Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Neuroprotective Potential of Polydatin in Combating Parkinson’s Disease through the Inhibition of Monoamine Oxidase-B and Catechol-o-Methyl Transferase

Author(s): Banashree Chetia Phukan, Rubina Roy, Shuvasish Choudhury, Pallab Bhattacharya and Anupom Borah*

Volume 21, Issue 1, 2024

Published on: 09 May, 2023

Page: [180 - 188] Pages: 9

DOI: 10.2174/1570180820666230427092537

Price: $65

Abstract

Aims: This study aims to deduce the plausible contribution of polydatin in dopamine replenishment and dopaminergic neuroprotection to unveil its potential as a drug candidate for Parkinson’s disease (PD).

Background: Available therapies for the management of dopaminergic degradation in PD provide only symptomatic relief and are associated with various adverse effects. Levodopa (L-DOPA) is an age-old therapy in the treatment paradigm of PD, either used as mono-therapy or in combination with the inhibitors of the dopamine catabolising enzymes monoamine oxidase-B (MAO-B) and catechol-Omethyltransferase (COMT) for replenishing the levels of the neurotransmitter. The discovery of plantbased novel drug therapies would help to target multiple pathways underlying the disease pathogenesis and are associated with minimal side effects. Polydatin, the precursor of resveratrol, has been explored recently to possess neuroprotective efficacy, however, the molecular mechanisms that underlie the Parkinsonism- associated neurobehavioral recovery as well as the neurorescue potential of polydatin has not been illustrated yet.

Objective: The present study aimed to unveil the role of polydatin in dopamine upregulation in PD, by determining its dual inhibitory potential on the enzymes responsible for its breakdown, MAO-B and COMT. The study further aimed to elucidate the role of this molecule in regulating the enzymatic activity of Cytosolic Phospholipase A2 (cPLA2), the crucial enzyme underlying several pathogenic pathways leading to neurodegeneration.

Methods: Molecular docking simulation of polydatin with the dopamine catabolizing enzymes MAO-B and COMT, as well as cPLA2, along with their respective known inhibitors was performed using the Molegro Virtual Docker (MVD) 2.1 package.

Results: In silico analyses revealed that polydatin could significantly inhibit the activities of this dopamine catabolizing enzyme, MAO-B and COMT with comparable docking scores and more numbers of hydrogen bonds, and weaker interactions as that of their respective available synthetic inhibitors. Moreover, it was found that polydatin could regulate the activity of cPLA2 comparable to its known inhibitor.

Conclusion: Polydatin exhibited efficacy as a potent dopamine replenishing agent by inhibiting its metabolizing enzymes as well as found to have efficacy against neuroinflammation, thereby highlighting the significance of designing novel phyto drugs for combating dopamine deficiency in PD.

Keywords: Dopamine, dopaminergic neurodegeneration, cytosolic phospholipase A2, neuroinflammation, COMT, Parkinson’s disease (PD).

Graphical Abstract
[1]
Pan-Montojo, F.; Anichtchik, O.; Dening, Y.; Knels, L.; Pursche, S.; Jung, R.; Jackson, S.; Gille, G.; Spillantini, M.G.; Reichmann, H.; Funk, R.H.W. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One, 2010, 5(1), e8762.
[http://dx.doi.org/10.1371/journal.pone.0008762] [PMID: 20098733]
[2]
Chetia Phukan, B.; Dutta, A.; Deb, S.; Saikia, R.; Mazumder, M.K.; Paul, R.; Bhattacharya, P.; Sandhir, R.; Borah, A. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP Mouse model of Parkinson’s disease: Involvement of anti-inflammatory response. Exp. Brain Res., 2021, 240(1), 113-122.
[http://dx.doi.org/10.1007/s00221-021-06237-y] [PMID: 34633467]
[3]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[4]
Dauer, W.; Przedborski, S. Parkinson’s Disease. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[5]
Dawson, T.M.; Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 2003, 302(5646), 819-822.
[http://dx.doi.org/10.1126/science.1087753]
[6]
Finberg, J.P.M. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. , 2019, 126(4), 433-448.
[http://dx.doi.org/10.1007/s00702-018-1952-7] [PMID: 30386930]
[7]
Terland, O.; Flatmark, T.; Tangerås, A.; Grønberg, M. Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J. Mol. Cell. Cardiol., 1997, 29(6), 1731-1738.
[http://dx.doi.org/10.1006/jmcc.1997.0412] [PMID: 9220358]
[8]
Dezsi, L.; Vecsei, L. Monoamine Oxidase B Inhibitors in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
[http://dx.doi.org/10.2174/1871527316666170124165222] [PMID: 28124620]
[9]
Mazumder, M.K.; Paul, R.; Phukan, B.C.; Dutta, A.; Chakrabarty, J.; Bhattacharya, P.; Borah, A. Garcinol, an effective monoamine oxidase-B inhibitor for the treatment of Parkinson’s disease. Med. Hypotheses, 2018, 117, 54-58.
[http://dx.doi.org/10.1016/j.mehy.2018.06.009] [PMID: 30077198]
[10]
Engelbrecht, I.; Petzer, J.P.; Petzer, A. Evaluation of selected natural compounds as dual inhibitors of catechol-o-methyltransferase and monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(2), 133-145.
[http://dx.doi.org/10.2174/1871524919666190619090852] [PMID: 31258092]
[11]
Müller, T. Drug therapy in patients with Parkinson’s disease. Transl. Neurodegener., 2012, 1(1), 10.
[http://dx.doi.org/10.1186/2047-9158-1-10] [PMID: 23211041]
[12]
Cheong, S.L.; Federico, S.; Spalluto, G.; Klotz, K.N.; Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: Transition from single-target to multitarget therapy. Drug Discov. Today, 2019, 24(9), 1769-1783.
[http://dx.doi.org/10.1016/j.drudis.2019.05.003] [PMID: 31102728]
[13]
Kaakkola, S. Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson’s disease. Int. Rev. Neurobiol., 2010, 95, 207-225.
[http://dx.doi.org/10.1016/B978-0-12-381326-8.00009-0]
[14]
Paul, R.; Borah, A. L-DOPA-induced hyperhomocysteinemia in Parkinson’s disease: Elephant in the room. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(9), 1989-1997.
[http://dx.doi.org/10.1016/j.bbagen.2016.06.018] [PMID: 27318154]
[15]
Mohd Sairazi, N.S.; Sirajudeen, K.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 6565396.
[http://dx.doi.org/10.1155/2020/6565396] [PMID: 32148547]
[16]
Huang, B.; Liu, J.; Meng, T.; Li, Y.; He, D.; Ran, X.; Chen, G.; Guo, W.; Kan, X.; Fu, S.; Wang, W.; Liu, D. Polydatin prevents Lipopolysaccharide (LPS)-Induced Parkinson’s disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis. Front. Immunol., 2018, 9(NOV), 2527.
[http://dx.doi.org/10.3389/fimmu.2018.02527] [PMID: 30455692]
[17]
Guan, S.Y.; Zhang, K.; Wang, X.S.; Yang, L.; Feng, B.; Tian, D.D.; Gao, M.R.; Liu, S.B.; Liu, A.; Zhao, M.G. Anxiolytic effects of polydatin through the blockade of neuroinflammation in a chronic pain mouse model. Mol. Pain, 2020, 16, 1744806919900717.
[http://dx.doi.org/10.1177/1744806919900717] [PMID: 31964240]
[18]
Sun, S.; Zou, Y.; Hao, S.; Niu, Z.; Wu, L. Polydatin inhibits LPS-induced inflammatory response in BV2 microglia by disrupting the formation of lipid rafts. Immunopharmacol. Immunotoxicol., 2021, 43(2), 138-144.
[http://dx.doi.org/10.1080/08923973.2020.1867999] [PMID: 33509007]
[19]
Bian, H.; Xiao, L.; Liang, L.; Xie, Y.; Wang, H.; Slevin, M.; Tu, W.J.; Wang, G. Polydatin prevents neuroinflammation and relieves depression via regulating Sirt1/HMGB1/NF-κB signaling in mice. Neurotox. Res., 2022, 40(5), 1393-1404.
[http://dx.doi.org/10.1007/s12640-022-00553-z] [PMID: 35986876]
[20]
Chen, Y.; Zhang, D.; Liao, Z.; Wang, B.; Gong, S.; Wang, C.; Zhang, M.; Wang, G.; Cai, H.; Liao, F.F.; Xu, J. Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease. Mol. Neurodegener., 2015, 10(1), 4.
[http://dx.doi.org/10.1186/1750-1326-10-4] [PMID: 26013581]
[21]
Ahmed, M.R.; Shaikh, M.A.; Baloch, N.A.; Nazir, S.; Abrar, H.; Ulhaq, H.S.I. Neuroprotective potential of polydatin against motor abnormalities and dopaminergic neuronal loss in rotenone induced parkinson model. Int. J. Morphol., 2018, 36(2), 584-591.
[http://dx.doi.org/10.4067/S0717-95022018000200584]
[22]
Bai, H.; Ding, Y.; Li, X.; Kong, D.; Xin, C.; Yang, X.; Zhang, C.; Rong, Z.; Yao, C.; Lu, S.; Ji, L.; Li, L.; Huang, W. Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem. Int., 2020, 134, 104671.
[http://dx.doi.org/10.1016/j.neuint.2020.104671] [PMID: 31926197]
[23]
Zhang, S.; Wang, S.; Shi, X.; Feng, X. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochem. Int., 2020, 139, 104815.
[http://dx.doi.org/10.1016/j.neuint.2020.104815] [PMID: 32758587]
[24]
Mazumder, M.K.; Choudhury, S.; Borah, A. An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: Relevance to neurodegenerative diseases. IBRO Rep., 2019, 6, 153-159.
[http://dx.doi.org/10.1016/j.ibror.2019.05.003] [PMID: 31193374]
[25]
Das, S.; Laskar, M.A.; Sarker, S.D.; Choudhury, M.D.; Choudhury, P.R.; Mitra, A.; Jamil, S.; Lathiff, S.M.A.; Abdullah, S.A.; Basar, N.; Nahar, L.; Talukdar, A.D. Prediction of Anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico. Phytochem. Anal., 2017, 28(4), 324-331.
[http://dx.doi.org/10.1002/pca.2679] [PMID: 28168765]
[26]
Kurnia, D.; Shadrina, A.A.N.; Herdiyati, Y.; Wiani, I.; Satari, M.H. Prediction mechanism of nevadensin as antibacterial agent against S. sanguinis: In vitro and in silico studies. Comb. Chem. High Throughput Screen., 2022, 25(9), 1488-1497.
[http://dx.doi.org/10.2174/1386207324666210707104440] [PMID: 34238151]
[27]
Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240.
[http://dx.doi.org/10.1126/sciadv.1501240] [PMID: 27051863]
[28]
Mazumder, M.K.; Bhattacharjee, N.; Borah, A. Garcinol prevents hyperhomocysteinemia and enhances bioavailability of L-DOPA by inhibiting catechol-O-methyltransferase: An in silico approach. Med. Chem. Res., 2016, 25(1), 116-122.
[http://dx.doi.org/10.1007/s00044-015-1472-z]
[29]
Mazumder, M.K.; Borah, A. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: An in silico study elucidating a novel mechanism of action of the drug. Med. Hypotheses, 2014, 83(6), 740-746.
[http://dx.doi.org/10.1016/j.mehy.2014.09.031] [PMID: 25459147]
[30]
Sawada, M.; Imamura, K.; Nagatsu, T. Role of cytokines in inflammatory process in Parkinson’s disease. J. Neural Transm. Suppl., 2006, (70), 373-381.
[http://dx.doi.org/10.1007/978-3-211-45295-0_57] [PMID: 17017556]
[31]
Mogi, M.; Kondo, T.; Mizuno, Y.; Nagatsu, T. p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neurosci. Lett., 2007, 414(1), 94-97.
[http://dx.doi.org/10.1016/j.neulet.2006.12.003] [PMID: 17196747]
[32]
Kouli, A.; Camacho, M.; Allinson, K.; Williams-Gray, C.H. Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol. Commun., 2020, 8(1), 211.
[http://dx.doi.org/10.1186/s40478-020-01083-5] [PMID: 33272323]
[33]
Wang, S.; Li, B.; Solomon, V.; Fonteh, A.; Rapoport, S. I.; Bennett, D. A.; Arvanitakis, Z.; Chui, H. C.; Sullivan, P. M.; Yassine, H. N. Calcium-Dependent Cytosolic Phospholipase A2 Activation Is Implicated in Neuroinflammation and Oxidative Stress Associated with ApoE4. Mol. Neurodegener., 2022, 1(7), 1-21.
[http://dx.doi.org/10.1186/s13024-022-00549-5]
[34]
Chalimoniuk, M.; Stolecka, A.; Ziemińska, E.; Stępień, A.; Langfort, J.; Strosznajder, J.B. Involvement of multiple protein kinases in cPLA 2 phosphorylation, arachidonic acid release, and cell death in in vivo and in vitro models of 1-methyl-4-phenylpyridinium-induced parkinsonism - the possible key role of PKG. J. Neurochem., 2009, 110(1), 307-317.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06147.x] [PMID: 19457107]
[35]
Lee, H.J.; Bazinet, R.P.; Rapoport, S.I.; Bhattacharjee, A.K. Brain arachidonic acid cascade enzymes are upregulated in a rat model of unilateral Parkinson disease. Neurochem. Res., 2010, 35(4), 613-619.
[http://dx.doi.org/10.1007/s11064-009-0106-6] [PMID: 19997776]
[36]
Xylaki, M.; Boumpoureka, I.; Kokotou, M.G.; Marras, T.; Papadimitriou, G.; Kloukina, I.; Magrioti, V.; Kokotos, G.; Vekrellis, K.; Emmanouilidou, E. Changes in the cellular fatty acid profile drive the proteasomal degradation of α‐synuclein and enhance neuronal survival. FASEB J., 2020, 34(11), 15123-15145.
[http://dx.doi.org/10.1096/fj.202001344R] [PMID: 32931072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy