Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Mechanism of Action and Implication of Naphthoquinone as Potent Anti-trypanosomal Drugs

Author(s): Ruma Rani, Khushboo Sethi, Snehil Gupta, Rajender S. Varma* and Rajender Kumar*

Volume 22, Issue 25, 2022

Published on: 04 October, 2022

Page: [2087 - 2105] Pages: 19

DOI: 10.2174/1568026622666220912101332

Price: $65

Open Access Journals Promotions 2
Abstract

Naphthoquinone is a heterocyclic moiety whose natural derivatives are present as bioactive compounds in many plants and have stimulated a resurgence of interest in the past decades due to their wide range of pharmacological activities. Naphthoquinone agents have dynamic pharmacophores and privileged sub-structures in the chemistry of medicine. They have received much interest in drug discovery as trypanocidal because naphthoquinone and their derivatives revealed massive significance potential against the trypanosomes. Among natural naphthoquinones, lapachol, β-lapachone and its α-isomer exhibited useful trypanocidal activities. Some naphthoquinones have already been used commercially as an antiparasitic agent. Several naphthoquinones with diverse structural motifs have been synthesized and evaluated mainly against Trypanosoma cruzi and some studies have also been reported against Trypanosoma brucei and Trypanosoma evansi. This review summarized various mechanisms of action of naphthoquinone like reductive activation of quinone by the production of the semiquinone, generation of reactive oxygen species and free radicals such as superoxide anion radical and H2O2, and oxidative stress in the parasite. The information assembled in this review will help to understand the mechanism behind the activity and may also be useful to find the bio-efficacy of naphthoquinone compounds upon substitution against trypanosomatids.

Keywords: Trypanosomatids, Naphthoquinone, Quinone reduction, Oxidative stress, Reactive oxygen species, Mechanism of action.

Graphical Abstract
[1]
López, L.L.I.; Nery, F.S.D.; Silva, B.S.Y.; Sáenz, G.A. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives-A structured review. Vitae, 2014, 21(3), 248-258.
[2]
Dulo, B.; Phan, K.; Githaiga, J.; Raes, K.; De Meester, S. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential. Waste Biomass Valoriz., 2021, 12(12), 6339-6374.
[http://dx.doi.org/10.1007/s12649-021-01443-9]
[3]
Gong, X.; Gutala, R.; Jaiswal, A.K. Quinone oxidoreductases and vitamin K metabolism. Vitam. Horm., 2008, 78, 85-101.
[http://dx.doi.org/10.1016/S0083-6729(07)00005-2] [PMID: 18374191]
[4]
Färnert, A.; Lindberg, J.; Gil, P.; Swedberg, G.; Berqvist, Y.; Thapar, M.M.; Lindegårdh, N.; Berezcky, S.; Björkman, A. Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: Case reports. BMJ, 2003, 326(7390), 628-629.
[http://dx.doi.org/10.1136/bmj.326.7390.628] [PMID: 12649236]
[5]
Krause, P.J.; Lepore, T.; Sikand, V.K.; Gadbaw, J., Jr; Burke, G.; Telford, S.R., III; Brassard, P.; Pearl, D.; Azlanzadeh, J.; Christianson, D.; McGrath, D.; Spielman, A. Atovaquone and azithromycin for the treatment of babesiosis. N. Engl. J. Med., 2000, 343(20), 1454-1458.
[http://dx.doi.org/10.1056/NEJM200011163432004] [PMID: 11078770]
[6]
Djurković, D.O.; Milenković, V.; Nikolić, A.; Bobić, B.; Grujić, J. Efficacy of atovaquone combined with clindamycin against murine infection with a cystogenic (Me49) strain of Toxoplasma gondii. J. Antimicrob. Chemother., 2002, 50(6), 981-987.
[http://dx.doi.org/10.1093/jac/dkf251] [PMID: 12461021]
[7]
Sharifiyazdi, H.; Namazi, F.; Oryan, A.; Shahriari, R.; Razavi, M. Point mutations in the Theileria annulata cytochrome B gene is associ-ated with buparvaquone treatment failure. Vet. Parasitol., 2012, 187(3-4), 431-435.
[http://dx.doi.org/10.1016/j.vetpar.2012.01.016] [PMID: 22305656]
[8]
Kumar, S.; Gupta, A.K.; Pal, Y.; Dwivedi, S.K. In-vivo therapeutic efficacy trial with artemisinin derivative, buparvaquone and imidocarb dipropionate against Babesia equi infection in donkeys. J. Vet. Med. Sci., 2003, 65(11), 1171-1177.
[http://dx.doi.org/10.1292/jvms.65.1171] [PMID: 14665744]
[9]
Ventura, P.A.; De Castro, P.S. The trypanocidal activity of naphthoquinones: A review. Molecules, 2009, 14(11), 4570-4590.
[http://dx.doi.org/10.3390/molecules14114570] [PMID: 19924086]
[10]
Croft, S.L.; Hogg, J.; Gutteridge, W.E.; Hudson, A.T.; Randall, A.W. The activity of hydroxynaphthoquinones against Leishmania do-novani. J. Antimicrob. Chemother., 1992, 30(6), 827-832.
[http://dx.doi.org/10.1093/jac/30.6.827] [PMID: 1289357]
[11]
Reimão, J.Q.; Colombo, F.A.; Pereira, C.V.L.; Tempone, A.G. Effectiveness of liposomal buparvaquone in an experimental hamster model of Leishmania (L.) infantum chagasi. Exp. Parasitol., 2012, 130(3), 195-199.
[http://dx.doi.org/10.1016/j.exppara.2012.01.010] [PMID: 22281156]
[12]
Jamal, Q.; Khan, N.H.; Wahid, S.; Awan, M.M.; Sutherland, C.; Shah, A. In-vitro sensitivity of Pakistani Leishmania tropica field isolate against buparvaquone in comparison to standard anti-leishmanial drugs. Exp. Parasitol., 2015, 154, 93-97.
[http://dx.doi.org/10.1016/j.exppara.2015.04.017] [PMID: 5911243]
[13]
Da Costa, S.T.A.; Galisteo, A.J., Jr; Lindoso, J.A.L.; Barbosa, L.R.S.; Tempone, A.G. Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in a murine model. Antimicrob. Agents Chemother., 2017, 61(4), e02297-e16.
[http://dx.doi.org/10.1128/AAC.02297-16] [PMID: 28167544]
[14]
Adl, S.M.; Simpson, A.G.B.; Lane, C.E.; Lukeš, J.; Bass, D.; Bowser, S.S.; Brown, M.W.; Burki, F.; Dunthorn, M.; Hampl, V.; Heiss, A.; Hoppenrath, M.; Lara, E.; le Gall, L.; Lynn, D.H.; McManus, H.; Mitchell, E.A.D.; Mozley, S.S.E.; Parfrey, L.W.; Pawlowski, J.; Rueck-ert, S.; Shadwick, L.; Schoch, C.L.; Smirnov, A.; Spiegel, F.W. The revised classification of eukaryotes. J. Eukaryot. Microbiol., 2012, 59(5), 429-514.
[http://dx.doi.org/10.1111/j.1550-7408.2012.00644.x] [PMID: 23020233]
[15]
Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gürtler, R.E.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related protozoan patho-gens, different diseases. J. Clin. Invest., 2008, 118(4), 1301-1310.
[http://dx.doi.org/10.1172/JCI33945] [PMID: 18382742]
[16]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[17]
Rassi, A., Jr; Rassi, A.; De Rezende, M.J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am., 2012, 26(2), 275-291.
[http://dx.doi.org/10.1016/j.idc.2012.03.002] [PMID: 22632639]
[18]
Available from: https://www.cdc.gov/parasites/sleepingsickness/ Available from: https://www.cdc.gov/parasites/chagas/ Accessed on March 10, 2022
[19]
Kennedy, P.G.E. Human African trypanosomiasis of the CNS: Current issues and challenges. J. Clin. Invest., 2004, 113(4), 496-504.
[http://dx.doi.org/10.1172/JCI200421052] [PMID: 14966556]
[20]
Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol., 2013, 12(2), 186-194.
[http://dx.doi.org/10.1016/S1474-4422(12)70296-X] [PMID: 23260189]
[21]
WHO. Human African trypanosomiasis: Number of new cases drops to historically low level in 50 years. 2010. Available form: http://www.who.int/neglected_diseases/integrated_media/integrated_media_hat_june_2010/en/index.html [Accessed on March 10, 2022].
[22]
Franco, J.R.; Cecchi, G.; Priotto, G.; Paone, M.; Diarra, A.; Grout, L.; Mattioli, R.C.; Argaw, D. Monitoring the elimination of human African trypanosomiasis: Update to 2014. PLoS Negl. Trop. Dis., 2017, 11(5), e0005585.
[http://dx.doi.org/10.1371/journal.pntd.0005585] [PMID: 28531222]
[23]
Coetzer, A.W.; Tustin, R.C. Infectious diseases of livestock; Oxford University Press: Oxford, 2005.
[24]
Radwanska, M.; Vereecke, N.; Deleeuw, V.; Pinto, J.; Magez, S. Salivarian trypanosomosis: A review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol., 2018, 9, 2253.
[http://dx.doi.org/10.3389/fimmu.2018.02253] [PMID: 30333827]
[25]
Perez, C.J.; Lymbery, A.J.; Thompson, R.C.A. Reactivation of chagas disease: Implications for global health. Trends Parasitol., 2015, 31(11), 595-603.
[http://dx.doi.org/10.1016/j.pt.2015.06.006] [PMID: 26458782]
[26]
Rassi, A., Jr; Rassi, A.; Marin, N.J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[27]
Staquicini, D.I.; Martins, R.M.; Macedo, S.; Sasso, G.R.S.; Atayde, V.D.; Juliano, M.A.; Yoshida, N. Role of GP82 in the selective bind-ing to gastric mucin during oral infection with Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(3), e613.
[http://dx.doi.org/10.1371/journal.pntd.0000613] [PMID: 20209152]
[28]
Yoshida, N.; Tyler, K.M.; Llewellyn, M.S. Invasion mechanisms among emerging food-borne protozoan parasites. Trends Parasitol., 2011, 27(10), 459-466.
[http://dx.doi.org/10.1016/j.pt.2011.06.006] [PMID: 21840261]
[29]
Echeverria, L.E.; Morillo, C.A. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am., 2019, 33(1), 119-134.
[http://dx.doi.org/10.1016/j.idc.2018.10.015] [PMID: 30712757]
[30]
Merritt, C.; Silva, L.E.; Tanner, A.L.; Stuart, K.; Pollastri, M.P. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem. Rev., 2014, 114(22), 11280-11304.
[http://dx.doi.org/10.1021/cr500197d] [PMID: 26443079]
[31]
WHO. Chagas disease (also known as American trypanosomiasis). 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) [Accessed on January 30, 2022].
[32]
Desquesnes, M.; Dargantes, A.; Lai, D.H.; Lun, Z.R.; Holzmuller, P.; Jittapalapong, S. Trypanosoma evansi and surra: A review and per-spectives on transmission, epidemiology and control, impact, and zoonotic aspects. BioMed Res. Int., 2013, 2013, 1-20.
[http://dx.doi.org/10.1155/2013/321237] [PMID: 24151595]
[33]
Carnes, J.; Anupama, A.; Balmer, O.; Jackson, A.; Lewis, M.; Brown, R.; Cestari, I.; Desquesnes, M.; Gendrin, C.; Hertz-Fowler, C.; Imamura, H.; Ivens, A.; Kořený, L.; Lai, D.H.; MacLeod, A.; McDermott, S.M.; Merritt, C.; Monnerat, S.; Moon, W.; Myler, P.; Phan, I.; Ramasamy, G.; Sivam, D.; Lun, Z.R.; Lukeš, J.; Stuart, K.; Schnaufer, A. Genome and phylogenetic analyses of Trypanosoma evansi re-veal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis., 2015, 9(1), e3404.
[http://dx.doi.org/10.1371/journal.pntd.0003404] [PMID: 25568942]
[34]
Ou, Y.C.; Giroud, C.; Baltz, T. Kinetoplast DNA analysis of four Trypanosoma evansi strains. Mol. Biochem. Parasitol., 1991, 46(1), 97-102.
[http://dx.doi.org/10.1016/0166-6851(91)90203-I] [PMID: 1677160]
[35]
Birhanu, H.; Gebrehiwot, T.; Goddeeris, B.M.; Büscher, P.; Van Reet, N. New Trypanosoma evansi type B isolates from Ethiopian drom-edary camels. PLoS Negl. Trop. Dis., 2016, 10(4), e0004556.
[http://dx.doi.org/10.1371/journal.pntd.0004556] [PMID: 27035661]
[36]
Desquesnes, M.; Holzmuller, P.; Lai, D.H.; Dargantes, A.; Lun, Z.R.; Jittaplapong, S. Trypanosoma evansi and surra: A review and per-spectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res. Int., 2013, 2013, 194176.
[http://dx.doi.org/10.1155/2013/194176] [PMID: 24024184]
[37]
Hoare, C.A. Vampire bats as vectors and hosts of equine and bovine trypanosomes. Acta Trop., 1965, 22(3), 204-216.
[PMID: 4379528]
[38]
Kumar, R.; Kumar, S.; Khurana, S.K.; Yadav, S.C. Development of an antibody-ELISA for seroprevalence of Trypanosoma evansi in equids of North and North-western regions of India. Vet. Parasitol., 2013, 196(3-4), 251-257.
[http://dx.doi.org/10.1016/j.vetpar.2013.04.018] [PMID: 23664710]
[39]
Kumar, R.; Jain, S.; Kumar, S.; Sethi, K.; Kumar, S.; Tripathi, B.N. Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: Current and future perspective. Vet. Parasitol. Reg. Stud. Rep., 2017, 10, 1-12.
[http://dx.doi.org/10.1016/j.vprsr.2017.06.008] [PMID: 31014579]
[40]
Joshi, P.P.; Truc, P.; Salkar, H.R.; Dani, V.S.; Shegokar, V.R.; Bhargava, A.; Powar, R.M.; Herder, S.; Jannin, J.; Katti, R. Human trypa-nosomiasis caused by Trypanosoma evansi in India: The first case report. Am. J. Trop. Med. Hyg., 2005, 73(3), 491-495.
[http://dx.doi.org/10.4269/ajtmh.2005.73.491] [PMID: 16172469]
[41]
Roy, N.; Nageshan, R.K.; Pallavi, R.; Chakravarthy, H.; Chandran, S.; Kumar, R.; Gupta, A.K.; Singh, R.K.; Yadav, S.C.; Tatu, U. Prote-omics of Trypanosoma evansi infection in rodents. PLoS One, 2010, 5(3), e9796.
[http://dx.doi.org/10.1371/journal.pone.0009796] [PMID: 20339546]
[42]
Van Vinh Chau, N.; Buu Chau, L.; Desquesnes, M.; Herder, S.; Phu Huong Lan, N.; Campbell, J.I.; Van Cuong, N.; Yimming, B.; Cha-lermwong, P.; Jittapalapong, S.; Ramon Franco, J.; Tri Tue, N.; Rabaa, M.A.; Carrique-Mas, J.; Pham Thi Thanh, T.; Tran Vu Thieu, N.; Berto, A.; Thi Hoa, N.; Van Minh, H.N.; Canh, T.N.; Khac, C.N.; Wills, B.; Tinh, H.T.; Thwaites, G.E.; Yacoub, S.; Baker, S. A clinical and epidemiological investigation of the first reported human infection with the zoonotic parasite Trypanosoma evansi in Southeast Asia. Clin. Infect. Dis., 2016, 62(8), 1002-1008.
[http://dx.doi.org/10.1093/cid/ciw052] [PMID: 26908809]
[43]
Kumar, R.; Sharma, P.; Kumar Gaur, D.; Jain, S. Recent development in identification of potential novel therapeutic targets against trypa-nosomatids. Curr. Top. Med. Chem., 2016, 16(20), 2303-2315.
[http://dx.doi.org/10.2174/1568026616666160413125453] [PMID: 27072714]
[44]
Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy secondary metabolites naphthoquinones-Their occurrence, pharmacological properties and analysis. Curr. Pharm. Anal., 2009, 5(1), 47-68.
[http://dx.doi.org/10.2174/157341209787314936]
[45]
Vaverkova, V.; Vrana, O.; Adam, V.; Pekarek, T.; Jampilek, J.; Babula, P. The study of naphthoquinones and their complexes with DNA by using Raman spectroscopy and surface enhanced Raman spectroscopy: New insight into interactions of DNA with plant secondary metabolites. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/461393] [PMID: 25045679]
[46]
(a) De Castro, S.L.; Pinto, M.C.F.R.; Pinto, A.V. Screening of natural and synthetic drugs against Trypanosoma cruzi. 1. Establishing a structure/activity relationship. Microbios, 1994, 78(315), 83-90.
[PMID: 8047025];
(b) Pinto, A.V.; Pinto, C.N. Pinto, Mdo.C.; Rita, R.S.; Pezzella, C.A.; De Castro, S.L. Trypanocidal activity of synthetic heterocyclic de-rivatives of active quinones from Tabebuia sp. Arzneimittelforschung, 1997, 47(1), 74-79.
[PMID: 9037448]
[47]
(a) Pinto, C.N.; Dantas, A.P.; De Moura, K.C.; Emery, F.S.; Polequevitch, P.F.; Pinto, M.C.; De Castro, S.L.; Pinto, A.V. Chemical reac-tivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittelforschung, 2000, 50(12), 1120-1128.
[PMID: 11190779];
(b) Moura, K.C.G.; Emery, F.S.; Neves, P.C.; Dantas, A.P.; Salomão, K. Synthesis and trypanocidal activity of naphthoquinones isolated from Tabebuia and heterocyclic derivatives: A review from an interdisciplnary study. J. Braz. Chem. Soc., 12(3), 325-338.;
(c) De Moura, K.C.G.; Salomão, K.; Menna, B.R.F.S.; Emery, F.S.; Pinto, M.C.F.R.; Pinto, A.V.; De Castro, S.L. Studies on the trypano-cidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from β-lapachone. Eur. J. Med. Chem., 2004, 39(7), 639-645.
[http://dx.doi.org/10.1016/j.ejmech.2004.02.015] [PMID: 15236845];
(d) Menna-Barreto, R.F.S.; Henriques-Pons, A.; Pinto, A.V.; Morgado-Diaz, J.A.; Soares, M.J.; De Castro, S.L. Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: Identification of target organelles. J. Antimicrob. Chemother., 2005, 56(6), 1034-1041.
[http://dx.doi.org/10.1093/jac/dki403] [PMID: 16269551];
(e) Menna, B.R.F.S.; Corrêa, J.R.; Pinto, A.V.; Soares, M.J.; De Castro, S.L. Mitochondrial disruption and DNA fragmentation in Trypa-nosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitol. Res., 2007, 101(4), 895-905.
[http://dx.doi.org/10.1007/s00436-007-0556-1] [PMID: 17546464];
(f) Salas, C.; Tapia, R.A.; Ciudad, K.; Armstrong, V.; Orellana, M.; Kemmerling, U.; Ferreira, J.; Maya, J.D.; Morello, A Trypanosoma cruzi: Activities of lapachol and α- and β-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg. Med. Chem., 2008, 16(2), 668-674.
[http://dx.doi.org/10.1016/j.bmc.2007.10.038] [PMID: 18029184];
(g) Da Silva, E.N. Jr; Menna, B.R.F.S.; Pinto, M.C.F.R.; Silva, R.S.F.; Teixeira, D.V.; De Souza, M.C.B.V.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]- triazole, a new structural moiety active against Trypanosoma cruzi Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742];
(h) Silva Júnior, E.N.; Moura, M.A.B.F.; Pinto, A.V.; Pinto, M.C.F.R.; Souza, M.C.B.V.; Araújo, A.J.; Pessoa, C.; CostaLotufo, L.V.; Montenegro, R.C.; Moraes, M.O.; Ferreira, V.F.; Goulart, M.O.F. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-²-lapachone-based 1,2,3-triazoles. J. Braz. Chem. Soc, 2009, 20(4), 635-643.
[http://dx.doi.org/10.1590/S0103-50532009000400007]
[48]
(a) Da Silva, E.N.; De Melo, I.M.M.; Diogo, E.B.T.; Costa, V.A.; De Souza Filho, J.D.; Valença, W.O.; Camara, C.A.; De Oliveira, R.N.; De Araujo, A.S.; Emery, F.S.; dos Santos, M.R.; De Simone, C.A.; Menna, B.R.F.S.; De Castro, S.L. On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal com-pounds obtained by click chemistry reactions. Eur. J. Med. Chem., 2012, 52, 304-312.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.039] [PMID: 22483633];
(b) Diogo, E.B.T.; Dias, G.G.; Rodrigues, B.L.; Guimarães, T.T.; Valença, W.O.; Camara, C.A.; De Oliveira, R.N.; da Silva, M.G.; Fer-reira, V.F.; De Paiva, Y.G.; Goulart, M.O.F.; Menna, B.R.F.S.; De Castro, S.L.; Da Silva Júnior, E.N. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: Electrochemical studies on the effects of the quinoidal moiety. Bioorg. Med. Chem., 2013, 21(21), 6337-6348.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878];
(c) Jardim, G.A.M.; Reis, W.J.; Ribeiro, M.F.; Ottoni, F.M.; Alves, R.J.; Silva, T.L.; Goulart, M.O.F.; Braga, A.L.; Menna, B.R.F.S.; Sa-lomão, K.; De Castro, S.L.; Da Silva Júnior, E.N. On the investigation of hybrid quinones: Synthesis, electrochemical studies and evalua-tion of trypanocidal activity. RSC Advances, 2015, 5(95), 78047-78060.
[http://dx.doi.org/10.1039/C5RA16213K];
(d) Bahia, S.B.B.B.; Reis, W.J.; Jardim, G.A.M.; Souto, F.T.; de Simone, C.A.; Gatto, C.C.; Menna, B.R.F.S.; De Castro, S.L.; Cavalcanti, B.C.; Pessoa, C.; Araujo, M.H.; Da Silva, Jr E.N. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: Syn-thesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. MedChemComm, 2016, 7(8), 1555-1563.
[http://dx.doi.org/10.1039/C6MD00216A];
(e) Jardim, G.A.M.; Silva, T.L.; Goulart, M.O.F.; de Simone, C.A.; Barbosa, J.M.C.; Salomão, K.; De Castro, S.L.; Bower, J.F.; Da Silva Júnior, E.N. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant anti-Trypanosoma cruzi ac-tivities and electrochemical studies of functionalized quinones. Eur. J. Med. Chem., 2017, 136, 406-419.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.011] [PMID: 28521262];
(f) Jardim, G.A.M.; Oliveira, W.X.C.; De Freitas, R.P.; Menna, B.R.F.S.; Silva, T.L.; Goulart, M.O.F.; Da Silva Júnior, E.N. Direct se-quential C-H iodination/organoyl-thiolation for the benzenoid A-ring modification of quinonoid deactivated systems: A new protocol for potent trypanocidal quinones. Org. Biomol. Chem., 2018, 16(10), 1686-1691.
[http://dx.doi.org/10.1039/C8OB00196K] [PMID: 29450434];
(g) Jardim, G.A.M.; Bozzi, Í.A.O.; Oliveira, W.X.C.; Mesquita, R.C.; Menna, B.R.F.S.; Kumar, R.A.; Gravel, E.; Doris, E.; Braga, A.L.; Da Silva Júnior, E.N. Copper complexes and carbon nanotube-copper ferrite-catalyzed benzenoid A-ring selenation of quinones: An effi-cient method for the synthesis of trypanocidal agents. New J. Chem., 2019, 43(35), 13751-13763.
[http://dx.doi.org/10.1039/C9NJ02026H];
(h) Almeida, R.G.; Valença, W.O.; Rosa, L.G.; de Simone, C.A.; de Castro, S.L.; Barbosa, J.M.C.; Pinheiro, D.P.; Paier, C.R.K.; de Car-valho, G.G.C.; Pessoa, C.; Goulart, M.O.F.; Kharma, A.; da Silva Júnior, E.N. Synthesis of quinone imine and sulphur-containing com-pounds with antitumor and trypanocidal activities: Redox and biological implications. RSC Medicinal Chemistry, 2020, 11(10), 1145-1160.
[http://dx.doi.org/10.1039/D0MD00072H] [PMID: 33479619]
[49]
(a) Ellendorff, T.; Brun, R.; Kaiser, M.; Sendker, J.; Schmidt, T. PLS-prediction and confirmation of hydrojuglone glucoside as the an-titrypanosomal constituent of Juglans Spp. Molecules, 2015, 20(6), 10082-10094.
[http://dx.doi.org/10.3390/molecules200610082] [PMID: 26035104];
(b) Pacheco, P.A.F.; De Menezes, R.T.; Dos Santos, G.R.M.; Dos Santos, E.G.; Faria, A.F.M.; Von Ranke, N.L.; Bello, M.L.; Rodrigues, C.R.; Ferreira, V.F.; Souza, A.L.A.; De Jesús, H.D.; Da Silva, C.K.; Faria, R.X.; Da Rocha, D.R. Synthesis of new N,S-acetal analogs de-rived from juglone with cytotoxic activity against Trypanossoma cruzi. J. Bioenerg. Biomembr., 2020, 52(3), 199-213.
[http://dx.doi.org/10.1007/s10863-020-09834-8] [PMID: 32418003];
(c) Moideen, S.V.K.; Houghton, P.J.; Rock, P.; Croft, S.L.; Aboagye, N.F. Activity of extracts and naphthoquinones from Kigelia pinnata against Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Planta Med., 1999, 65(6), 536-540.
[http://dx.doi.org/10.1055/s-1999-14011] [PMID: 10483374]
[50]
Rani, R.; Narasimhan, B.; Varma, R.S.; Kumar, R. Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activi-ty against Trypanosoma evansi. Vet. Parasitol., 2021, 290, 109367.
[http://dx.doi.org/10.1016/j.vetpar.2021.109367] [PMID: 33516118]
[51]
Rani, R.; Narsiman, B.; Varma, R.S.; Kumar, R. Gum-based nanocapsules comprising naphthoquinones enhance the apoptotic and trypa-nocidal activity against Trypanosoma evansi. Eur. J. Pharm. Sci., 2022, 171, 106118.
[http://dx.doi.org/10.1016/j.ejps.2022.106118] [PMID: 35007713]
[52]
Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones - A review. RSC Advances, 2015, 5(26), 20309-20338.
[http://dx.doi.org/10.1039/C4RA13547D]
[53]
Veskoukis, A.S.; Tsatsakis, A.M.; Kouretas, D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract ad-ministration. Cell Stress Chaperones, 2012, 17(1), 11-21.
[http://dx.doi.org/10.1007/s12192-011-0293-3] [PMID: 21956695]
[54]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[55]
Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 2012, 1-26.
[http://dx.doi.org/10.1155/2012/217037]
[56]
Maldonado, E.; Rojas, D.A.; Morales, S.; Miralles, V.; Solari, A. Dual and opposite roles of Reactive Oxygen Species (ROS) in Chagas disease: Beneficial on the pathogen and harmful on the host. Oxid. Med. Cell. Longev., 2020, 2020, 8867701.
[57]
Paduch, R.; Kandefer, S.M.; Piersiak, T. The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs. Oncol. Res., 2009, 18(9), 419-436.
[http://dx.doi.org/10.3727/096504010X12671222663593] [PMID: 20524400]
[58]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[59]
Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 2020, 77(22), 4459-4483.
[http://dx.doi.org/10.1007/s00018-020-03536-5] [PMID: 32358622]
[60]
Loor, G.; Kondapalli, J.; Schriewer, J.M.; Chandel, N.S.; Vanden, H.T.L.; Schumacker, P.T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med., 2010, 49(12), 1925-1936.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.021] [PMID: 20937380]
[61]
Nicco, C.; Batteux, F. ROS modulator molecules with therapeutic potential in cancers treatments. Molecules, 2017, 23(1), 84.
[http://dx.doi.org/10.3390/molecules23010084] [PMID: 29301225]
[62]
Rani, R.; Kumar, S.; Dilbaghi, N.; Kumar, R. Nanotechnology enabled the enhancement of antitrypanosomal activity of piperine against Trypanosoma evansi. Exp. Parasitol., 2020, 219, 108018.
[http://dx.doi.org/10.1016/j.exppara.2020.108018] [PMID: 33049224]
[63]
Kumar, R.; Rani, R.; Kumar, S.; Sethi, K.; Jain, S.; Batra, K.; Kumar, S.; Tripathi, B.N. Drug-induced reactive oxygen species-Mediated inhibitory effect on growth of Trypanosoma evansi in axenic culture system. Parasitol. Res., 2020, 119(10), 3481-3489.
[http://dx.doi.org/10.1007/s00436-020-06861-7] [PMID: 32869169]
[64]
Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 5381692.
[http://dx.doi.org/10.1155/2019/5381692] [PMID: 31929855]
[65]
Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother., 2019, 116, 109004.
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[66]
Baehner, R.L.; Karnovsky, M.L. Deficiency of reduced nicotinamide-adenine dinucleotide oxidase in chronic granulomatous disease. Science, 1968, 162(3859), 1277-1279.
[http://dx.doi.org/10.1126/science.162.3859.1277] [PMID: 4387010]
[67]
Nathan, C.; Nogueira, N.; Juangbhanich, C.; Ellis, J.; Cohn, Z. Activation of macrophages in vivo and in vitro. Correlation between hydro-gen peroxide release and killing of Trypanosoma cruzi. J. Exp. Med., 1979, 149(5), 1056-1068.
[http://dx.doi.org/10.1084/jem.149.5.1056] [PMID: 376774]
[68]
Murray, H.W. Pretreatment with phorbol myristate acetate inhibits macrophage activity against intracellular protozoa. J. Reticuloendothel. Soc., 1982, 31(6), 479-487.
[PMID: 6288939]
[69]
Paiva, C.N.; Bozza, M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal., 2014, 20(6), 1000-1037.
[http://dx.doi.org/10.1089/ars.2013.5447] [PMID: 23992156]
[70]
Pedrosa, R.C.; De Bem, A.F.; Locatelli, C.; Pedrosa, R.C.; Geremias, R.; Filho, D.W. Time-dependent oxidative stress caused by benzni-dazole. Redox Rep., 2001, 6(4), 265-270.
[http://dx.doi.org/10.1179/135100001101536328] [PMID: 11642718]
[71]
Moreno, S.N.J.; Docampo, R.; Mason, R.P.; Leon, W.; Stoppani, A.O.M. Different behaviors of benznidazole as free radical generator with mammalian and Trypanosoma cruzi microsomal preparations. Arch. Biochem. Biophys., 1982, 218(2), 585-591.
[http://dx.doi.org/10.1016/0003-9861(82)90383-6] [PMID: 6297399]
[72]
Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027.
[http://dx.doi.org/10.1073/pnas.0711014105] [PMID: 18367671]
[73]
Trochine, A.; Creek, D.J.; Faral, T.P.; Barrett, M.P.; Robello, C. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl. Trop. Dis., 2014, 8(5), e2844.
[http://dx.doi.org/10.1371/journal.pntd.0002844] [PMID: 24853684]
[74]
Hall, B.S.; Wilkinson, S.R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother., 2012, 56(1), 115-123.
[http://dx.doi.org/10.1128/AAC.05135-11] [PMID: 22037852]
[75]
Rigalli, J.P.; Perdomo, V.G.; Ciriaci, N.; Francés, D.E.A.; Ronco, M.T.; Bataille, A.M.; Ghanem, C.I.; Ruiz, M.L.; Manautou, J.E.; Catania, V.A. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the Nuclear Factor-Erythroid 2-Related Factor-2 (Nrf2) and Multidrug Resistance Associated Protein 2 (MRP2). Toxicol. Appl. Pharmacol., 2016, 304, 90-98.
[http://dx.doi.org/10.1016/j.taap.2016.05.007] [PMID: 27180241]
[76]
Lara, F.A.; Sant’Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem. Biophys. Res. Commun., 2007, 355(1), 16-22.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.238] [PMID: 17292866]
[77]
Ferreira, C.M.; Stiebler, R.; Saraiva, F.M.; Lechuga, G.C.; Walter, N.A.B.; Bourguignon, S.C.; Gonzalez, M.S.; Azambuja, P.; Gandara, A.C.P.; Menna, B.R.F.S.; Paiva, S.G.O.; Paes, M.C.; Oliveira, M.F. Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection. PLoS Negl. Trop. Dis., 2018, 12(7), e0006661.
[http://dx.doi.org/10.1371/journal.pntd.0006661] [PMID: 30036366]
[78]
Finzi, J.; Chiavegatto, C.W.; Corat, K.F.; Lopez, J.A.; Cabrera, O.G.; Mielniczki, P.A.A.; Colli, W.; Alves, M.J.M.; Gadelha, F.R. Trypano-soma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol. Biochem. Parasitol., 2004, 133(1), 37-43.
[http://dx.doi.org/10.1016/j.molbiopara.2003.08.011] [PMID: 14668010]
[79]
Graçasouza, A.; Mayamonteiro, C.; Paivasilva, G.; Braz, G.; Paes, M.; Sorgine, M.; Oliveira, M.; Oliveira, P. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol., 2006, 36(4), 322-335.
[http://dx.doi.org/10.1016/j.ibmb.2006.01.009] [PMID: 16551546]
[80]
Paiva, S.G.O.; Cruz, O.C.; Nakayasu, E.S.; H., Dunkov B.C.; Masuda, H.; Almeida, I.C.; Oliveira, P.L. A heme-degradation pathway in a blood-sucking insect. Proc. Natl. Acad. Sci. USA, 2006, 103(21), 8030-8035.
[http://dx.doi.org/10.1073/pnas.0602224103] [PMID: 16698925]
[81]
Boveris, A.; Docampo, R.; Turrens, J.F.; Stoppani, A.O. [Effect of beta and alpha-lapachone on the production of H202 and on the growth of Trypanosoma cruzi. Rev. Asoc. Argent. Microbiol., 1977, 9(2), 54-61.
[PMID: 339293]
[82]
Boveris, A.; Stoppani, A.O.M.; Docampo, R.; Cruz, F.S. Superoxide anion production and trypanocidal action of naphthoquinones on Trypanosoma cruzi. Comp. Biochem. Physiol. C Comp. Pharmacol., 1978, 61(2), 327-329.
[http://dx.doi.org/10.1016/0306-4492(78)90063-1] [PMID: 33002]
[83]
Docampo, R.; Souza, W.; Cruz, F.S.; Roitman, I.; Cover, B.; Gutteridge, W.E. Ultrastructural alterations and peroxide formation induced by naphthoquinones in different stages of Trypanosoma cruzi. Z. Parasitenkd., 1978, 57(3), 189-198.
[http://dx.doi.org/10.1007/BF00928032] [PMID: 216177]
[84]
Docampo, R.; Lopes, J.N.; Cruz, F.S.; De Souza, W. Trypanosoma cruzi: Ultrastructural and metabolic alterations of epimastigotes by β-lapachone. Exp. Parasitol., 1977, 42(1), 142-149.
[http://dx.doi.org/10.1016/0014-4894(77)90071-6] [PMID: 324785]
[85]
Goijman, S.G.; Stoppani, A.O.M. Effects of β-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi. Arch. Biochem. Biophys., 1985, 240(1), 273-280.
[http://dx.doi.org/10.1016/0003-9861(85)90033-5] [PMID: 2409922]
[86]
Goijman, S.G.; Stoppani, A.O. Effects of nifurtimox, benznidazole, and beta-lapachone on the metabolism of DNA, RNA and proteins in Trypanosoma cruzi. Rev. Argent. Microbiol., 1983, 15(4), 193-204.
[PMID: 6086046]
[87]
De Tarlovsky, S.M.N.; Goijman, S.G.; Molina, P.M.P.; Stoppani, A.O.M. Effects of isoxazolyl-naphthoquinoneimines on growth and oxygen radical production in Trypanosoma cruzi and Crithidia fasciculata. Experientia, 1990, 46(5), 502-505.
[http://dx.doi.org/10.1007/BF01954247] [PMID: 2189749]
[88]
Li, C.J.; Wang, C.; Pardee, A.B. Induction of apoptosis by beta-lapachone in human prostate cancer cells. Cancer Res., 1995, 55(17), 3712-3715.
[PMID: 7641181]
[89]
Dubin, M.; Fernandez, V.S.H.; Stoppani, A.O. Cytotoxicity of beta-lapachone, an naphthoquinone with possible therapeutic use. Medicina (B. Aires), 2001, 61(3), 343-350.
[PMID: 11474885]
[90]
Planchon, S.M.; Pink, J.J.; Tagliarino, C.; Bornmann, W.G.; Varnes, M.E.; Boothman, D.A. beta-Lapachone-induced apoptosis in human prostate cancer cells: Involvement of NQO1/xip3. Exp. Cell Res., 2001, 267(1), 95-106.
[http://dx.doi.org/10.1006/excr.2001.5234] [PMID: 11412042]
[91]
Neder, K.; Marton, L.J.; Liu, L.F.; Frydman, B. Reaction of beta-lapachone and related naphthoquinones with 2-mercaptoethanol: A biomimetic model of topoisomerase II poisoning by quinones. Cell. Mol. Biol., 1998, 44(3), 465-474.
[PMID: 9620443]
[92]
Krishnan, P.; Bastow, K.F. Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives α-lapachone and β-lapachone. Cancer Chemother. Pharmacol., 2001, 47(3), 187-198.
[http://dx.doi.org/10.1007/s002800000221] [PMID: 11320661]
[93]
Pink, J.J.; Planchon, S.M.; Tagliarino, C.; Varnes, M.E.; Siegel, D.; Boothman, D.A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J. Biol. Chem., 2000, 275(8), 5416-5424.
[http://dx.doi.org/10.1074/jbc.275.8.5416] [PMID: 10681517]
[94]
Pink, J.J.; Wuerzberger, D.S.; Tagliarino, C.; Planchon, S.M.; Yang, X.; Froelich, C.J.; Boothman, D.A. Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during beta-lapachone-mediated apoptosis. Exp. Cell Res., 2000, 255(2), 144-155.
[http://dx.doi.org/10.1006/excr.1999.4790] [PMID: 10694431]
[95]
Esteves, S.A.; Figueiredo, D.V.; Esteves, A.; Câmara, C.A.; Vargas, M.D.; Pinto, A.C.; Echevarria, A. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA. Braz. J. Med. Biol. Res., 2007, 40(10), 1399-1402.
[http://dx.doi.org/10.1590/S0100-879X2006005000159] [PMID: 17713652]
[96]
Salustiano, E.J.S.; Netto, C.D.; Fernandes, R.F.; Da Silva, A.J.M.; Bacelar, T.S.; Castro, C.P.; Buarque, C.D.; Maia, R.C.; Rumjanek, V.M.; Costa, P.R.R. Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Invest. New Drugs, 2010, 28(2), 139-144.
[http://dx.doi.org/10.1007/s10637-009-9231-y] [PMID: 19255723]
[97]
Lopez, L.M.; Dubin, M.; Carrizo, P.H.; Burgos, M.H.; De Iraldi, P.A.; Stoppani, A.O. Apoptogenic effect of the lipophilic o-naphthoquinone CG 10-248 on rat hepatocytes: Light and electron microscopy studies. Biocell, 2003, 27(2), 213-224.
[http://dx.doi.org/10.32604/biocell.2003.27.213] [PMID: 14510240]
[98]
Menna, B.R.F.S.; Corrêa, J.R.; Cascabulho, C.M.; Fernandes, M.C.; Pinto, A.V.; Soares, M.J.; De Castro, S.L. Naphthoimidazoles pro-mote different death phenotypes in Trypanosoma cruzi. Parasitology, 2009, 136(5), 499-510.
[http://dx.doi.org/10.1017/S0031182009005745] [PMID: 19281638]
[99]
Salomão, K.; De Santana, N.A.; Molina, M.T.; De Castro, S.L.; Menna, B.R.F.S. Trypanosoma cruzi mitochondrial swelling and mem-brane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol., 2013, 13(1), 196.
[http://dx.doi.org/10.1186/1471-2180-13-196] [PMID: 24004461]
[100]
Bombaça, A.C.S.; Viana, P.G.; Santos, A.C.C.; Silva, T.L.; Rodrigues, A.B.M.; Guimarães, A.C.R.; Goulart, M.O.F.; Da Silva Júnior, E.N.; Menna, B.R.F.S. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles. Free Radic. Biol. Med., 2019, 130, 408-418.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.012] [PMID: 30445126]
[101]
Dos Anjos, D.O.; Sobral, A.E.S.; Gonçalves, V.T.; Fontes, S.S.; Nogueira, M.L.; Suarez, F.A.M.; Da Costa, F.J.B.; Rios, S.F.; Vannier, S.M.A. Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis. Int. J. Parasitol. Drugs Drug Resist., 2016, 6(3), 207-219.
[http://dx.doi.org/10.1016/j.ijpddr.2016.10.003] [PMID: 27770751]
[102]
Paes, M.C.; Cosentino, G.D.; Souza, C.F.; Nogueira, N.P.A.; Meyer, F.J.R. The role of heme and reactive oxygen species in proliferation and survival of Trypanosoma cruzi. J. Parasitol. Res., 2011, 2011, 174614.
[http://dx.doi.org/10.1155/2011/174614] [PMID: 22007287]
[103]
Manta, B.; Comini, M.; Medeiros, A.; Hugo, M.; Trujillo, M.; Radi, R. Trypanothione: A unique bis-glutathionyl derivative in trypano-somatids. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3199-3216.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.013] [PMID: 23396001]
[104]
Oza, S.L.; Tetaud, E.; Ariyanayagam, M.R.; Warnon, S.S.; Fairlamb, A.H. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. J. Biol. Chem., 2002, 277(39), 35853-35861.
[http://dx.doi.org/10.1074/jbc.M204403200] [PMID: 12121990]
[105]
Mesías, A.C.; Garg, N.J.; Zago, M.P. Redox balance keepers and possible cell functions managed by redox homeostasis in Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2019, 9, 435.
[http://dx.doi.org/10.3389/fcimb.2019.00435] [PMID: 31921709]
[106]
Irigoín, F.; Cibils, L.; Comini, M.A.; Wilkinson, S.R.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypano-thione metabolism and oxidant detoxification. Free Radic. Biol. Med., 2008, 45(6), 733-742.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.028] [PMID: 18588970]
[107]
De Figueiredo, P.E.; Vitor, S.C.; Ribeiro, L.H.G.; Piñeyro, M.D.; Robello, C.; Gadelha, F.R. Role of Trypanosoma cruzi peroxiredoxins in mitochondrial bioenergetics. J. Bioenerg. Biomembr., 2011, 43(4), 419-424.
[http://dx.doi.org/10.1007/s10863-011-9365-4] [PMID: 21732175]
[108]
Arnér, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[109]
Ariyanayagam, M.; Fairlamb, A.H. Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol. Biochem. Parasitol., 2001, 115(2), 189-198.
[http://dx.doi.org/10.1016/S0166-6851(01)00285-7] [PMID: 11420105]
[110]
Krauth, S.R.L.; Inhoff, O. Parasite-specific trypanothione reductase as a drug target molecule. Parasitol. Res., 2003, 90(0)(Suppl. 2), S77-S85.
[http://dx.doi.org/10.1007/s00436-002-0771-8] [PMID: 12709793]
[111]
Comini, M.A.; Guerrero, S.A.; Haile, S.; Menge, U.; Lünsdorf, H.; Flohé, L. Valdiation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med., 2004, 36(10), 1289-1302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.008] [PMID: 15110394]
[112]
Khan, M.O.F. Trypanothione reductase: A viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights, 2007, 2, 129-146.
[http://dx.doi.org/10.1177/117739280700200007] [PMID: 21901070]
[113]
Benítez, D.; Medeiros, A.; Fiestas, L.; Panozzo, Z.E.A.; Maiwald, F.; Prousis, K.C.; Roussaki, M.; Calogeropoulou, T.; Detsi, A.; Jaeger, T.; Šarlauskas, J.; Peterlin Mašič, L.; Kunick, C.; Labadie, G.R.; Flohé, L.; Comini, M.A. Identification of novel chemical scaffolds inhib-iting trypanothione synthetase from pathogenic trypanosomatids. PLoS Negl. Trop. Dis., 2016, 10(4), e0004617.
[http://dx.doi.org/10.1371/journal.pntd.0004617] [PMID: 27070550]
[114]
Mendonça, A.A.S.; Coelho, C.M.; Veloso, M.P.; Caldas, I.S.; Gonçalves, R.V.; Teixeira, A.L.; De Miranda, A.S.; Novaes, R.D. Relevance of trypanothione reductase inhibitors on Trypanosoma cruzi infection: A systematic review, meta-analysis, and in silico integrated ap-proach. Oxid. Med. Cell. Longev., 2018, 2018, 1-20.
[http://dx.doi.org/10.1155/2018/8676578] [PMID: 30473742]
[115]
Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against Leishmaniasis and Trypanosomiases. Molecules, 2020, 25(8), 1924.
[http://dx.doi.org/10.3390/molecules25081924] [PMID: 32326257]
[116]
Henderson, G.B.; Ulrich, P.; Fairlamb, A.H.; Rosenberg, I.; Pereira, M.; Sela, M.; Cerami, A. “Subversive” substrates for the enzyme trypanothione disulfide reductase: Alternative approach to chemotherapy of Chagas disease. Proc. Natl. Acad. Sci. USA, 1988, 85(15), 5374-5378.
[http://dx.doi.org/10.1073/pnas.85.15.5374] [PMID: 3135548]
[117]
Cenas, N.K.; Arscott, D.; Williams, C.H., Jr; Blanchard, J.S. Mechanism of reduction of quinones by Trypanosoma congolense trypano-thione reductase. Biochemistry, 1994, 33(9), 2509-2515.
[http://dx.doi.org/10.1021/bi00175a021] [PMID: 8117712]
[118]
Salmon, C.L.; Buisine, E.; Yardley, V.; Kohler, S.; Debreu, M.A.; Landry, V.; Sergheraert, C.; Croft, S.L.; Krauth, S.R.L.; Davioud, C.E. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J. Med. Chem., 2001, 44(4), 548-565.
[http://dx.doi.org/10.1021/jm001079l] [PMID: 11170645]
[119]
Zani, C.L.; Fairlamb, A.H. 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase. Mem. Inst. Oswaldo Cruz, 2003, 98(4), 565-568.
[http://dx.doi.org/10.1590/S0074-02762003000400026] [PMID: 12937775]
[120]
Lara, L.S.; Moreira, C.S.; Calvet, C.M.; Lechuga, G.C.; Souza, R.S.; Bourguignon, S.C.; Ferreira, V.F.; Rocha, D.; Pereira, M.C.S. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identi-fication of a promising hit compound. Eur. J. Med. Chem., 2018, 144, 572-581.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.052] [PMID: 29289882]
[121]
Ribeiro, G.A.; Cunha-Júnior, E.F.; Pinheiro, R.O.; Da Silva, S.A.G.; Canto, C.M.M.; Da Silva, A.J.M.; Costa, P.R.R.; Netto, C.D.; Melo, R.C.N.; Almeida, A.E.E.; Torres, S.E.C. LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J. Antimicrob. Chemother., 2013, 68(4), 789-799.
[http://dx.doi.org/10.1093/jac/dks498] [PMID: 23288404]
[122]
Awasthi, B.P.; Kathuria, M.; Pant, G.; Kumari, N.; Mitra, K. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: An ultrastructural and physiological study. Apoptosis, 2016, 21(8), 941-953.
[http://dx.doi.org/10.1007/s10495-016-1259-9] [PMID: 27315817]
[123]
Enayat, S.; Şeyma, C.M.; Taşkoparan, B.; Stefek, M.; Banerjee, S. CHNQ, a novel 2-Chloro-1,4-naphthoquinone derivative of quercetin, induces oxidative stress and autophagy both in vitro and in vivo. Arch. Biochem. Biophys., 2016, 596, 84-98.
[http://dx.doi.org/10.1016/j.abb.2016.03.004] [PMID: 26946942]
[124]
Bombaça, A.C.S.; Silva, L.A.; Chaves, O.A.; Da Silva, L.S.; Barbosa, J.M.C.; Da Silva, A.M.; Ferreira, A.B.B.; Menna, B.R.F.S.; Novel, N.; Novel, N. N-di-alkylnaphthoimidazolium derivative of β-lapachone impaired Trypanosoma cruzi mitochondrial electron transport sys-tem. Biomed. Pharmacother., 2021, 135, 111186.
[http://dx.doi.org/10.1016/j.biopha.2020.111186] [PMID: 33395606]
[125]
Wang, J.; Zeng, G.; Huang, X.; Wang, Z.; Tan, N. 1, 4-naphtho-] quinone triggers nematode lethality by inducing oxidative stress and activating insulin/IGF signaling pathway in Caenorhabditis elegans. Molecules, 2017, 22(5), 798.
[http://dx.doi.org/10.3390/molecules22050798] [PMID: 28505088]
[126]
Docampo, R.; Cruz, F.S.; Boveris, A.; Muniz, R.P.A.; Esquivel, D.M.S. Lipid peroxidation and the generation of free radicals, superoxide anion, and hydrogen peroxide in β-lapachone-treated Trypanosoma cruzi epimastigotes. Arch. Biochem. Biophys., 1978, 186(2), 292-297.
[http://dx.doi.org/10.1016/0003-9861(78)90438-1] [PMID: 205176]
[127]
Molina, P.M.P.; Fernandez, V.S.H.; Perissinotti, L.J.; Stoppani, A.O. Redox cycling of o-naphthoquinones in trypanosomatids. Superox-ide and hydrogen peroxide production. Biochem. Pharmacol., 1996, 52(12), 1875-1882.
[http://dx.doi.org/10.1016/S0006-2952(96)00601-6] [PMID: 8951346]
[128]
Gong, Q.; Hu, J.; Wang, P.; Li, X.; Zhang, X. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and thera-peutic potentials. Eur. J. Med. Chem., 2021, 210, 112962.
[http://dx.doi.org/10.1016/j.ejmech.2020.112962] [PMID: 33158575]
[129]
Walton, M.I.; Wolf, C.R.; Workman, P. The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233, WIN 59075) by mouse liver. Biochem. Pharmacol., 1992, 44(2), 251-259.
[http://dx.doi.org/10.1016/0006-2952(92)90007-6] [PMID: 1642640]
[130]
García, B.P.M.; Lamoureux, G.V.; Pérez, A.L.; García, S.R.N.; Martínez, A.R.; San Feliciano, A. Synthesis and biological evaluation of novel ferrocene-naphthoquinones as antiplasmodial agents. Eur. J. Med. Chem., 2013, 70, 548-557.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.011] [PMID: 24211630]
[131]
Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 221-247.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134517] [PMID: 21942631]
[132]
Shang, Y.; Chen, C.; Li, Y.; Zhao, J.; Zhu, T. Hydroxyl radical generation mechanism during the redox cycling process of 1,4-naphthoquinone. Environ. Sci. Technol., 2012, 46(5), 2935-2942.
[http://dx.doi.org/10.1021/es203032v] [PMID: 22288565]
[133]
Gurbani, D.; Bharti, S.K.; Kumar, A.; Pandey, A.K.; Ana, G.R.E.E.; Verma, A.; Khan, A.H.; Patel, D.K.; Mudiam, M.K.R.; Jain, S.K.; Roy, R.; Dhawan, A. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int. J. Hyg. Environ. Health, 2013, 216(5), 553-565.
[http://dx.doi.org/10.1016/j.ijheh.2013.04.001] [PMID: 23735462]
[134]
Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol., 2017, 30(1), 13-37.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00256] [PMID: 27617882]
[135]
Ahn, K.J.; Lee, H.S.; Bai, S.K.; Song, C.W. Enhancement of radiation effect using beta-lapachone and underlying mechanism. Radiat. Oncol. J., 2013, 31(2), 57-65.
[http://dx.doi.org/10.3857/roj.2013.31.2.57] [PMID: 23865001]
[136]
Park, E.J.; Min, K.; Lee, T.J.; Yoo, Y.H.; Kim, Y.S.; Kwon, T.K. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis., 2014, 5(5), e1230.
[http://dx.doi.org/10.1038/cddis.2014.202] [PMID: 24832602]
[137]
Dubin, M.; Villamil, S.H.F.; Stoppani, A.O.M. Inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions by β-lapachone and related naphthoquinones. Biochem. Pharmacol., 1990, 39(7), 1151-1160.
[http://dx.doi.org/10.1016/0006-2952(90)90256-K] [PMID: 2157443]
[138]
De Witte, N.V.; Stoppani, A.O.M.; Dubin, M. 2-Phenyl-β-lapachone can affect mitochondrial function by redox cycling mediated oxida-tion. Arch. Biochem. Biophys., 2004, 432(2), 129-135.
[http://dx.doi.org/10.1016/j.abb.2004.09.020] [PMID: 15542051]
[139]
Portela, M.P.M.; Stoppani, A.O.M. Redox cycling of β-lapachone and related o-naphthoquinones in the presence of dihydrolipoamide and oxygen. Biochem. Pharmacol., 1996, 51(3), 275-283.
[http://dx.doi.org/10.1016/0006-2952(95)02168-X] [PMID: 8573194]
[140]
Paulino, M.; Alvareda, E.M.; Denis, P.A.; Barreiro, E.J.; Da Silva, S.G.M.; Dubin, M.; Gastellú, C.; Aguilera, S.; Tapia, O. Studies of trypanocidal (inhibitory) power of naphthoquinones: Evaluation of quantum chemical molecular descriptors for structure-activity rela-tionships. Eur. J. Med. Chem., 2008, 43(10), 2238-2246.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.023] [PMID: 18276039]
[141]
Garavaglia, P.A.; Rubio, M.F.; Laverrière, M.; Tasso, L.M.; Fichera, L.E.; Cannata, J.J.B.; García, G.A. Trypanosoma cruzi: Death pheno-types induced by ortho-naphthoquinone substrates of the aldo-keto reductase (Tc AKR). Role of this enzyme in the mechanism of action of β -lapachone. Parasitology, 2018, 145(9), 1251-1259.
[http://dx.doi.org/10.1017/S0031182018000045] [PMID: 29400267]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy