Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Formulation and Characterization Studies of Paclitaxel Incorporated Kollidon® SR and Chitosan Nanoparticles: An In vitro Evaluation for Potential Use for Colorectal Cancer Treatment

Author(s): Özge Atasoy Koca, Gülay Büyükköroğlu and Ebru Başaran*

Volume 21, Issue 1, 2024

Published on: 14 June, 2023

Page: [189 - 202] Pages: 14

DOI: 10.2174/1570180820666230413080749

open access plus

Abstract

Background: Chemotherapy is regarded as first-line therapy in various cancer types besides surgical procedures. However, lack of cell selectivity and poor drug targeting to the cancer zone of the active agents results in accumulation in normal tissues with considerably high severe side effects. Therefore, novel drug delivery systems are required to enhance cancer treatment.

Objective: In this study, Paclitaxel (PTX) incorporated Kollidon® SR (KSR) and Chitosan (CS) based polymeric nanoparticles were prepared for potential use for colorectal cancer treatment.

Methods: Polymeric nanoparticles were prepared by spray dying method. Physicochemical characterization studies were performed with particle size (PS), polydispersity index (PDI), zeta potential (ZP), drug loading (DL %), encapsulation efficiency (EE %) and structural evaluations using differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR) analyses. Cytotoxicity of the nanoparticles was screened on HT-29 (human colorectal adenocarcinoma) and HTC-15 (Dukes' type C, colorectal adenocarcinoma) cell lines with MTT assay.

Results: Analysis results revealed the successful incorporation of PTX into the polymeric lattices. Particles showed cytotoxic activity on HT-29 and HTC-15 cell lines, depending on the application dose after 48 hours. Nanoparticles also remained stable at 5°C ± 3°C and 25°C ± 2°C (60% ± 5 Relative Humidity (RH)) during the storage period of 6 months.

Conclusion: As a result of the study, KSR and CS-based nanoparticles could be regarded as promising nano-carriers for improved therapeutic efficacy of PTX for colorectal cancer treatment.

Keywords: Paclitaxel, Kollidon® SR, chitosan, polymeric nanoparticles, colorectal cancer, spray dryer.

Graphical Abstract
[1]
Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech, 2020, 21(5), 178.
[http://dx.doi.org/10.1208/s12249-020-01731-y] [PMID: 32591920]
[2]
Wang, R.; Huang, J.; Chen, J.; Yang, M.; Wang, H.; Qiao, H.; Chen, Z.; Hu, L.; Di, L.; Li, J. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine, 2019, 21(102068), 102068.
[http://dx.doi.org/10.1016/j.nano.2019.102068] [PMID: 31374249]
[3]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[4]
Du, B.; Zhu, W.; Yu, L.; Wang, Y.; Zheng, M.; Huang, J.; Shen, G.; Zhou, J.; Yao, H. TPGS2k-PLGA composite nanoparticles by depleting lipid rafts in colon cancer cells for overcoming drug resistance. Nanomedicine, 2021, 35(102307), 102307.
[http://dx.doi.org/10.1016/j.nano.2020.102307] [PMID: 32987192]
[5]
Lee, Y.; Graeser, R.; Kratz, F.; Geckeler, K.E. Paclitaxel-loaded polymer nanoparticles for the reversal of multidrug resistance in breast cancer cells. Adv. Funct. Mater., 2011, 21(22), 4211-4218.
[http://dx.doi.org/10.1002/adfm.201100853]
[6]
Tiwari, S.; Tirosh, B.; Rubinstein, A. Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. Int. J. Pharm., 2017, 531(1), 281-291.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.092] [PMID: 28844903]
[7]
Zhao, Y.; Cai, C.; Liu, M.; Zhao, Y.; Wu, Y.; Fan, Z.; Ding, Z.; Zhang, H.; Wang, Z.; Han, J. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Int. J. Biol. Macromol., 2020, 153, 873-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.060] [PMID: 32169451]
[8]
Choi, J.S.; Cho, N.H.; Kim, D.H.; Park, J.S. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. Mater. Sci. Eng. C, 2019, 100, 247-259.
[http://dx.doi.org/10.1016/j.msec.2019.03.002] [PMID: 30948059]
[9]
Abriata, J.P.; Turatti, R.C.; Luiz, M.T.; Raspantini, G.L.; Tofani, L.B.; do Amaral, R.L.F.; Swiech, K.; Marcato, P.D.; Marchetti, J.M. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. Mater. Sci. Eng. C, 2019, 96, 347-355.
[http://dx.doi.org/10.1016/j.msec.2018.11.035] [PMID: 30606542]
[10]
Hu, J.; Fu, S.; Peng, Q.; Han, Y.; Xie, J.; Zan, N.; Chen, Y.; Fan, J. Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: In vitro and in vivo evaluation. Int. J. Pharm., 2017, 516(1-2), 313-322.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.047] [PMID: 27884713]
[11]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[12]
Chen, G.; Zhao, Y.; Xu, Y.; Zhu, C.; Liu, T.; Wang, K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int. J. Pharm., 2020, 589(119763), 119763.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119763] [PMID: 32898629]
[13]
Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental analysis of particle formation in spray drying. Powder Technol., 2013, 247, 1-7.
[http://dx.doi.org/10.1016/j.powtec.2013.06.038]
[14]
Delair, T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur. J. Pharm. Biopharm., 2011, 78(1), 10-18.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.001] [PMID: 21138767]
[15]
Ogaji, I.J.; Nep, E.I.; Audu-Peter, J.D. Advances in natural polymers as pharmaceutical excipients. Pharm. Anal. Acta, 2012, 3(1), 1-16.
[http://dx.doi.org/10.4172/2153-2435.1000146]
[16]
Arias, J.L.; Gómez-Gallo, A.; Delgado, Á.V.; Gallardo, V. Study of the stability of Kollidon® SR suspensions for pharmaceutical applications. Colloids Surf. A Physicochem. Eng. Asp., 2009, 338(1-3), 107-113.
[http://dx.doi.org/10.1016/j.colsurfa.2009.01.001]
[17]
Başaran, E. Ocular application of dirithromycin incorporated polymeric nanoparticles: An in vitro evaluation. Turk. J. Pharm. Sci., 2017, 14(2), 191-200.
[http://dx.doi.org/10.4274/tjps.69855] [PMID: 32454613]
[18]
Güven, U.M.; Yenilmez, E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: Nanosuspension formulation and in vitro-in vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 51, 506-512.
[http://dx.doi.org/10.1016/j.jddst.2019.03.016]
[19]
Al-Heibshy, F.N.; Başaran, E.; Demirel, M. Studies on rosuvastatin calcium incorporated chitosan salt nanoparticles. Lat. Am. J. Pharm., 2016, 35(1), 1065-1076.
[20]
Başaran, E.; Yazan, Y. Ocular application of chitosan. Expert Opin. Drug Deliv., 2012, 9(6), 701-712.
[http://dx.doi.org/10.1517/17425247.2012.681775] [PMID: 22530690]
[21]
Başaran, E.; Şenel, B.; Kirimlioğlu, G.Y.; Güven, U.M.; Yazan, Y. Ornidazole incorporated chitosan nanoparticles for ocular application. Lat. Am. J. Pharm., 2015, 34(6), 1180-1188.
[22]
Hu, Q.; Bae, M.; Fleming, E.; Lee, J.Y.; Luo, Y. Biocompatible polymeric nanoparticles with exceptional gastrointestinal stability as oral delivery vehicles for lipophilic bioactives. Food Hydrocoll., 2019, 89, 386-395.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.057]
[23]
Sharma, M.; Sharma, R.; Jain, D.K.; Saraf, A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Int. J. Biol. Macromol., 2019, 135, 246-260.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.162] [PMID: 31128197]
[24]
Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm., 2018, 546(1-2), 194-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.037] [PMID: 29778825]
[25]
Li, N.; Zhuang, C.; Wang, M.; Sun, X.; Nie, S.; Pan, W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm., 2009, 379(1), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.020] [PMID: 19559775]
[26]
Chakravarthi, S.S.; Robinson, D.H. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int. J. Pharm., 2011, 409(1-2), 111-120.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.034] [PMID: 21356285]
[27]
Başaran, E.; Demirel, M.; Sırmagül, B.; Yazan, Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J. Microencapsul., 2010, 27(1), 37-47.
[http://dx.doi.org/10.3109/02652040902846883] [PMID: 19545226]
[28]
Jin, C.; Bai, L.; Wu, H.; Tian, F.; Guo, G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials, 2007, 28(25), 3724-3730.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.032] [PMID: 17509678]
[29]
Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine, 2017, 12(1), 4085-4109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[30]
Rathod, L.V.; Kapadia, R.; Sawant, K.K. A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: In vitro, in vivo and stability studies. Mater. Sci. Eng. C, 2017, 71, 529-540.
[http://dx.doi.org/10.1016/j.msec.2016.10.017] [PMID: 27987741]
[31]
Luo, K.; Yin, S.; Zhang, R.; Yu, H.; Wang, G.; Li, J. Multifunctional composite nanoparticles based on hyaluronic acid-paclitaxel conjugates for enhanced cancer therapy. Int. J. Pharm., 2020, 589(119870), 119870.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119870] [PMID: 32919005]
[32]
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[33]
European Medicines Agengy In: The New EMEA Guideline on the investigation of bioequivalence; , 2010. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
[34]
Elieh Ali Komi, D.; Shekari, N.; Soofian-kordkandi, P.; Javadian, M.; Shanehbandi, D.; Baradaran, B.; Kazemi, T. Docosahexaenoic acid (DHA) and linoleic acid (LA) modulate the expression of breast cancer involved miRNAs in MDA-MB-231 cell line. Clin. Nutr. ESPEN, 2021, 46, 477-483.
[http://dx.doi.org/10.1016/j.clnesp.2021.09.006] [PMID: 34857238]
[35]
Büyükköroğlu, G.; Şenel, B.; Başaran, E.; Gezgin, S. Development of paclitaxel-loaded liposomal systems with anti-her2 antibody for targeted therapy. Trop. J. Pharm. Res., 2016, 15(5), 895-903.
[http://dx.doi.org/10.4314/tjpr.v15i5.1]
[36]
Valencia, M.S.; Franco da Silva Júnior, M.; Xavier Júnior, F.H.; de Oliveira Veras, B.; Fernanda de Oliveira Borba, E.; Gonçalves da Silva, T.; Xavier, V.L.; Pessoa de Souza, M.; Carneiro-da-Cunha, M.G. Bioactivity and cytotoxicity of quercetin-loaded, lecithin-chitosan nanoparticles. Biocatal. Agric. Biotechnol., 2021, 31(101879), 101879.
[http://dx.doi.org/10.1016/j.bcab.2020.101879]
[37]
Kırımlıoğlu, G.Y.; Özer, S.; Büyükköroğlu, G.; Yazan, Y. Moxifloxacin hydrochloride-loaded Eudragit® RL 100 and Kollidon® SR based nanoparticles: Formulation, in vitro characterization and cytotoxicity. Comb. Chem. High Throughput Screen., 2020, 23, 1-14.
[http://dx.doi.org/10.2174/1386207323666200428091945] [PMID: 32342810]
[38]
He, P.; Davis, S.S.; Illum, L. Chitosan microspheres prepared by spray drying. Int. J. Pharm., 1999, 187(1), 53-65.
[http://dx.doi.org/10.1016/S0378-5173(99)00125-8] [PMID: 10502613]
[39]
Wan, F.; Yang, M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int. J. Pharm., 2016, 498(1-2), 82-95.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.025] [PMID: 26688034]
[40]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[41]
Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release, 2019, 299, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.030] [PMID: 30797868]
[42]
Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm., 1998, 168(2), 221-229.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[43]
Peng, X.; Liu, P.; Pang, B.; Yao, Y.; Wang, J.; Zhang, K. Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release. Carbohydr. Polym., 2019, 216, 113-118.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.029] [PMID: 31047047]
[44]
Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym., 2020, 236(116075), 116075.
[http://dx.doi.org/10.1016/j.carbpol.2020.116075] [PMID: 32172888]
[45]
Loh, G.O.K.; Tan, Y.T.F.; Peh, K.K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci., 2016, 11(4), 536-546.
[http://dx.doi.org/10.1016/j.ajps.2016.02.009]
[46]
Escalona-Rayo, O.; Fuentes-Vázquez, P.; Jardon-Xicotencatl, S.; García-Tovar, C.G.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: Optimization of formulation variables and in vitro anti-glioma assessment. J. Drug Deliv. Sci. Technol., 2019, 52, 488-499.
[http://dx.doi.org/10.1016/j.jddst.2019.05.026]
[47]
Dutta, A.; Roy, N.; Das, K.; Roy, D.; Ghosh, R.; Roy, M.N. Synthesis and characterization of host guest inclusion complexes of cyclodextrin molecules with theophylline by diverse methodologies. Emerging Science Journal, 2020, 4(1), 52-72.
[http://dx.doi.org/10.28991/esj-2020-01210]
[48]
Edrisi Sormoli, M.; Imtiaz Ul Islam, M.; Langrish, T.A.G. The effect of chitosan hydrogen bonding on lactose crystallinity during spray drying. J. Food Eng., 2012, 108(4), 541-548.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.011]
[49]
Thiyagarajan, A.; Saravanabhavan, S.; Thangarasu, V. Preparation and biopharmaceutical evaluation of novel polymeric nanoparticles containing etoposide for targeting cancer cells. Turkish Journal of Pharmaceutical Sciences, 2019, 16(2), 132-140.
[http://dx.doi.org/10.4274/tjps.galenos.2018.21043] [PMID: 32454706]
[50]
Pandita, D.; Ahuja, A.; Velpandian, T.; Lather, V.; Dutta, T.; Khar, R.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Pharmazie, 2009, 64(5), 301-310.
[http://dx.doi.org/10.1691/ph.2009.8338] [PMID: 19530440]
[51]
Wang, L.; Zhao, X.; Yang, F.; Wu, W.; Wu, M.; Li, Y.; Zhang, X. Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability. Int. J. Biol. Macromol., 2019, 138, 207-214.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.083] [PMID: 31306708]
[52]
Boonsongrit, Y.; Mueller, B.W.; Mitrevej, A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm., 2008, 69(1), 388-395.
[http://dx.doi.org/10.1016/j.ejpb.2007.11.008] [PMID: 18164928]
[53]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[54]
Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J., 2019, 27(2), 293-302.
[http://dx.doi.org/10.1016/j.jsps.2018.11.011] [PMID: 30766442]
[55]
Abrego, G.; Alvarado, H.; Souto, E.B.; Guevara, B.; Bellowa, L.H.; Parra, A.; Calpena, A.; Garcia, M.L. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. . Eur. J. Pharm. Biopharm.,, 2015, 95(Pt B), 261-270.
[http://dx.doi.org/ 10.1016/j.ejpb.2015.01.026 ] [PMID: 25681744]
[56]
Ahmad, I.; Pandit, J.; Sultana, Y.; Mishra, A.K.; Hazari, P.P.; Aqil, M. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study. Mater. Sci. Eng. C, 2019, 100, 959-970.
[http://dx.doi.org/10.1016/j.msec.2019.03.060] [PMID: 30948132]
[57]
Luppi, B.; Bigucci, F.; Cerchiara, T.; Zecchi, V. Chitosan-based hydrogels for nasal drug delivery: From inserts to nanoparticles. Expert Opin. Drug Deliv., 2010, 7(7), 811-828.
[http://dx.doi.org/10.1517/17425247.2010.495981] [PMID: 20560778]
[58]
Ganza-González, A.; Anguiano-Igea, S.; Otero-Espinar, F.J.; Blanco Méndez, J. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. Eur. J. Pharm. Biopharm., 1999, 48(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(99)00040-5] [PMID: 10469933]
[59]
Li, Y.; Wong, H.L.; Shuhendler, A.J.; Rauth, A.M.; Wu, X.Y. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles. J. Control. Release, 2008, 128(1), 60-70.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.014] [PMID: 18406489]
[60]
Al-Heibshy, F.N.S.; Başaran, E.; Öztürk, N.; Demirel, M. Preparation and in vitro characterization of rosuvastatin calcium incorporated methyl beta cyclodextrin and Captisol ® inclusion complexes. Drug Dev. Ind. Pharm., 2020, 46(9), 1495-1506.
[http://dx.doi.org/10.1080/03639045.2020.1810264] [PMID: 32804005]
[61]
Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release, 2014, 190, 75-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.041] [PMID: 24998939]
[62]
Bruschi, M.L. Mathematical models of drug release.Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier, 2015, pp. 63-86.
[http://dx.doi.org/10.1016/B978-0-08-100092-2.00005-9]
[63]
Ergin, A.D.; Bayindir, Z.S.; Ozcelikay, A.T.; Yuksel, N. A novel delivery system for enhancing bioavailability OF S-adenosyl-L-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation. J. Drug Deliv. Sci. Technol., 2020, (102096), 1-13.
[http://dx.doi.org/10.1016/j.jddst.2020.102096]
[64]
Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.H.; Hong, K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci., 2018, 19(8), 2269.
[http://dx.doi.org/10.3390/ijms19082269] [PMID: 30072642]
[65]
Ranjan Dwivedi, A.; Kumar, V.; Kaur, H.; Kumar, N.; Prakash Yadav, R.; Poduri, R.; Baranwal, S.; Kumar, V. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines. Bioorg. Med. Chem. Lett., 2020, 30(20), 127468.
[http://dx.doi.org/10.1016/j.bmcl.2020.127468] [PMID: 32768647]
[66]
Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev., 2010, 62(1), 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[67]
Katas, H.; Alpar, H.O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release, 2006, 115(2), 216-225.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.021] [PMID: 16959358]
[68]
Gu, W.; Zou, H.; Li, L.; Garcia Carcedo, I.; Xu, Z.P.; Monteiro, M. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int. J. Nanomedicine, 2016, 11, 1947-1958.
[http://dx.doi.org/10.2147/IJN.S100744] [PMID: 27226714]
[69]
CH Q1A-R2 I. Stability testing of new drug substances and products. 2003.http://dx.doi.org/10.32388/YOKP53
[70]
Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66(1), 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2006.02.008]
[71]
Ingham, B. X-ray scattering characterisation of nanoparticles. Crystallogr. Rev., 2015, 21(4), 229-303.
[http://dx.doi.org/10.1080/0889311X.2015.1024114]
[72]
Başaran, E.; Yenilmez, E.; Berkman, M.S.; Büyükköroğlu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of cyclosporine A. J. Microencapsul., 2014, 31(1), 49-57.
[http://dx.doi.org/10.3109/02652048.2013.805839] [PMID: 23834316]

© 2024 Bentham Science Publishers | Privacy Policy