Wu, Y.Y.; Wang, S.M.; Wang, R.Q.; Fang, D.C. MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol. Biol. Rep., 2013, 40(2), 1711-1720.
[http://dx.doi.org/10.1007/s11033-012-2222-7] [PMID: 23108995]
[60]
Chang, L.; Li, K.; Guo, T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin. Transl. Oncol., 2017, 19(6), 695-703.
[http://dx.doi.org/10.1007/s12094-016-1582-1] [PMID: 27864783]
[61]
Zhu, W.J.; Yan, Y.; Zhang, J.W.; Tang, Y.D.; Han, B. Effect and mechanism of miR-26a-5p on proliferation and apoptosis of hepatocellular carcinoma cells. Cancer Manag. Res., 2020, 12, 3013-3022.
[http://dx.doi.org/10.2147/CMAR.S237752] [PMID: 32431544]
[62]
Liebner, D.A.; Shah, M.H. Thyroid cancer: Pathogenesis and targeted therapy. Ther. Adv. Endocrinol. Metab., 2011, 2(5), 173-195.
[http://dx.doi.org/10.1177/2042018811419889] [PMID: 23148184]
[63]
Lin, R.X.; Yang, S.L.; Jia, Y.; Wu, J.C.; Xu, Z.; Zhang, H. Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin. Cancer Biol., 2022, 83, 253-260.
[http://dx.doi.org/10.1016/j.semcancer.2021.03.027] [PMID: 33785446]
[64]
Wu, Y.C.; Li, S.Y.; Jia, Y.F. MicroRNA-26a suppresses the malignant biological behaviors of papillary thyroid carcinoma by targeting ROCK1 and regulating PI3K/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8940-8949.
[PMID: 31696481]
[65]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[66]
Sun, T.Y.; Xie, H.J.; He, H.; Li, Z.; Kong, L.F. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am. J. Transl. Res., 2016, 8(2), 1037-1046.
[PMID: 27158389]
[67]
Shen, W.; Song, M.; Liu, J.; Qiu, G.; Li, T.; Hu, Y.; Liu, H. MiR-26a promotes ovarian cancer proliferation and tumorigenesis. PLoS One, 2014, 9(1), e86871.
[http://dx.doi.org/10.1371/journal.pone.0086871] [PMID: 24466274]
[68]
Testa, U.; Castelli, G.; Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines, 2019, 6(3), 82.
[http://dx.doi.org/10.3390/medicines6030082] [PMID: 31366128]
[69]
Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730.
[http://dx.doi.org/10.3390/molecules27175730] [PMID: 36080493]
[70]
Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet., 2012, 13(5), 358-369.
[http://dx.doi.org/10.1038/nrg3198] [PMID: 22510765]
[71]
Mohammadi Torbati, P.; Asadi, F.; Fard-Esfahani, P. Circulating miR-20a and miR-26a as biomarkers in prostate cancer. Asian Pac. J. Cancer Prev., 2019, 20(5), 1453-1456.
[http://dx.doi.org/10.31557/APJCP.2019.20.5.1453] [PMID: 31127907]
[72]
Yang, B.; Tang, X.; Wang, Z.; Sun, D.; Wei, X.; Ding, Y. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci. Rep., 2018, 38(5), BSR20180677.
[http://dx.doi.org/10.1042/BSR20180677] [PMID: 29967294]
[73]
Urabe, F.; Kosaka, N.; Sawa, Y.; Yamamoto, Y.; Ito, K.; Yamamoto, T.; Kimura, T.; Egawa, S.; Ochiya, T. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci. Adv., 2020, 6(18), eaay3051.
[http://dx.doi.org/10.1126/sciadv.aay3051] [PMID: 32494663]
[74]
Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203.
[http://dx.doi.org/10.1007/s10555-020-09925-3] [PMID: 32894370]
[75]
He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; Wang, X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci., 2020, 16(14), 2628-2647.
[http://dx.doi.org/10.7150/ijbs.47203] [PMID: 32792861]
[76]
Deng, M.; Tang, H.; Lu, X.; Liu, M.; Lu, X.; Gu, Y.; Liu, J.; He, Z. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One, 2013, 8(8), e72662.
[http://dx.doi.org/10.1371/journal.pone.0072662] [PMID: 24015269]
[77]
Ding, K.; Wu, Z.; Wang, N.; Wang, X.; Wang, Y.; Qian, P.; Meng, G.; Tan, S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol. Res. Pract., 2017, 213(5), 467-475.
[http://dx.doi.org/10.1016/j.prp.2017.01.026] [PMID: 28242043]
[78]
Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci., 2021, 22(19), 10373.
[http://dx.doi.org/10.3390/ijms221910373] [PMID: 34638714]
[79]
McNamara, M.G.; Lwin, Z.; Jiang, H.; Chung, C.; Millar, B.A.; Sahgal, A.; Laperriere, N.; Mason, W.P. Conditional probability of survival and post-progression survival in patients with glioblastoma in the temozolomide treatment era. J. Neurooncol., 2014, 117(1), 153-160.
[http://dx.doi.org/10.1007/s11060-014-1368-7] [PMID: 24469855]
[80]
Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir., 2018, 58(10), 405-421.
[http://dx.doi.org/10.2176/nmc.ra.2018-0141] [PMID: 30249919]
[81]
Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci., 2022, 23(19), 11502.
[http://dx.doi.org/10.3390/ijms231911502] [PMID: 36232799]
[82]
Huang, W.; Zhong, Z.; Luo, C.; Xiao, Y.; Li, L.; Zhang, X.; Yang, L.; Xiao, K.; Ning, Y.; Chen, L.; Liu, Q.; Hu, X.; Zhang, J.; Ding, X.; Xiang, S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics, 2019, 9(19), 5497-5516.
[http://dx.doi.org/10.7150/thno.33800] [PMID: 31534499]
[83]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[84]
Liao, R.; Lin, Y.; Zhu, L. Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol. Biol. Rep., 2018, 45(6), 2913-2923.
[http://dx.doi.org/10.1007/s11033-018-4358-6] [PMID: 30194558]
[85]
Li, M.; Ma, W. miR-26a reverses multidrug resistance in osteosarcoma by targeting MCL1. Front. Cell Dev. Biol., 2021, 9, 645381.
[http://dx.doi.org/10.3389/fcell.2021.645381] [PMID: 33816494]
[86]
Rolfo, C.; Fanale, D.; Hong, D.; Tsimberidou, A.; Piha- Paul, S.; Pauwels, P.; Meerbeeck, J.; Caruso, S.; Bazan, V.; Cicero, G.; Russo, A.; Giovannetti, E. Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr. Pharm. Biotechnol., 2014, 15(5), 475-485.
[http://dx.doi.org/10.2174/1389201015666140519123219] [PMID: 24846062]
[87]
Yang, Y.; Zhang, P.; Zhao, Y.; Yang, J.; Jiang, G.; Fan, J. Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol. Ther., 2016, 17(5), 515-525.
[http://dx.doi.org/10.1080/15384047.2015.1095405] [PMID: 26492332]
[88]
Zhou, Y.; Wen, L.; Cheng, F.; Yin, C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J. Gastroenterol., 2015, 21(5), 313-319.
[http://dx.doi.org/10.4103/1319-3767.166206] [PMID: 26458859]
[89]
Vishnoi, A.; Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol., 2023, 2595, 1-12.
[http://dx.doi.org/10.1007/978-1-0716-2823-2_1] [PMID: 36441451]
[90]
Amin, M.M.J.; Trevelyan, C.J.; Turner, N.A. MicroRNA-214 in health and disease. Cells, 2021, 10(12), 3274.
[http://dx.doi.org/10.3390/cells10123274] [PMID: 34943783]
[91]
Zhou, X.; Deng, X.; Liu, M.; He, M.; Long, W.; Xu, Z.; Zhang, K.; Liu, T.; So, K.F.; Fu, Q.L.; Zhou, L. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J. Control. Release, 2023, 357, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2023.03.033] [PMID: 36958402]
[92]
Zou, J.; Sun, J.; Chen, H.; Fan, X.; Qiu, Z.; Li, Y.; Shi, J. The regulatory roles of miR-26a in the development of fracture and osteoblasts. Ann. Transl. Med., 2022, 10(2), 37.
[http://dx.doi.org/10.21037/atm-21-6101] [PMID: 35282137]
[93]
Zhuang, C.; Jiang, W.; Huang, D.; Xu, L.; Yang, Q.; Zheng, L.; Wang, X.; Hu, L. Serum miR-21, miR-26a and miR-101 as potential biomarkers of hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol., 2016, 40(4), 386-396.
[http://dx.doi.org/10.1016/j.clinre.2015.11.002] [PMID: 26669589]
[94]
Shi, D.; Wang, H.; Ding, M.; Yang, M.; Li, C.; Yang, W.; Chen, L. MicroRNA-26a-5p inhibits proliferation, invasion and metastasis by repressing the expression of Wnt5a in papillary thyroid carcinoma. OncoTargets Ther., 2019, 12, 6605-6616.
[http://dx.doi.org/10.2147/OTT.S205994] [PMID: 31496749]
[95]
Li, H.; Xu, W.; Wang, T.; Yu, C.; Rao, X.; Hong, X.; Wang, X. miR-26a inhibits the proliferation and migration of prostate cancer by targeting CDC6. Minerva Med., 2021, 112(5), 661-663.
[http://dx.doi.org/10.23736/S0026-4806.20.06479-4] [PMID: 32166936]
[96]
Li, Y.; Wang, P.; Wu, L.L.; Yan, J.; Pang, X.Y.; Liu, S.J. miR-26a-5p inhibit gastric cancer cell proliferation and invasion through mediated Wnt5a. OncoTargets Ther., 2020, 13, 2537-2550.
[http://dx.doi.org/10.2147/OTT.S241199] [PMID: 32273724]
[97]
Li, H.H.; Wang, J.D.; Wang, W.; Wang, H.F.; Lv, J.Q. Effect of miR-26a-5p on gastric cancer cell proliferation, migration and invasion by targeting COL10A1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1186-1194.
[PMID: 32096148]
[98]
Cai, Y.; Zhang, T.; Chen, G.; Liu, C. MiR-26a-5p heightens breast cancer cell sensitivity to paclitaxel via targeting flap endonuclease 1. Ann. Clin. Lab. Sci., 2023, 53(1), 116-125.
[PMID: 36889769]
[99]
Yuan, Y.L.; Yu, H.; Mu, S.M.; Dong, Y.D.; Li, D.Y. MiR-26a-5p inhibits cell proliferation and enhances doxorubicin sensitivity in hcc cells via targeting AURKA. Technol. Cancer Res. Treat., 2019, 18, 1533033851833.
[http://dx.doi.org/10.1177/1533033819851833] [PMID: 31570091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy