Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Research on Active Compounds Against Hepatic Fibrosis

Author(s): Chuang Liu, Siqi Li, Changhao Zhang and Cheng-Hua Jin*

Volume 31, Issue 18, 2024

Published on: 25 September, 2023

Page: [2571 - 2628] Pages: 58

DOI: 10.2174/0929867331666230727102016

Price: $65

Abstract

Background: Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity.

Objective: The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs.

Methods: According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds.

Results: In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR).

Conclusion: Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.

Keywords: Liver fibrosis, chronic liver diseases, cirrhosis, SAR, HSC, collagen I.

[1]
Sarin, S.K.; Kumar, M.; Eslam, M.; George, J.; Al Mahtab, M.; Akbar, S.M.F.; Jia, J.; Tian, Q.; Aggarwal, R.; Muljono, D.H.; Omata, M.; Ooka, Y.; Han, K.H.; Lee, H.W.; Jafri, W.; Butt, A.S.; Chong, C.H.; Lim, S.G.; Pwu, R.F.; Chen, D.S. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission. Lancet Gastroenterol. Hepatol., 2020, 5(2), 167-228.
[http://dx.doi.org/10.1016/S2468-1253(19)30342-5] [PMID: 31852635]
[2]
Shan, L.; Lium, Z.; Ci, L.; Shuai, C.; Lv, X.; Li, J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int. Immunopharmacol., 2019, 75, 105765.
[http://dx.doi.org/10.1016/j.intimp.2019.105765] [PMID: 31336335]
[3]
Li, J.; Feng, W.; Dai, R.; Li, B. Rational design, synthesis and activities of phenanthrene derivatives against hepatic fibrosis. Fitoterapia, 2022, 159, 105176.
[http://dx.doi.org/10.1016/j.fitote.2022.105176] [PMID: 35307511]
[4]
Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; Nakhjavani, M.; Esteghamati, A. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis., 2023, 22(1), 41.
[http://dx.doi.org/10.1186/s12944-023-01802-6] [PMID: 36922815]
[5]
Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4(8), 100524.
[http://dx.doi.org/10.1016/j.jhepr.2022.100524] [PMID: 35845296]
[6]
Mitten, E.K.; Baffy, G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2022, 77(6), 1642-1656.
[http://dx.doi.org/10.1016/j.jhep.2022.08.028] [PMID: 36063966]
[7]
Scorletti, E.; Carr, R.M. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol., 2022, 76(4), 934-945.
[http://dx.doi.org/10.1016/j.jhep.2021.11.009] [PMID: 34793866]
[8]
Hosack, T.; Damry, D.; Biswas, S. Drug-induced liver injury: A comprehensive review. Therap. Adv. Gastroenterol., 2023, 16.
[http://dx.doi.org/10.1177/17562848231163410] [PMID: 36968618]
[9]
Chen, X.; Liu, M.; Tang, J.; Wang, N.; Feng, Y.; Ma, H. Research progress on the therapeutic effect of polysaccharides on non-alcoholic fatty liver disease through the regulation of the gut-liver axis. Int. J. Mol. Sci., 2022, 23(19), 11710.
[http://dx.doi.org/10.3390/ijms231911710] [PMID: 36233011]
[10]
Ni, X.X.; Li, X.Y.; Wang, Q.; Hua, J. Regulation of peroxisome proliferator-activated receptor-gamma activity affects the hepatic stellate cell activation and the progression of NASH via TGF-β1/Smad signaling pathway. J. Physiol. Biochem., 2021, 77(1), 35-45.
[http://dx.doi.org/10.1007/s13105-020-00777-7] [PMID: 33188625]
[11]
Ogawa, H.; Kaji, K.; Nishimura, N.; Takagi, H.; Ishida, K.; Takaya, H.; Kawaratani, H.; Moriya, K.; Namisaki, T.; Akahane, T.; Yoshiji, H. Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J. Cell. Mol. Med., 2021, 25(8), 4001-4013.
[http://dx.doi.org/10.1111/jcmm.16363] [PMID: 33609067]
[12]
Song, Z.; Liu, X.; Zhang, W.; Luo, Y.; Xiao, H.; Liu, Y.; Dai, G.; Hong, J.; Li, A. Ruxolitinib suppresses liver fibrosis progression and accelerates fibrosis reversal via selectively targeting Janus kinase 1/2. J. Transl. Med., 2022, 20(1), 157.
[http://dx.doi.org/10.1186/s12967-022-03366-y] [PMID: 35382859]
[13]
Su, T.H.; Shiau, C.W.; Jao, P.; Liu, C.H.; Liu, C.J.; Tai, W.T.; Jeng, Y.M.; Yang, H.C.; Tseng, T.C.; Huang, H.P.; Cheng, H.R.; Chen, P.J.; Chen, K.F.; Kao, J.H.; Chen, D.S. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc. Natl. Acad. Sci., 2015, 112(23), 7243-7248.
[http://dx.doi.org/10.1073/pnas.1507499112] [PMID: 26039995]
[14]
Martí-Rodrigo, A.; Alegre, F.; Moragrega, Á.B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69(5), 920-932.
[http://dx.doi.org/10.1136/gutjnl-2019-318372] [PMID: 31530714]
[15]
Esmail, M.M.; Saeed, N.M.; Michel, H.E.; El-Naga, R.N. The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways. Toxicol. Lett., 2021, 347, 23-35.
[http://dx.doi.org/10.1016/j.toxlet.2021.04.018] [PMID: 33961984]
[16]
Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett., 2014, 349(1), 8-14.
[http://dx.doi.org/10.1016/j.canlet.2014.04.003] [PMID: 24732808]
[17]
Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; Sheridan, D.; Sheikh, M.Y.; Trotter, J.; Knapple, W.; Lawitz, E.; Abdelmalek, M.F.; Kowdley, K.V.; Montano-Loza, A.J.; Boursier, J.; Mathurin, P.; Bugianesi, E.; Mazzella, G.; Olveira, A.; Cortez-Pinto, H.; Graupera, I.; Orr, D.; Gluud, L.L.; Dufour, J.F.; Shapiro, D.; Campagna, J.; Zaru, L.; MacConell, L.; Shringarpure, R.; Harrison, S.; Sanyal, A.J.; Abdelmalek, M.; Abrams, G.; Aguilar, H.; Ahmed, A.; Aigner, E.; Aithal, G.; Ala, A.; Alazawi, W.; Albillos, A.; Allison, M.; Al-Shamma, S.; Andrade, R.; Andreone, P.; Angelico, M.; Ankoma-Sey, V.; Anstee, Q.; Anty, R.; Araya, V.; Arenas Ruiz, J.I.; Arkkila, P.; Arora, M.; Asselah, T.; Au, J.; Ayonrinde, O.; Bailey, R.J.; Balakrishnan, M.; Bambha, K.; Bansal, M.; Barritt, S.; Bate, J.; Beato, J.; Beckebaum, S.; Behari, J.; Bellot, P.; Ben Ari, Z.; Bennett, M.; Berenguer, M.; Beretta-Piccoli, B.T.; Berg, T.; Bonacini, M.; Bonet, L.; Borg, B.; Bourliere, M.; Boursier, J.; Bowman, W.; Bradley, D.; Brankovic, M.; Braun, M.; Bronowicki, J-P.; Bruno, S.; Bugianesi, E.; Cai, C.; Calderon, A.; Calleja Panero, J.L.; Carey, E.; Carmiel, M.; Carrión, J.A.; Cave, M.; Chagas, C.; Chami, T.; Chang, A.; Coates, A.; Cobbold, J.; Costentin, C.; Corey, K.; Corless, L.; Cortez-Pinto, H.; Crespo, J.; Cruz Pereira, O.; de Ledinghen, V.; deLemos, A.; Diago, M.; Dong, M.; Dufour, J-F.; Dugalic, P.; Dunn, W.; Elkhashab, M.; Epstein, M.; Escudero-Garcia, M.D.; Etzion, O.; Evans, L.; Falcone, R.; Fernandez, C.; Ferreira, J.; Fink, S.; Finnegan, K.; Firpi-Morell, R.; Floreani, A.; Fontanges, T.; Ford, R.; Forrest, E.; Fowell, A.; Fracanzani, A.L.; Francque, S.; Freilich, B.; Frias, J.; Fuchs, M.; Fuentes, J.; Galambos, M.; Gallegos, J.; Geerts, A.; Geier, A.; George, J.; Ghali, M.; Ghalib, R.; Gholam, P.; Gines, P.; Gitlin, N.; Gluud, L.L.; Goeser, T.; Goff, J.; Gordon, S.; Gordon, F.; Goria, O.; Greer, S.; Grigorian, A.; Gronbaek, H.; Guillaume, M.; Gunaratnam, N.; Halegoua-De Marzio, D.; Hameed, B.; Hametner, S.; Hamilton, J.; Harrison, S.; Hartleb, M.; Hassanein, T.; Häussinger, D.; Hellstern, P.; Herring, R.; Heurich, E.; Hezode, C.; Hinrichsen, H.; Holland Fischer, P.; Horsmans, Y.; Huang, J.; Hussaini, H.; Jakiche, A.; Jeffers, L.; Jones, B.; Jorge, R.; Jorquera, F.; Joshi, S.; Kahraman, A.; Kaita, K.; Karyotakis, N.; Kayali, Z.; Kechagias, S.; Kepczyk, T.; Khalili, M.; Khallafi, H.; Kluwe, J.; Knapple, W.; Kohli, A.; Korenblat, K.; Kowdley, K.; Krag, A.; Krause, R.; Kremer, A.; Krok, K.; Krstic, M.; Kugelmas, M.; Kumar, S.; Kuwada, S.; Labarriere, D.; Lai, M.; Laleman, W.; Lampertico, P.; Lawitz, E.; Lee, A.; Leroy, V.; Lidofsky, S.; Lim, T.H.; Lim, J.; Lipkis, D.; Little, E.; Lonardo, A.; Long, M.; Loomba, R.; Luketic, V.A.C.; Lurie, Y.; Macedo, G.; Magalhaes, J.; Makara, M.; Maliakkal, B.; Manns, M.; Manousou, P.; Mantry, P.; Marchesini, G.; Marinho, C.; Marotta, P.; Marschall, H-U.; Martinez, L.; Mathurin, P.; Mayo, M.; Mazzella, G.; McCullen, M.; McLaughlin, W.; Merle, U.; Merriman, R.; Modi, A.; Molina, E.; Montano-Loza, A.; Monteverde, C.; Morales Cardona, A.; Moreea, S.; Moreno, C.; Morisco, F.; Mubarak, A.; Muellhaupt, B.; Mukherjee, S.; Müller, T.; Nagorni, A.; Naik, J.; Neff, G.; Nevah, M.; Newsome, P.; Nguyen-Khac, E.; Noureddin, M.; Oben, J.; Olveira, A.; Orlent, H.; Orr, D.; Orr, J.; Ortiz-Lasanta, G.; Ozenne, V.; Pandya, P.; Paredes, A.; Park, J.; Patel, J.; Patel, K.; Paul, S.; Patton, H.; Peck-Radosavljevic, M.; Petta, S.; Pianko, S.; Piekarska, A.; Pimstone, N.; Pisegna, J.; Pockros, P.; Pol, S.; Porayko, M.; Poulos, J.; Pound, D.; Pouzar, J.; Presa Ramos, J.; Pyrsopoulos, N.; Rafiq, N.; Muller, K.; Ramji, A.; Ratziu, V.; Ravinuthala, R.; Reddy, C.; Reddy, K.G. G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394(10215), 2184-2196.
[http://dx.doi.org/10.1016/S0140-6736(19)33041-7] [PMID: 31813633]
[18]
Makled, M.N.; Sharawy, M.H.; El-Awady, M.S. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(12), 1569-1576.
[http://dx.doi.org/10.1007/s00210-019-01703-5] [PMID: 31367862]
[19]
Huang, Y.; Feng, H.; Kan, T.; Huang, B.; Zhang, M.; Li, Y.; Shi, C.; Wu, M.; Luo, Y.; Yang, J.; Xu, F. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One, 2013, 8(8), e73492.
[http://dx.doi.org/10.1371/journal.pone.0073492] [PMID: 24023685]
[20]
Xu, X.Y.; Geng, Y.; Xu, H.X.; Ren, Y.; Liu, D.Y.; Mao, Y. Antrodia camphorata-derived antrodin C inhibits liver fibrosis by blocking TGF-beta and PDGF signaling pathways. Front. Mol. Biosci., 2022, 9, 835508.
[http://dx.doi.org/10.3389/fmolb.2022.835508] [PMID: 35242813]
[21]
Seniutkin, O.; Furuya, S.; Luo, Y.S.; Cichocki, J.A.; Fukushima, H.; Kato, Y.; Sugimoto, H.; Matsumoto, T.; Uehara, T.; Rusyn, I. Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicol. Appl. Pharmacol., 2018, 339, 1-9.
[http://dx.doi.org/10.1016/j.taap.2017.11.024] [PMID: 29197520]
[22]
Shi, X.; Yu, Z.; Zhu, C.; Jiang, L.; Geng, N.; Fan, X.; Guan, Z.; Lu, X. Synthesis and structure–activity relationships of pirfenidone derivatives as anti-fibrosis agents in vitro. RSC Medicinal Chemistry, 2022, 13(5), 610-621.
[http://dx.doi.org/10.1039/D1MD00403D] [PMID: 35694690]
[23]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): A highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238.
[http://dx.doi.org/10.1021/jm500115w] [PMID: 24786585]
[24]
Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-[c][1,2,5]thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-[3,2,-c]pyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.013] [PMID: 31299584]
[25]
Kim, M.J.; Park, S.A.; Kim, C.H.; Park, S.Y.; Kim, J.S.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell. Physiol. Biochem., 2016, 38(2), 571-588.
[http://dx.doi.org/10.1159/000438651] [PMID: 26845171]
[26]
Zheng, G.H.; Liu, J.; Guo, F.Y.; Zhang, Z.H.; Jiang, Y.J.; Lin, Y.C.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Nan, J.X.; Jin, C.H.; Lian, L.H. The in vitro and in vivo study of a pyrazole derivative, J-1063, as a novel anti-liver fibrosis agent: Synthesis, biological evaluation, and mechanistic analysis. Bioorg. Chem., 2022, 122, 105715.
[http://dx.doi.org/10.1016/j.bioorg.2022.105715] [PMID: 35279552]
[27]
Luangmonkong, T.; Suriguga, S.; Adhyatmika, A.; Adlia, A.; Oosterhuis, D.; Suthisisang, C.; de Jong, K.P.; Mutsaers, H.A.M.; Olinga, P. In vitro and ex vivo anti-fibrotic effects of LY2109761, a small molecule inhibitor against TGF-β. Toxicol. Appl. Pharmacol., 2018, 355, 127-137.
[http://dx.doi.org/10.1016/j.taap.2018.07.001] [PMID: 30008374]
[28]
Masuda, A.; Nakamura, T.; Abe, M.; Iwamoto, H.; Sakaue, T.; Tanaka, T.; Suzuki, H.; Koga, H.; Torimura, T. Promotion of liver regeneration and anti-fibrotic effects of the TGF β receptor kinase inhibitor galunisertib in CCl4 treated mice. Int. J. Mol. Med., 2020, 46(1), 427-438.
[http://dx.doi.org/10.3892/ijmm.2020.4594] [PMID: 32377696]
[29]
Maccari, R.; Ciurleo, R.; Giglio, M.; Cappiello, M.; Moschini, R.; Corso, A.D.; Mura, U. Ottanà. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg. Med. Chem., 2010, 118(11), 4049-4055.
[http://dx.doi.org/10.1016/j.bmc.2010.04.016] [PMID: 20452228]
[30]
Wang, Z.; Deng, C.; Zheng, H.; Xie, C.; Wang, X.; Luo, Y.; Chen, Z.; Cheng, P.; Chen, L. (Z)2-(5-(4-methoxybenzylidene)-2, 4-dioxothiazolidin-3-yl) acetic acid protects rats from CCl4-induced liver injury. J. Gastroenterol. Hepatol., 2012, 27(5), 966-973.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06913.x] [PMID: 21913985]
[31]
França, M.E.R.; Rocha, S.W.S.; Oliveira, W.H.; Santos, L.A.; de Oliveira, A.G.V.; Barbosa, K.P.S.; Nunes, A.K.S.; Rodrigues, G.B.; Lós, D.B.; Peixoto, C.A. Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology, 2018, 26(2), 599-609.
[http://dx.doi.org/10.1007/s10787-017-0329-0] [PMID: 28409388]
[32]
Wu, X.; Zhang, F.; Xiong, X.; Lu, C.; Lian, N.; Lu, Y.; Zheng, S. Tetramethylpyrazine reduces inflammation in liver fibrosis and inhibits inflammatory cytokine expression in hepatic stellate cells by modulating NLRP3 inflammasome pathway. IUBMB Life, 2015, 67(4), 312-321.
[http://dx.doi.org/10.1002/iub.1348] [PMID: 25847612]
[33]
Zhao, S.; Zhang, Z.; Qian, L.; Lin, Q.; Zhang, C.; Shao, J.; Zhang, F.; Zheng, S. Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats. Biomed. Pharmacother., 2017, 86, 521-530.
[http://dx.doi.org/10.1016/j.biopha.2016.11.122] [PMID: 28024287]
[34]
Ogaly, H.A.; Aldulmani, S.A.A.; Al-Zahrani, F.A.M.; Abd-Elsalam, R.M. D-carvone attenuates CCl4-induced liver fibrosis in rats by inhibiting oxidative stress and TGF-ß 1/SMAD3 signaling pathway. Biology, 2022, 11(5), 739.
[http://dx.doi.org/10.3390/biology11050739] [PMID: 35625467]
[35]
Bai, T.; Yang, Y.; Wu, Y.L.; Jiang, S.; Lee, J.J.; Lian, L.H.; Nan, J.X. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1–AMPK signaling pathway in mice. Int. Immunopharmacol., 2014, 19(2), 351-357.
[http://dx.doi.org/10.1016/j.intimp.2014.02.006] [PMID: 24560906]
[36]
Miao, Y.; Wu, Y.; Jin, Y.; Lei, M.; Nan, J.; Wu, X. Benzoquinone derivatives with antioxidant activity inhibit activated hepatic stellate cells and attenuate liver fibrosis in TAA-induced mice. Chem. Biol. Interact., 2020, 317, 108945.
[http://dx.doi.org/10.1016/j.cbi.2020.108945] [PMID: 31935363]
[37]
Cui, B.; Yang, Z.; Wang, S.; Guo, M.; Li, Q.; Zhang, Q.; Bi, X. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie, 2021, 76(5), 232-238.
[http://dx.doi.org/10.1691/ph.2021.0909] [PMID: 33964998]
[38]
Xing, Y.; Wang, J.Y.; Li, M.Y.; Zhang, Z.H.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Convallatoxin inhibits IL‐1β production by suppressing zinc finger protein 91 (ZFP91)‐mediated pro‐IL‐1β ubiquitination and caspase‐8 inflammasome activity. Br. J. Pharmacol., 2022, 179(9), 1887-1907.
[http://dx.doi.org/10.1111/bph.15758] [PMID: 34825365]
[39]
Ma, Q.; Bian, M.; Gong, G.; Bai, C.; Liu, C.; Wei, C.; Quan, Z.; Du, H. Synthesis and evaluation of bakuchiol derivatives as potent anti-inflammatory agents in vitro and in vivo. J. Nat. Prod., 2022, 85(1), 15-24.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00377] [PMID: 35000392]
[40]
Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF-induced inflammation by suppressing the NF-B pathways in HCT116 cells. Phytother. Res., 2018, 32, 65-75.
[http://dx.doi.org/10.1002/ptr.5948] [PMID: 29044876]
[41]
Wu, J.; Ma, S.; Zhang, T-Y.; Wei, Z-Y.; Wang, H-M.; Guo, F-Y.; Zheng, C-J.; Piao, H-R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res., 2019, 28(7), 959-973.
[http://dx.doi.org/10.1007/s00044-019-02349-x]
[42]
Zhang, T.Y.; Li, C.; Li, Y.R.; Li, X.Z.; Sun, L-P.; Zheng, C-J.; Piao, H-R. Synthesis and antimicrobial evaluation of aminoguanidine and 3-amino-1,2,4-triazole derivatives as potential antibacterial agents. Lett. Drug Des. Discov., 2016, 13(10), 1063-1075.
[http://dx.doi.org/10.2174/1570180813666160819151239]
[43]
Wei, Z.Y.; Liu, J.C.; Zhang, W.; Li, Y.R.; Li, C.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of (Z)-5-((3-phenyl-1H-pyrazol-4-yl)methylene)-2-thioxothia-] zolidin-4-one derivatives. Med. Chem., 2016, 12(8), 751-759.
[http://dx.doi.org/10.2174/1573406412666160822160156] [PMID: 27550428]
[44]
Yan Guo, F. Ji Zheng, C.; Wang, M.; Ai, J.; Ying Han, L.; Yang, L.; Fang Lu, Y.; Xuan Yang, Y.; Guan Piao, M.; Piao, H.R.; Jin, C.M.; Jin, C.H. Synthesis and antimicrobial activity evaluation of imidazole‐fused imidazo[2,1‐b] [1,3,4]thiadiazole analogues. ChemMedChem, 2021, 16(15), 2354-2365.
[http://dx.doi.org/10.1002/cmdc.202100122] [PMID: 33738962]
[45]
Yang, L.; W., Bo Xu Sun, L.; Zhang, C.; Hua Jin, C. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem, 2022, 17(12), e202200221.
[http://dx.doi.org/10.1002/cmdc.202200221] [PMID: 35475328]
[46]
Zheng, C.J.; Jin, C.H.; Zhao, L-M.; Guo, F.Y.; Wang, H.M.; Dou, T.; Da Qi, J.; Xu, W.B.; Piao, L.; Jin, X.; Chen, F-E.; Piao, H-R. Synthesis and evaluation of chiral rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors. Med. Chem., 2022, 18(4), 509-520.
[http://dx.doi.org/10.2174/1573406417666210628144849] [PMID: 34182915]
[47]
Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X.; Jin, X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD‐L1 expression and enhancing T‐lymphocyte tumor‐killing activity. Phytother. Res., 2021, 35(7), 3916-3935.
[http://dx.doi.org/10.1002/ptr.7103] [PMID: 33970512]
[48]
Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727.
[http://dx.doi.org/10.1016/j.phrs.2020.104727] [PMID: 32113874]
[49]
Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172.
[http://dx.doi.org/10.1016/j.phymed.2020.153172] [PMID: 32004989]
[50]
Hsieh, S.C.; Wu, C.H.; Wu, C.C.; Yen, J.H.; Liu, M.C.; Hsueh, C.M.; Hsu, S.L. Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway. Life Sci., 2014, 102(1), 55-64.
[http://dx.doi.org/10.1016/j.lfs.2014.02.041] [PMID: 24631138]
[51]
Ramadan, A.; Afifi, N.; Yassin, N.Z.; Abdel-Rahman, R.F.; Abd El-Rahman, S.S.; Fayed, H.M. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem. Biol. Interact., 2018, 289, 109-118.
[http://dx.doi.org/10.1016/j.cbi.2018.05.002] [PMID: 29738702]
[52]
Wang, R.; Wang, J.; Song, F.; Li, S.; Yuan, Y. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Des. Devel. Ther., 2018, 12, 1281-1292.
[http://dx.doi.org/10.2147/DDDT.S159546] [PMID: 29844659]
[53]
Qiu, J.; Chai, Y.; Duan, F.; Zhang, H.; Han, X.; Chen, L.; Duan, F. 6-Shogaol alleviates CCl4-induced liver fibrosis by attenuating inflammatory response in mice through the NF-κB pathway. Acta Biochim. Pol., 2022, 69(2), 363-370.
[http://dx.doi.org/10.18388/abp.2020_5802] [PMID: 35485077]
[54]
Sheng, J.; Zhang, B.; Chen, Y.; Yu, F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol. Immunotoxicol., 2020, 42(6), 556-563.
[http://dx.doi.org/10.1080/08923973.2020.1811308] [PMID: 32811220]
[55]
Shang, Y.; Yang, H.X.; Li, X.; Zhang, Y.; Chen, N.; Jiang, X.L.; Zhang, Z.H.; Zuo, R.M.; Wang, H.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Cui, Z.Y.; Nan, J.X.; Lian, L.H. Modulation of interleukin‐36 based inflammatory feedback loop through the hepatocyte‐derived IL‐36R‐P2X7R axis improves steatosis in alcoholic steatohepatitis. Br. J. Pharmacol., 2022, 179(17), 4378-4399.
[http://dx.doi.org/10.1111/bph.15858] [PMID: 35481896]
[56]
Ge, B.; Zhao, P.; Li, H.; Sang, R.; Wang, M.; Zhou, H.; Zhang, X. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. J. Ethnopharmacol., 2021, 268, 113595.
[http://dx.doi.org/10.1016/j.jep.2020.113595] [PMID: 33212175]
[57]
Cui, Z.Y.; Wang, G.; Zhang, J.; Song, J.; Jiang, Y.C.; Dou, J.Y.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Parthenolide, bioactive compound of Chrysanthemum parthenium L., Ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother. Res., 2021, 35(10), 5680-5693.
[http://dx.doi.org/10.1002/ptr.7214] [PMID: 34250656]
[58]
Shi, H.; Shi, A.; Dong, L.; Lu, X.; Wang, Y.; Zhao, J.; Dai, F.; Guo, X. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clin. Nutr., 2016, 35(6), 1366-1373.
[http://dx.doi.org/10.1016/j.clnu.2016.03.002] [PMID: 27017478]
[59]
Zhou, M.; Zhao, X.; Liao, L.; Deng, Y.; Liu, M.; Wang, J.; Xue, X.; Li, Y.; Forsythiaside, A. Forsythiaside a regulates activation of hepatic stellate cells by inhibiting NOX4-dependent ROS. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/9938392] [PMID: 35035671]
[60]
Qiang, G.; Zhang, L.; Yang, X.; Xuan, Q.; Shi, L.; Zhang, H.; Chen, B.; Li, X.; Zu, M.; Zhou, D.; Guo, J.; Yang, H.; Du, G. Effect of valsartan on the pathological progression of hepatic fibrosis in rats with type 2 diabetes. Eur. J. Pharmacol., 2012, 685(1-3), 156-164.
[http://dx.doi.org/10.1016/j.ejphar.2012.04.028] [PMID: 22546234]
[61]
Zhang, H.; Ju, B.; Zhang, X.; Zhu, Y.; Nie, Y.; Xu, Y.; Lei, Q. Magnolol attenuates concanavalin a-induced hepatic fibrosis, inhibits CD4+ T Helper 17 (Th17) cell differentiation and suppresses hepatic stellate cell activation: Blockade of Smad3/Smad4 signalling. Basic Clin. Pharmacol. Toxicol., 2017, 120(6), 560-570.
[http://dx.doi.org/10.1111/bcpt.12749] [PMID: 28032440]
[62]
Lu, Z.; Li, S.; Luo, J.; Luo, Y.; Dai, M.; Zheng, X.; Qiu, J.; Yang, J.; Liu, A. Fenofibrate reverses liver fibrosis in cholestatic mice induced by alpha-naphthylisothiocyanate. Pharmazie, 2021, 76(2), 103-108.
[http://dx.doi.org/10.1691/ph.2021.0988] [PMID: 33714287]
[63]
Choi, S.; Kim, J.A.; Li, H.; Jo, S.E.; Lee, H.; Kim, T.H.; Kim, M.; Kim, S.J.; Suh, S.H. Anti-inflammatory and anti-fibrotic effects of modafinil in nonalcoholic liver disease. Biomed. Pharmacother., 2021, 144, 112372.
[http://dx.doi.org/10.1016/j.biopha.2021.112372] [PMID: 34794237]
[64]
Su, X.; Wang, Y.; Zhou, G.; Yang, X.; Yu, R.; Lin, Y.; Zheng, C. Probucol attenuates ethanol-induced liver fibrosis in rats by inhibiting oxidative stress, extracellular matrix protein accumulation and cytokine production. Clin. Exp. Pharmacol. Physiol., 2014, 41(1), 73-80.
[http://dx.doi.org/10.1111/1440-1681.12182] [PMID: 24117782]
[65]
Zhou, W.; Yan, X.; Zhai, Y.; Liu, H.; Guan, L.; Qiao, Y.; Jiang, J.; Peng, L. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine, 2022, 103, 154235.
[http://dx.doi.org/10.1016/j.phymed.2022.154235] [PMID: 35716542]
[66]
Zhang, H.; Sun, Q.; Xu, T.; Hong, L.; Fu, R.; Wu, J.; Ding, J. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol. Med. Rep., 2016, 13(1), 224-230.
[http://dx.doi.org/10.3892/mmr.2015.4497] [PMID: 26530037]
[67]
Yu, B.; Qin, S.; Hu, B.; Qin, Q.; Jiang, H.; Luo, W. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4). Biomed. Pharmacother., 2019, 117, 109110.
[http://dx.doi.org/10.1016/j.biopha.2019.109110] [PMID: 31252263]
[68]
ShamsEldeen. A.M.; Al-Ani, B.; Ebrahim, H.A.; Rashed, L.; Badr, A.M.; Attia, A.; Farag, A.M.; Kamar, S.S.; Haidara, M.A.; Al Humayed, S.; Ali Eshra, M. Resveratrol suppresses cholestasis‐induced liver injury and fibrosis in rats associated with the inhibition of TGFβ1–Smad3–miR21 axis and profibrogenic and hepatic injury biomarkers. Clin. Exp. Pharmacol. Physiol., 2021, 48(10), 1402-1411.
[http://dx.doi.org/10.1111/1440-1681.13546] [PMID: 34157155]
[69]
Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592.
[http://dx.doi.org/10.7717/peerj.13592] [PMID: 35698613]
[70]
Abd-Elgawad, H.; Abu-Elsaad, N.; El-Karef, A.; Ibrahim, T. Piceatannol increases the expression of hepatocyte growth factor and IL-10 thereby protecting hepatocytes in thioacetamide-induced liver fibrosis. Can. J. Physiol. Pharmacol., 2016, 94(7), 779-787.
[http://dx.doi.org/10.1139/cjpp-2016-0001] [PMID: 27186801]
[71]
Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117.
[http://dx.doi.org/10.1016/j.phymed.2022.154117] [PMID: 35489326]
[72]
Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366.
[http://dx.doi.org/10.1016/j.jnutbio.2011.08.004] [PMID: 22221674]
[73]
Zhao, X.A.; Chen, G.; Liu, Y.; Chen, Y.; Wu, H.; Xiong, Y.; Wang, G.; Jia, B.; Li, Y.; Xia, J.; Wang, J.; Yan, X.; Zhang, Z.; Huang, R.; Wu, C. Curcumin reduces Ly6Chi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed. Pharmacother., 2018, 106, 868-878.
[http://dx.doi.org/10.1016/j.biopha.2018.07.028] [PMID: 30119257]
[74]
Yang, Y.; Kim, B.; Park, Y.K.; Koo, S.I.; Lee, J.Y. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(1), 178-185.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.014] [PMID: 25450180]
[75]
Choi, H.S.; Kang, J.W.; Lee, S.M. Melatonin attenuates carbon tetrachloride–induced liver fibrosis via inhibition of necroptosis. Transl. Res., 2015, 166(3), 292-303.
[http://dx.doi.org/10.1016/j.trsl.2015.04.002] [PMID: 25936762]
[76]
Wang, Y.; Hong, R.; Xie, Y.; Xu, J. Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr. Med. Sci., 2018, 38(2), 236-244.
[http://dx.doi.org/10.1007/s11596-018-1871-8] [PMID: 30074181]
[77]
Findlay, A.D.; Foot, J.S.; Buson, A.; Deodhar, M.; Jarnicki, A.G.; Hansbro, P.M.; Liu, G.; Schilter, H.; Turner, C.I.; Zhou, W.; Jarolimek, W. Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl Oxidase-like 2/3. J. Med. Chem., 2019, 62(21), 9874-9889.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01283] [PMID: 31580073]
[78]
Wollin, L.; Togbe, D.; Ryffel, B. Effects of nintedanib in an animal model of liver fibrosis. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/3867198] [PMID: 32337244]
[79]
Mansour, H.M.; Salama, A.A.A.; Abdel-Salam, R.M.; Ahmed, N.A.; Yassen, N.N.; Zaki, H.F. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can. J. Physiol. Pharmacol., 2018, 96(12), 1308-1317.
[http://dx.doi.org/10.1139/cjpp-2018-0338] [PMID: 30398909]
[80]
Elnfarawy, A.A.; Nashy, A.E.; Abozaid, A.M.; Komber, I.F.; Elweshahy, R.H.; Abdelrahman, R.S. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum. Exp. Toxicol., 2021, 40(2), 355-368.
[http://dx.doi.org/10.1177/0960327120947453] [PMID: 32840391]
[81]
Zakaria, S.; El-Sisi, A. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2. J. Immunotoxicol., 2016, 13(4), 453-462.
[http://dx.doi.org/10.3109/1547691X.2015.1128022] [PMID: 26849241]
[82]
Li, M.; He, F.S.; Ji, L.S.; Gao, Y.T.; Zhang, X.; Yu, Z.; Fang, M.; Wu, J.; Gao, Y.Q. Synthesis and biological evaluation of fluorinated 3,4-dihydroquinolin-2(1H)-ones and 2-oxindoles for anti-hepatic fibrosis. RSC Advances, 2021, 11(11), 5923-5927.
[http://dx.doi.org/10.1039/D0RA09430G] [PMID: 35423132]
[83]
Lu, Z.N.; Shan, Q.; Hu, S.J.; Zhao, Y.; Zhang, G.N.; Zhu, M.; Yu, D.K.; Wang, J.X.; He, H.W. Discovery of 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents via repressing PI3K/AKT/Smad and JAK2/STAT3 pathways. Bioorg. Med. Chem., 2021, 49, 116438.
[http://dx.doi.org/10.1016/j.bmc.2021.116438] [PMID: 34610571]
[84]
Zhao, S.L.; Peng, Z.; Zhen, X.H.; Han, Y.; Jiang, H.Y.; Qu, Y.L.; Guan, L.P. 6-Bromo-2,3-dioxoindolin phenylacetamide derivatives: Synthesis, potent CDC25B, PTP1B Inhibitors and Anticancer Activity. Lett. Drug Des. Discov., 2015, 12(7), 529-536.
[http://dx.doi.org/10.2174/1570180812666141219003209]
[85]
Wang, Y.; Wang, S.; Wang, R.; Li, S.; Yuan, Y. Neferine exerts antioxidant and anti-inflammatory effects on carbon tetrachloride-induced liver fibrosis by inhibiting the MAPK and NF-κB/IκBα pathways. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/4136019] [PMID: 33680053]
[86]
Du, G.; Wang, J.; Zhang, T.; Ding, Q.; Jia, X.; Zhao, X.; Dong, J.; Yang, X.; Lu, S.; Zhang, C.; Liu, Z.; Zeng, Z.; Safadi, R.; Qi, R.; Zhao, X.; Hong, Z.; Lu, Y. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo. Cell Death Dis., 2020, 11(2), 118.
[http://dx.doi.org/10.1038/s41419-020-2229-2] [PMID: 32051399]
[87]
Wu, C.; Chen, W.; Ding, H.; Li, D.; Wen, G.; Zhang, C.; Lu, W.; Chen, M.; Yang, Y. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Life Sci., 2019, 239, 116881.
[http://dx.doi.org/10.1016/j.lfs.2019.116881] [PMID: 31678285]
[88]
Tao, S.; Duan, R.; Xu, T.; Hong, J.; Gu, W.; Lin, A.; Lian, L.; Huang, H.; Lu, J.; Li, T. Salvianolic acid B inhibits the progression of liver fibrosis in rats via modulation of the Hedgehog signaling pathway. Exp. Ther. Med., 2021, 23(2), 116.
[http://dx.doi.org/10.3892/etm.2021.11039] [PMID: 34970339]
[89]
Son, M.K.; Ryu, Y.L.; Jung, K.H.; Lee, H.; Lee, H.S.; Yan, H.H.; Park, H.J.; Ryu, J.K.; Suh, J.K.; Hong, S.; Hong, S.S. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci. Rep., 2013, 3(1), 3470.
[http://dx.doi.org/10.1038/srep03470] [PMID: 24326778]
[90]
Sharawy, M.H.; El-Kashef, D.H.; Shaaban, A.A.; El-Agamy, D.S. Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition. Int. Immunopharmacol., 2021, 100, 108088.
[http://dx.doi.org/10.1016/j.intimp.2021.108088] [PMID: 34454288]
[91]
Jiang, N.; Zhou, Y.; Zhu, M.; Zhang, J.; Cao, M.; Lei, H.; Guo, M.; Gong, P.; Su, G.; Zhai, X. Optimization and evaluation of novel tetrahydropyrido[4,3-d]pyrimidine derivatives as ATX inhibitors for cardiac and hepatic fibrosis. Eur. J. Med. Chem., 2020, 187, 111904.
[http://dx.doi.org/10.1016/j.ejmech.2019.111904] [PMID: 31806537]
[92]
Li, Y.W.; Li, X.Y.; Li, S.; Zhao, L.M.; Ma, J.; Piao, H.R.; Jiang, Z.; Jin, C.H.; Jin, X. Synthesis and evaluation of the HIF-1α inhibitory activity of 3(5)-substituted-4-(quinolin-4-yl)- and 4-(2-phenylpyridin-4-yl)pyrazoles as inhibitors of ALK5. Bioorg. Med. Chem. Lett., 2020, 30(2), 126822.
[http://dx.doi.org/10.1016/j.bmcl.2019.126822] [PMID: 31810777]
[93]
Zhang, Q.; Li, P.; Hong, L.; Li, R.; Wang, J.; Cui, X. The protein tyrosine kinase inhibitor genistein suppresses hypoxia-induced atrial natriuretic peptide secretion mediated by the PI3K/Akt-HIF-1α pathway in isolated beating rat atria. Can. J. Physiol. Pharmacol., 2021, 99(11), 1184-1190.
[http://dx.doi.org/10.1139/cjpp-2020-0503] [PMID: 34612711]
[94]
Zhang, S.; Zhang, M.; Chen, J.; Zhao, J.; Su, J.; Zhang, X. Ginsenoside compound K regulates HIF-1α-mediated glycolysis through Bclaf1 to inhibit the proliferation of human liver cancer cells. Front. Pharmacol., 2020, 11, 583334.
[http://dx.doi.org/10.3389/fphar.2020.583334] [PMID: 33363466]
[95]
Han, L.Z.; Jiang, C.; Mi, C.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Zhang, Z.H.; Jin, X. Excisanin A suppresses proliferation by inhibiting hypoxiainducible factor-1α expression in human hepatocellular carcinoma cells. Trop. J. Pharm. Res., 2021, 19(12), 2483-2489.
[http://dx.doi.org/10.4314/tjpr.v19i12.1]
[96]
Chen, B.B.; Jiang, L.Y.; Guo, F.Y.; Qu, L.L.; Wang, W.Q.; Jin, C.H.; Liu, F.F. Tolcapone derivative PCDNA inhibits Aβ42 fibrillogenesis and reduces its cytoxicity. Yao Xue Xue Bao, 2021, 56, 1063-1069.
[http://dx.doi.org/10.16438/j.0513-4870.2020-1853]
[97]
Chen, B.; Mou, C.; Guo, F.; Sun, Q.; Qu, L.; Li, L.; Cui, W.; Lu, F.; Jin, C.; Liu, F. Tolcapone derivative (Tol-D) inhibits Aβ42 fibrillogenesis and ameliorates Aβ42-induced cytotoxicity and cognitive impairment. ACS Chem. Neurosci., 2022, 13(5), 638-647.
[http://dx.doi.org/10.1021/acschemneuro.1c00771] [PMID: 35148068]
[98]
Xiao, J.; Jin, C.; Liu, Z.; Guo, S.; Zhang, X.; Zhou, X.; Wu, X. The design, synthesis, and biological evaluation of novel YC-1 derivatives as potent anti-hepatic fibrosis agents. Org. Biomol. Chem., 2015, 13(26), 7257-7264.
[http://dx.doi.org/10.1039/C5OB00710K] [PMID: 26055070]
[99]
Wai, K.K.; Liang, Y.; Zhou, L.; Cai, L.; Liang, C.; Liu, L.; Lin, X.; Wu, H.; Lin, J. The protective effects of Acanthus ilicifolius alkaloid A and its derivatives on pro- and anti-inflammatory cytokines in rats with hepatic fibrosis. Biotechnol. Appl. Biochem., 2015, 62(4), 537-546.
[http://dx.doi.org/10.1002/bab.1292] [PMID: 25204790]
[100]
Pandey, A.; Raj, P.; Goru, S.K.; Kadakol, A.; Malek, V.; Sharma, N.; Gaikwad, A.B. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol. Rep., 2017, 69(4), 666-672.
[http://dx.doi.org/10.1016/j.pharep.2017.02.005] [PMID: 28527877]
[101]
Xiong, Y.; Lu, H.; Xu, H. Galangin reverses hepatic fibrosis by inducing HSCs apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin pathway in LX-2 cells. Biol. Pharm. Bull., 2020, 43(11), 1634-1642.
[http://dx.doi.org/10.1248/bpb.b20-00258] [PMID: 32893252]
[102]
Wan, Y.; Tang, M.H.; Chen, X.C.; Chen, L.J.; Wei, Y.Q.; Wang, Y.S. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz. J. Med. Biol. Res., 2014, 47(8), 655-661.
[http://dx.doi.org/10.1590/1414-431x20143704] [PMID: 25098714]
[103]
Li, X.; Jin, Q.; Yao, Q.; Xu, B.; Li, Z.; Tu, C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol. Lett., 2016, 261, 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2016.09.002] [PMID: 27601294]
[104]
Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol., 2017, 47, 126-133.
[http://dx.doi.org/10.1016/j.intimp.2017.03.029] [PMID: 28391159]
[105]
Yang, J.H.; Kim, S.C.; Kim, K.M.; Jang, C.H.; Cho, S.S.; Kim, S.J.; Ku, S.K.; Cho, I.J.; Ki, S.H. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur. J. Pharmacol., 2016, 783, 92-102.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.042] [PMID: 27151496]
[106]
Li, J.J.; Jiang, H.C.; Wang, A.; Bu, F.T.; Jia, P.C.; Zhu, S.; Zhu, L.; Huang, C.; Li, J. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur. J. Pharmacol., 2022, 915, 174530.
[http://dx.doi.org/10.1016/j.ejphar.2021.174530] [PMID: 34902361]
[107]
Zhou, Y.; Tong, X.; Ren, S.; Wang, X.; Chen, J.; Mu, Y.; Sun, M.; Chen, G.; Zhang, H.; Liu, P. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation. J. Ethnopharmacol., 2016, 190, 83-90.
[http://dx.doi.org/10.1016/j.jep.2016.06.011] [PMID: 27282665]
[108]
Kang, R.; Tian, W.; Cao, W.; Sun, Y.; Zhang, H.N.; Feng, Y.D.; Li, C.; Li, Z.Z.; Li, X.Q. Ligustroflavone ameliorates CCl4-induced liver fibrosis through down-regulating the TGF-β/Smad signaling pathway. Chin. J. Nat. Med., 2021, 19(3), 170-180.
[http://dx.doi.org/10.1016/S1875-5364(21)60018-3] [PMID: 33781450]
[109]
Zhu, Z.; Hu, R.; Li, J.; Xing, X.; Chen, J.; Zhou, Q.; Sun, J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int. Immunopharmacol., 2021, 96, 107660.
[http://dx.doi.org/10.1016/j.intimp.2021.107660] [PMID: 33862553]
[110]
Zhou, Y-P.; Zhang, S-L.; Cheng, D.; Li, H-R.; Tang, Z-M.; Xue, J.; Cai, W.; Dong, J-H.; Zhao, L. Preliminary exploration on anti-fibrosis effect of kaempferol in mice with Schistosoma japonicum infection. Eur. J. Inflamm., 2013, 11(1), 161-168.
[http://dx.doi.org/10.1177/1721727X1301100115]
[111]
El-Mihi, K.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; Eissa, L.A. Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway. Life Sci., 2017, 187, 50-57.
[http://dx.doi.org/10.1016/j.lfs.2017.08.019] [PMID: 28830755]
[112]
Clichici, S.; Olteanu, D.; Filip, A.; Nagy, A.L.; Oros, A.; Mircea, P.A. Beneficial effects of silymarin after the discontinuation of CCl4-induced liver fibrosis. J. Med. Food, 2016, 19(8), 789-797.
[http://dx.doi.org/10.1089/jmf.2015.0104] [PMID: 27441792]
[113]
Zong, Y.; Zhong, M.; Li, D.M.; Zhang, B.J.; Mai, Z.P.; Huo, X.K.; Huang, S.S.; Zhang, H.L.; Wang, C.; Ma, X.C.; Yu, S.M.; Yang, D.A. Phenolic constituents from the roots of Phyllodium pulchellum. J. Asian Nat. Prod. Res., 2014, 16(7), 741-746.
[http://dx.doi.org/10.1080/10286020.2014.910197] [PMID: 24754631]
[114]
Yang, F.; Wang, Y.; Xue, J.; Ma, Q.; Zhang, J.; Chen, Y.F.; Shang, Z.Z.; Li, Q.Q.; Zhang, S.L.; Zhao, L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol. Int., 2016, 65(4), 308-315.
[http://dx.doi.org/10.1016/j.parint.2016.03.001] [PMID: 26946098]
[115]
Li, B.L.; Liang, H.J.; Li, Q.R.; Wang, Q.; Ao, Z.Y.; Fan, Y.W.; Zhang, W.J.; Lian, X.; Chen, J.Y.; Yuan, J.; Wu, J.W. Euryachincoside, a novel phenolic glycoside with anti-hepatic fibrosis activity from Eurya chinensis. Planta Med., 2023, 89(5), 516-525.
[http://dx.doi.org/10.1055/a-1828-2671] [PMID: 35439837]
[116]
Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Lee, S.J.; Han, S.M.; Pak, S.C.; Park, K. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun., 2014, 450(1), 195-201.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.089] [PMID: 24878534]
[117]
Zhang, C.; Liu, X.Q.; Sun, H.N.; Meng, X.M.; Bao, Y.W.; Zhang, H.P.; Pan, F.M.; Zhang, C. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. Int. Immunopharmacol., 2018, 63, 183-190.
[http://dx.doi.org/10.1016/j.intimp.2018.08.005] [PMID: 30098497]
[118]
Yi, J.; Wu, S.; Tan, S.; Qin, Y.; Wang, X.; Jiang, J.; Liu, H.; Wu, B. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov., 2021, 7(1), 374.
[http://dx.doi.org/10.1038/s41420-021-00768-7] [PMID: 34864819]
[119]
Zhao, H.; Zhang, Z.; Chai, X.; Li, G.; Cui, H.; Wang, H.; Meng, Y.; Liu, H.; Wang, J.; Li, R.; Bai, Z.; Xiao, X. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. Int. Immunopharmacol., 2016, 36, 249-255.
[http://dx.doi.org/10.1016/j.intimp.2016.04.040] [PMID: 27179304]
[120]
Wang, K.; Guo, Z.; Bao, Y.; Pang, Y.; Li, Y.; He, H.; Song, D. Structure–activity relationship of aloperine derivatives as new anti–liver fibrogenic agents. Molecules, 2020, 25(21), 4977.
[http://dx.doi.org/10.3390/molecules25214977] [PMID: 33121156]
[121]
Tang, S.; Li, Y.; Bao, Y.; Dai, Z.; Niu, T.; Wang, K.; He, H.; Song, D. Novel cytisine derivatives exert anti-liver fibrosis effect via PI3K/Akt/Smad pathway. Bioorg. Chem., 2019, 90, 103032.
[http://dx.doi.org/10.1016/j.bioorg.2019.103032] [PMID: 31207450]
[122]
Niu, T.; Niu, W.; Bao, Y.; Liu, T.; Song, D.; Li, Y.; He, H. Discovery of matrinic thiadiazole derivatives as a novel family of anti-liver fibrosis agents via repression of the TGFβ/Smad pathway. Molecules, 2018, 23(7), 1644.
[http://dx.doi.org/10.3390/molecules23071644] [PMID: 29976890]
[123]
Xiang, H.; Han, Y.; Zhang, Y.; Yan, W.; Xu, B.; Chu, F.; Xie, T.; Jia, M.; Yan, M.; Zhao, R.; Wang, P.; Lei, H. A new oleanolic acid derivative against CCl4-induced hepatic fibrosis in rats. Int. J. Mol. Sci., 2017, 18(3), 553.
[http://dx.doi.org/10.3390/ijms18030553] [PMID: 28272302]
[124]
Wan, S.; Luo, F.; Huang, C.; Liu, C.; Luo, Q.; Zhu, X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging, 2020, 12(11), 10614-10632.
[http://dx.doi.org/10.18632/aging.103282] [PMID: 32496208]
[125]
Xu, J.; Wang, X.; Zhang, H.; Yue, J.; Sun, Y.; Zhang, X.; Zhao, Y. Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities. Nat. Prod. Res., 2020, 34(6), 766-772.
[http://dx.doi.org/10.1080/14786419.2018.1499642] [PMID: 30445851]
[126]
Wang, Y.; Li, C.; Gu, J.; Chen, C.; Duanmu, J.; Miao, J.; Yao, W.; Tao, J.; Tu, M.; Xiong, B.; Zhao, L.; Liu, Z. Celastrol exerts anti‐inflammatory effect in liver fibrosis via activation of AMPK‐SIRT3 signalling. J. Cell. Mol. Med., 2020, 24(1), 941-953.
[http://dx.doi.org/10.1111/jcmm.14805] [PMID: 31742890]
[127]
Tang, L.; He, R.; Yang, G.; Tan, J.; Zhou, L.; Meng, X.; Huang, X.R.; Lan, H.Y. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS One, 2012, 7(2), e31350.
[http://dx.doi.org/10.1371/journal.pone.0031350] [PMID: 22363627]
[128]
Fan, J.; Chen, Q.; Wei, L.; Zhou, X.; Wang, R.; Zhang, H. Asiatic acid ameliorates CC l4-induced liver fibrosis in rats: involvement of Nrf2/ARE, NF-κB/IκBα and JAK1/STAT3 signaling pathways. Drug Des. Devel. Ther., 2018, 12, 3595-3605.
[http://dx.doi.org/10.2147/DDDT.S179876] [PMID: 30464391]
[129]
Wan, Y.; Wu, Y.L.; Lian, L.H.; Xie, W.X.; Li, X.; OuYang, B.Q.; Bai, T.; Li, Q.; Yang, N.; Nan, J.X. The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation. Chem. Biol. Interact., 2012, 195(3), 215-223.
[http://dx.doi.org/10.1016/j.cbi.2012.01.002] [PMID: 22285267]
[130]
Yue, J.; Sun, Y.; Xu, J.; Cao, J.; Chen, G.; Zhang, H.; Zhang, X.; Zhao, Y. Cucurbitane triterpenoids from the fruit of Momordica charantia L. and their anti-hepatic fibrosis and anti-hepatoma activities. Phytochemistry, 2019, 157, 21-27.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.009] [PMID: 30352327]
[131]
Wang, Y.H.; Li, R.K.; Fu, Y.; Li, J.; Yang, X.M.; Zhang, Y.L.; Zhu, L.; Yang, Q.; Gu, J.R.; Xing, X.; Zhang, Z.G. Exemestane attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells and promoting the secretion of interleukin 10. J. Immunol. Res., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/3072745] [PMID: 29464186]
[132]
Tan, H.; He, Q.; Li, R.; Lei, F.; Lei, X. Trillin reduces liver chronic inflammation and fibrosis in carbon tetrachloride (CCl4) induced liver injury in mice. Immunol. Invest., 2016, 45(5), 371-382.
[http://dx.doi.org/10.3109/08820139.2015.1137935] [PMID: 27219527]
[133]
Chen, S.; He, Z.; Xie, W.; Chen, X.; Lin, Z.; Ma, J.; Liu, Z.; Yang, S.; Wang, Y. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. Phytomedicine, 2022, 101, 154121.
[http://dx.doi.org/10.1016/j.phymed.2022.154121] [PMID: 35489327]
[134]
Hou, Y.L.; Tsai, Y.H.; Lin, Y.H.; Chao, J.C.J. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med., 2014, 14(1), 415.
[http://dx.doi.org/10.1186/1472-6882-14-415] [PMID: 25344394]
[135]
Mo, C.; Xie, S.; Zeng, T.; Lai, Y.; Huang, S.; Zhou, C.; Yan, W.; Huang, S.; Gao, L.; Lv, Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. Phytomedicine, 2021, 84, 153524.
[http://dx.doi.org/10.1016/j.phymed.2021.153524] [PMID: 33667840]
[136]
Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Protective effects of dammarane-type triterpenes from hydrolyzate of Gynostemma pentaphyllum against H2O2-induced injury and anti-hepatic fibrosis activities. Phytochem. Lett., 2018, 25, 33-36.
[http://dx.doi.org/10.1016/j.phytol.2018.03.010]
[137]
Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Four new dammarane-type triterpenes derivatives from hydrolyzate of total Gynostemma pentaphyllum saponins and their bioactivities. Nat. Prod. Res., 2019, 33(11), 1605-1611.
[http://dx.doi.org/10.1080/14786419.2018.1428592] [PMID: 29359589]
[138]
Zhang, X.; Shi, G.; Sun, Y.; Wu, X.; Zhao, Y. Triterpenes derived from hydrolyzate of total Gynostemma pentaphyllum saponins with anti-hepatic fibrosis and protective activity against H2O2-induced injury. Phytochemistry, 2017, 144, 226-232.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.021] [PMID: 28985570]
[139]
Zhang, Q.; Mohammed, E.A.H.; Wang, Y.; Bai, Z.; Zhao, Q.; He, D.; Wang, Z. Synthesis and anti-hepaticfibrosis of glycyrrhetinic acid derivatives with inhibiting COX-2. Bioorg. Chem., 2020, 99, 103804.
[http://dx.doi.org/10.1016/j.bioorg.2020.103804] [PMID: 32272365]
[140]
Ge, M.; Liu, H.; Zhang, Y.; Li, N.; Zhao, S.; Zhao, W.; Zhen, Y.; Yu, J.; He, H.; Shao, R. The anti‐hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes‐associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy. Br. J. Pharmacol., 2017, 174(10), 1147-1160.
[http://dx.doi.org/10.1111/bph.13766] [PMID: 28257144]
[141]
Bai, Y.; Wang, W.; Wang, L.; Ma, L.; Zhai, D.; Wang, F.; Shi, R.; Liu, C.; Xu, Q.; Chen, G.; Lu, Z. Obacunone attenuates liver fibrosis with enhancing anti-oxidant effects of GPx-4 and inhibition of EMT. Molecules, 2021, 26(2), 318.
[http://dx.doi.org/10.3390/molecules26020318] [PMID: 33435504]
[142]
Wang, H.; Che, J.; Cui, K.; Zhuang, W.; Li, H.; Sun, J.; Chen, J.; Wang, C. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. Phytomedicine, 2021, 88, 153609.
[http://dx.doi.org/10.1016/j.phymed.2021.153609] [PMID: 34126414]
[143]
Wang, H.Q.; Wan, Z.; Zhang, Q.; Su, T.; Yu, D.; Wang, F.; Zhang, C.; Li, W.; Xu, D.; Zhang, H. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway. Phytomedicine, 2022, 98, 153960.
[http://dx.doi.org/10.1016/j.phymed.2022.153960] [PMID: 35121391]
[144]
Chen, Y.C.; Liaw, C.C.; Cheng, Y.B.; Lin, Y.C.; Chen, C.H.; Huang, Y.T.; Liou, S.S.; Chen, S.Y.; Chien, C.T.; Lee, G.C.; Shen, Y.C. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera. Bioorg. Med. Chem. Lett., 2013, 23(3), 880-885.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.040] [PMID: 23265871]
[145]
Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride‐induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533.
[http://dx.doi.org/10.1002/ddr.21649] [PMID: 32219880]
[146]
Lv, J.; Bai, R.; Wang, L.; Gao, J.; Zhang, H. Artesunate may inhibit liver fibrosis via the FAK/Akt/β-catenin pathway in LX-2 cells. BMC Pharmacol. Toxicol., 2018, 19(1), 64.
[http://dx.doi.org/10.1186/s40360-018-0255-9] [PMID: 30326962]
[147]
Li, S.; Gan, L.; Tian, Y.J.; Tian, Y.; Fan, R.Z.; Huang, D.; Yuan, F.Y.; Zhang, X.; Lin, Y.; Zhu, Q.F.; Tang, G.H.; Yan, X.L.; Yin, S. Presegetane diterpenoids from Euphorbia sieboldiana as a new type of anti-liver fibrosis agents that inhibit TGF-β/Smad signaling pathway. Bioorg. Chem., 2021, 114, 105222.
[http://dx.doi.org/10.1016/j.bioorg.2021.105222] [PMID: 34375196]
[148]
Sharawy, M.H.; El-Awady, M.S.; Makled, M.N. Protective effects of paclitaxel on thioacetamide‐induced liver fibrosis in a rat model. J. Biochem. Mol. Toxicol., 2021, 35(5), e22745.
[http://dx.doi.org/10.1002/jbt.22745] [PMID: 33749060]
[149]
Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; Zhang, H.; Ma, X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol., 2019, 371, 63-73.
[http://dx.doi.org/10.1016/j.taap.2019.03.028] [PMID: 30953615]
[150]
Liu, R.X.; Ma, S.F.; Chen, Y.L.; Ma, L.F.; Wang, J.D.; Zhan, Z.J. Tetrodecadazinone, a novel tetrodecamycin-pyridazinone hybrid with anti-liver fibrosis activity from Streptomyces sp. HU051. Bioorg. Chem., 2022, 119, 105573.
[http://dx.doi.org/10.1016/j.bioorg.2021.105573] [PMID: 34952245]
[151]
Park, Y.J.; Jeon, M.S.; Lee, S.; Kim, J.K.; Jang, T.S.; Chung, K.H.; Kim, K.H. Anti-fibrotic effects of brevilin A in hepatic fibrosis via inhibiting the STAT3 signaling pathway. Bioorg. Med. Chem. Lett., 2021, 41, 127989.
[http://dx.doi.org/10.1016/j.bmcl.2021.127989] [PMID: 33794317]
[152]
Wang, J.P.; Li, T.Z.; Huang, X.Y.; Geng, C.A.; Shen, C.; Sun, J.J.; Xue, D.; Chen, J.J. Synthesis and anti-fibrotic effects of santamarin derivatives as cytotoxic agents against hepatic stellate cell line LX2. Bioorg. Med. Chem. Lett., 2021, 41, 127994.
[http://dx.doi.org/10.1016/j.bmcl.2021.127994] [PMID: 33775837]
[153]
Zhang, S.; Wang, Z.; Zhu, J.; Xu, T.; Zhao, Y.; Zhao, H.; Tang, F.; Li, Z.; Zhou, J.; Gao, D.; Tian, X.; Yao, J. Carnosic acid alleviates BDL-induced liver fibrosis through miR-29b-3p-mediated inhibition of the high-mobility group box 1/Toll-like receptor 4 signaling pathway in rats. Front. Pharmacol., 2018, 8, 976.
[http://dx.doi.org/10.3389/fphar.2017.00976] [PMID: 29403377]
[154]
Patil, R.; Ghosh, A.; Sun Cao, P. Sommer, R.D.; Grice, K.A.; Waris, G.; Patil, S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1129-1135.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.089] [PMID: 28190633]
[155]
Tseng, T.H.; Lin, W.L.; Chen, Z.H.; Lee, Y.J.; Shie, M.S.; Lee, K.F.; Shen, C.H.; Kuo, H.C. Moniliformediquinone as a potential therapeutic agent, inactivation of hepatic stellate cell and inhibition of liver fibrosis in vivo. J. Transl. Med., 2016, 14(1), 263.
[http://dx.doi.org/10.1186/s12967-016-1022-6] [PMID: 27612633]
[156]
Li, X.; Shao, S.; Li, H.; Bi, Z.; Zhang, S.; Wei, Y.; Bai, J.; Zhang, R.; Ma, X.; Ma, B.; Zhang, L.; Xie, C.; Ning, W.; Zhou, H.; Yang, C. Byakangelicin protects against carbon tetrachloride–induced liver injury and fibrosis in mice. J. Cell. Mol. Med., 2020, 24(15), 8623-8635.
[http://dx.doi.org/10.1111/jcmm.15493] [PMID: 32643868]
[157]
Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999.
[http://dx.doi.org/10.1007/s11655-021-3310-0] [PMID: 34319504]
[158]
Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480.
[http://dx.doi.org/10.1016/j.jep.2021.114480] [PMID: 34358654]
[159]
Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12.
[http://dx.doi.org/10.1016/j.tox.2018.01.007] [PMID: 29355602]
[160]
Younis, N.S.; Ghanim, A.M.H.; Elmorsy, M.A.; Metwaly, H.A. RETRACTED ARTICLE: Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Sci. Rep., 2021, 11(1), 12296.
[http://dx.doi.org/10.1038/s41598-021-91666-6] [PMID: 34112866]
[161]
Zhao, Y.; Ma, X.; Wang, J.; He, X.; Zhang, Y.; Wang, Y.; Liu, H.; Shen, H.; Xiao, X. A system review of anti-fibrogenesis effects of compounds derived from chinese herbal medicine. Mini Rev. Med. Chem., 2015, 16(2), 163-175.
[http://dx.doi.org/10.2174/1389557515666150709121908] [PMID: 26156416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy