Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Recent Advances of α-Glucosidase Inhibitors: A Comprehensive Review

Author(s): Neetu Agrawal, Manisha Sharma, Shikha Singh and Ahsas Goyal*

Volume 22, Issue 25, 2022

Published on: 07 September, 2022

Page: [2069 - 2086] Pages: 18

DOI: 10.2174/1568026622666220831092855

Price: $65

Abstract

Background: Diabetes mellitus (DM) is a critical health issue prevailing in nearly half a billion people worldwide. It is one of the most threatening metabolic diseases. Type 2 DM is caused due to insulin resistance and accounts for 90% of diabetes cases. If it remains untreated, it can lead to major frightening complications and can cause death, which ultimately threatens humankind.

Discussion: Various oral hypoglycaemic drugs are available today, acting on different targets by adopting different pathways. However, the α-glucosidase inhibitors proved to be a novel and effective strategy to manage T2DM. These inhibitors alleviate postprandial glycemia by aiming to inhibit intestinal α-glucosidase competitively and reversibly, thus delaying carbohydrate digestion and turning down the rate of glucose absorption. Plenty of α-glucosidase inhibitors have been discovered from synthetic routes as well as from natural sources, including plants, fungi, and bacteria.

Conclusion: This article comprises the natural and synthetic α-glucosidase discovered from 2016 to 2021 and can be utilized to discover novel α-glucosidase inhibitors. This review is an endeavor to highlight the progress in the discovery and development of α-glucosidase inhibitors, which could provide an overview to the medicinal chemists for the development of clinically viable drugs using this information.

Keywords: α-glucosidase, Diabetes mellitus, Hypoglycaemic, Inhibitors, Natural inhibitors, Phytochemical.

Next »
Graphical Abstract
[1]
International Diabetes Federation. The Diabetes Atlas, 9th ed; , 2019. Available from: https://diabetesatlas.org/atlas/ninth-edition/
[2]
World Health Organization. Diabetes 2013. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
[3]
Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol., 2020, 16(7), 377-390.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[4]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[5]
Fajans, S.S.; Bell, G.I. MODY: History, genetics, pathophysiology, and clinical decision making. Diabetes Care, 2011, 34(8), 1878-1884.
[http://dx.doi.org/10.2337/dc11-0035] [PMID: 21788644]
[6]
Prabhakar, P.; Doble, M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr. Diabetes Rev., 2008, 4(4), 291-308.
[http://dx.doi.org/10.2174/157339908786241124] [PMID: 18991598]
[7]
Kinaan, M.; Ding, H.; Triggle, C.R. Metformin: An old drug for the treatment of diabetes but a new drug for the protection of the endo-thelium. Med. Princ. Pract., 2015, 24(5), 401-415.
[http://dx.doi.org/10.1159/000381643] [PMID: 26021280]
[8]
Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[9]
Gerich, J.E.; Bastien, A. Development of the sodium-glucose co-transporter 2 inhibitor dapagliflozin for the treatment of patients with Type 2 diabetes mellitus. Expert Rev. Clin. Pharmacol., 2011, 4(6), 669-683.
[http://dx.doi.org/10.1586/ecp.11.54] [PMID: 22111852]
[10]
Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[11]
Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic com-plications. Food Chem. Toxicol., 2020, 145, 111738.
[http://dx.doi.org/10.1016/j.fct.2020.111738] [PMID: 32916220]
[12]
Kalra, S. Incretin enhancement without hyperinsulinemia: A-glucosidase inhibitors. Expert Rev. Endocrinol. Metab., 2014, 9(5), 423-425.
[http://dx.doi.org/10.1586/17446651.2014.931807] [PMID: 30736205]
[13]
Derosa, G.; Maffioli, P. Mini-special issue paper management of diabetic patients with hypoglycemic agents α-glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 2012, 5(5), 899-906.
[http://dx.doi.org/10.5114/aoms.2012.31621] [PMID: 23185202]
[14]
Zhang, Z.P.; Xue, W.Y.; Hu, J.X.; Xiong, D.C.; Wu, Y.F.; Ye, X.S. Novel carbohydrate-triazole derivatives as potential α-glucosidase inhibitors. Chin. J. Nat. Med., 2020, 18(10), 729-737.
[http://dx.doi.org/10.1016/S1875-5364(20)60013-9] [PMID: 33039052]
[15]
Pili, R.; Chang, J.; Partis, R.A.; Mueller, R.A.; Chrest, F.J.; Passaniti, A. The alpha-glucosidase I inhibitor castanospermine alters endothe-lial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res., 1995, 55(13), 2920-2926.
[PMID: 7540952]
[16]
Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev., 2021. Epub ahead of print
[http://dx.doi.org/10.1007/s11101-021-09773-1] [PMID: 34421444]
[17]
Adib, M.; Peytam, F.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29, 713-718.
[18]
Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; Nawaz, F.; Khan, K.M. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg. Chem., 2020, 94, 103394.
[http://dx.doi.org/10.1016/j.bioorg.2019.103394] [PMID: 31699396]
[19]
Mohammadi-Khanaposhtani, M.; Rezaei, S.; Khalifeh, R.; Imanparast, S.; Faramarzi, M.A.; Bahadorikhalili, S.; Safavi, M.; Bandarian, F.; Nasli, E.E.; Mahdavi, M.; Larijani, B. Design, synthesis, docking study, α-glucosidase inhibition, and cytotoxic activities of acridine linked to thioacetamides as novel agents in treatment of type 2 diabetes. Bioorg. Chem., 2018, 80, 288-295.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.035] [PMID: 29980114]
[20]
Avula, S.K.; Khan, A.; Halim, S.A.; Al-Abri, Z.; Anwar, M.U.; Al-Rawahi, A.; Csuk, R.; Al-Harrasi, A. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors. Bioorg. Chem., 2019, 91, 103182.
[http://dx.doi.org/10.1016/j.bioorg.2019.103182] [PMID: 31404793]
[21]
Channar, P.A.; Saeed, A.; Larik, F.A.; Rashid, S.; Iqbal, Q.; Rozi, M.; Younis, S.; Mahar, J. Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis. Biomed. Pharmacother., 2017, 94, 499-513.
[http://dx.doi.org/10.1016/j.biopha.2017.07.139] [PMID: 28780468]
[22]
Hameed, S. Kanwal; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity rela-tionship, molecular docking, and kinetic studies. Eur. J. Med. Chem., 2019, 183, 111677.
[23]
Abuelizz, H.A.; Iwana, N.A.N.I.; Ahmad, R.; Anouar, E.H.; Marzouk, M.; Al-Salahi, R. Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors. BMC Chem., 2019, 13(1), 52.
[http://dx.doi.org/10.1186/s13065-019-0560-4] [PMID: 31384800]
[24]
Gollapalli, M.; Taha, M.; Javid, M.T.; Almandil, N.B.; Rahim, F.; Wadood, A.; Mosaddik, A.; Ibrahim, M.; Alqahtani, M.A.; Bamarouf, Y.A. Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorg. Chem., 2019, 85, 33-48.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.021] [PMID: 30599411]
[25]
Shah, S. Arshia; Javaid, K.; Zafar, H.; Mohammed, K.K.; Khalil, R.; Ul-Haq, Z.; Perveen, S.; Iqbal, C.M. Synthesis, and in vitro and in silico α-glucosidase inhibitory studies of 5-chloro-2-aryl benzo[d]thiazoles. Bioorg. Chem., 2018, 78, 269-279.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.013] [PMID: 29614438]
[26]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation, and molecular dock-ing studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules, 2017, 22(4), 659.
[http://dx.doi.org/10.3390/molecules22040659] [PMID: 28425975]
[27]
Wang, M.Y.; Cheng, X.C.; Chen, X.B.; Li, Y.; Zang, L.L.; Duan, Y.Q.; Chen, M.Z.; Yu, P.; Sun, H.; Wang, R.L. Synthesis and biological evaluation of novel N -aryl- ω -(benzoazol-2-yl)-sulfanylalkanamides as dual inhibitors of α-glucosidase and protein tyrosine phospha-tase 1B. Chem. Biol. Drug Des., 2018, 92(3), 1647-1656.
[http://dx.doi.org/10.1111/cbdd.13331] [PMID: 29745030]
[28]
Khosravi, A.; Vaezi, G.; Hojati, V.; Abdi, K. Study on the interaction of triaryl-dihydro-1,2,4-oxadiazoles with α-glucosidase. Daru, 2020, 28(1), 109-117.
[http://dx.doi.org/10.1007/s40199-019-00322-y] [PMID: 31907787]
[29]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of dia-mine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77, 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[30]
Ayan, E.K.; Soyer, Z.; Uysal, Ş. Synthesis and enzymological characterization of some 2-(substitutedphenylamino) quinazolin-4(3H)-one derivatives as potent α-glucosidase inhibitors in vitro. Lett. Drug Des. Discov., 2021, 18(7), 723-732.
[http://dx.doi.org/10.2174/1570180818999201224121929]
[31]
Mphahlele, M.J.; Choong, Y.S.; Maluleka, M.M.; Gildenhuys, S. Synthesis, in vitro evaluation and molecular docking of the 5-acetyl-2-aryl-6-hydroxybenzo[b]furans against multiple targets linked to type 2 diabetes. Biomolecules, 2020, 10(3), 418.
[http://dx.doi.org/10.3390/biom10030418] [PMID: 32156083]
[32]
Spasov, A.A.; Babkov, D.A.; Osipov, D.V.; Klochkov, V.G.; Prilepskaya, D.R.; Demidov, M.R.; Osyanin, V.A.; Klimochkin, Y.N. Syn-thesis, in vitro and in vivo evaluation of 2-aryl-4H-chromene and 3-aryl-1H-benzo[f]chromene derivatives as novel α-glucosidase inhibi-tors. Bioorg. Med. Chem. Lett., 2019, 29(1), 119-123.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.018] [PMID: 30340897]
[33]
Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H.A. Spiroindolone analogues as potential hypoglycemic with dual inhibitory activity on α-amylase and α-glucosidase. Molecules, 2019, 24(12), 2342.
[http://dx.doi.org/10.3390/molecules24122342] [PMID: 31242688]
[34]
Kawde, A.N.; Taha, M.; Alansari, R.S.; Almandil, N.B.; Anouar, E.H.; Uddin, N.; Rahim, F.; Chigurupati, S.; Nawaz, M.; Hayat, S.; Ibra-him, M.; Elakurthy, P.K.; Vijayan, V.; Morsy, M.; Ibrahim, H.; Baig, N.; Khan, K.M. Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. Int. J. Biol. Macromol., 2020, 154, 217-232.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.090] [PMID: 32173438]
[35]
Solangi, M. Kanwal; Mohammed Khan, K.; Saleem, F.; Hameed, S.; Iqbal, J.; Shafique, Z.; Qureshi, U.; Ul-Haq, Z.; Taha, M.; Perveen, S. Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking stud-ies. Bioorg. Med. Chem., 2020, 28(21), 115605.
[http://dx.doi.org/10.1016/j.bmc.2020.115605] [PMID: 33065441]
[36]
Abbasi, M.A.; Hassan, M. ur-Rehman, A.; Siddiqui, S.Z.; Hussain, G.; Shah, S.A.A.; Ashraf, M.; Shahid, M.; Seo, S.Y. 2-Furoic piper-azide derivatives as promising drug candidates of type 2 diabetes and Alzheimer’s diseases: in vitro and in silico studies. Comput. Biol. Chem., 2018, 77, 72-86.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.09.007] [PMID: 30245349]
[37]
Barakat, A.; Ali, M.; Mohammed, A.A.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Synthesis of thiobarbituric acid deriva-tives: in vitro α -glucosidase inhibition and molecular docking studies. Bioorg. Chem., 2017, 75, 99-105.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.003] [PMID: 28926784]
[38]
Ali, M.; Barakat, A.; El-Faham, A.; Al-Rasheed, H.H.; Dahlous, K.; Al-Majid, A.M.; Sharma, A.; Yousuf, S.; Sanam, M.; Ul-Haq, Z.; Choudhary, M.I.; de la Torre, B.G.; Albericio, F. Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evalua-tion of their α-glucosidase inhibitory and anti-glycation activity. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 692-701.
[http://dx.doi.org/10.1080/14756366.2020.1737045] [PMID: 32156165]
[39]
Wang, G.; Chen, M.; Qiu, J.; Xie, Z.; Cao, A. Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg. Med. Chem. Lett., 2018, 28(2), 113-116.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.047] [PMID: 29208524]
[40]
Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α -glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(13), 2957-2961.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.007] [PMID: 28506754]
[41]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem., 2018, 155, 353-363.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.046] [PMID: 29902721]
[42]
Hussain, F.; Khan, Z.; Jan, M.S.; Ahmad, S.; Ahmad, A.; Rashid, U.; Ullah, F.; Ayaz, M.; Sadiq, A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione deriva-tives. Bioorg. Chem., 2019, 91, 103128.
[http://dx.doi.org/10.1016/j.bioorg.2019.103128] [PMID: 31369977]
[43]
Esmaeili, S.; Azizian, S.; Shahmoradi, B.; Moradi, S.; Shahlaei, M.; Khodarahmi, R. Dipyridamole inhibits α-amylase/α-glucosidase at sub-micromolar concentrations; in-vitro, in-vivo and theoretical studies. Bioorg. Chem., 2019, 88, 102972.
[http://dx.doi.org/10.1016/j.bioorg.2019.102972] [PMID: 31078769]
[44]
Akhter, S.; Ullah, S.; Yousuf, S. Atia-tul-Wahab; Siddiqui, H.; Choudhary, M.I. Synthesis, crystal structure and Hirshfeld Surface analysis of benzamide derivatives of thiourea as potent inhibitors of α-glucosidase in-vitro. Bioorg. Chem., 2021, 107, 104531.
[http://dx.doi.org/10.1016/j.bioorg.2020.104531] [PMID: 33339666]
[45]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, syn-thesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[46]
Zeng, F.; Yin, Z.; Chen, J.; Nie, X.; Lin, P. lu, T.; Wang, M.; Peng, D. Design, synthesis, and activity evaluation of novel N-benzyl deox-ynojirimycin derivatives for use as α-glucosidase inhibitors. Molecules, 2019, 24(18), 3309.
[http://dx.doi.org/10.3390/molecules24183309] [PMID: 31514404]
[47]
Abdullah, M.A.; Lee, Y.R.; Mastuki, S.N.; Leong, S.W.; Wan Ibrahim, W.N.; Mohammad, L.M.A.; Ramli, A.N.M.; Mohd Aluwi, M.F.F.; Mohd Faudzi, S.M.; Kim, C.H. Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biologi-cal and in vivo toxicity evaluations, and molecular docking analysis. Bioorg. Chem., 2020, 104, 104277.
[http://dx.doi.org/10.1016/j.bioorg.2020.104277] [PMID: 32971414]
[48]
Khan, I.; Khan, A.; Halim, S.A.; Khan, M.; Zaib, S.; Al-Yahyaei, B.E.M.; Al-Harrasi, A.; Ibrar, A. Utilization of the common functional groups in bioactive molecules: Exploring dual inhibitory potential and computational analysis of keto esters against α-glucosidase and carbonic anhydrase-II enzymes. Int. J. Biol. Macromol., 2021, 167, 233-244.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.170] [PMID: 33249154]
[49]
Chen, J.; Zhang, X.; Huo, D.; Cao, C.; Li, Y.; Liang, Y.; Li, B.; Li, L. Preliminary characterization, antioxidant and α-glucosidase inhibito-ry activities of polysaccharides from Mallotus furetianus. Carbohydr. Polym., 2019, 215, 307-315.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.099] [PMID: 30981359]
[50]
Lv, Q.Q.; Cao, J.J.; Liu, R.; Chen, H.Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chem., 2021, 341(Pt 1), 128218.
[http://dx.doi.org/10.1016/j.foodchem.2020.128218] [PMID: 33035857]
[51]
Quan, N.; Xuan, T.; Tran, H.D.; Thuy, N.; Trang, L.; Huong, C.; Andriana, Y.; Tuyen, P. Antioxidant, α-amylase and α-glucosidase in-hibitory activities and potential constituents of Canarium tramdenum bark. Molecules, 2019, 24(3), 605.
[http://dx.doi.org/10.3390/molecules24030605] [PMID: 30744084]
[52]
Hsu, C.Y.; Lin, G.M.; Lin, H.Y.; Chang, S.T. Characteristics of proanthocyanidins in leaves of Chamaecyparis obtusa var. formosana as strong α -glucosidase inhibitors. J. Sci. Food Agric., 2018, 98(10), 3806-3814.
[http://dx.doi.org/10.1002/jsfa.8894] [PMID: 29352475]
[53]
Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of tradition-ally used antidiabetic plants. BMC Complement. Altern. Med., 2019, 19(1), 74.
[http://dx.doi.org/10.1186/s12906-019-2482-z] [PMID: 30909900]
[54]
Gong, T.; Yang, X.; Bai, F.; Li, D.; Zhao, T.; Zhang, J.; Sun, L.; Guo, Y. Young apple polyphenols as natural α-glucosidase inhibitors: in vitro and in silico studies. Bioorg. Chem., 2020, 96, 103625.
[http://dx.doi.org/10.1016/j.bioorg.2020.103625] [PMID: 32028059]
[55]
Liu, M.; Huang, X.; Liu, Q.; Li, X.; Chen, M.; Zhu, Y.; Chen, X. Separation of α ‐glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow‐rate gradient high‐speed counter‐current chromatography target‐guided by ultrafiltration HPLC‐MS screening. Phytochem. Anal., 2019, 30(6), 661-668.
[http://dx.doi.org/10.1002/pca.2839] [PMID: 31059189]
[56]
Li, X.; Zhong, X.; Wang, X.; Li, J.; Liu, J.; Wang, K.; Yue, J.; Yang, X.; Shang, X.; Lin, S. Bioassay-guided isolation of triterpenoids as α-glucosidase inhibitors from Cirsium setosum. Molecules, 2019, 24(10), 1844.
[http://dx.doi.org/10.3390/molecules24101844] [PMID: 31091665]
[57]
Zhang, H.; Xu, J.; Wang, M.; Xia, X.; Dai, R.; Zhao, Y. Steroidal saponins and sapogenins from fenugreek and their inhibitory activity against α-glucosidase. Steroids, 2020, 161, 108690.
[http://dx.doi.org/10.1016/j.steroids.2020.108690] [PMID: 32598954]
[58]
Ur Rehman, N.; Khan, A.; Al-Harrasi, A.; Hussain, H.; Wadood, A.; Riaz, M.; Al-Abri, Z. New α-Glucosidase inhibitors from the resins of Boswellia species with structure-glucosidase activity and molecular docking studies. Bioorg. Chem., 2018, 79, 27-33.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.020] [PMID: 29715636]
[59]
Jenis, J.; Baiseitova, A.; Yoon, S.H.; Park, C.; Kim, J.Y.; Li, Z.P.; Lee, K.W.; Park, K.H. Competitive α-glucosidase inhibitors, dihydro-benzoxanthones, from the barks of Artocarpus elasticus. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1623-1632.
[http://dx.doi.org/10.1080/14756366.2019.1660653] [PMID: 31480857]
[60]
Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α - amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol., 2018, 56(1), 18-24.
[http://dx.doi.org/10.1080/13880209.2017.1414857] [PMID: 29233045]
[61]
Osman, W.; Ismail, E.M.O.A.; Shantier, S.W.; Mohammed, M.S.; Mothana, R.A.; Muddathir, A.; Khalid, H.S. In silico assessment of potential leads identified from Bauhinia rufescens Lam. as α-glucosidase and α-amylase inhibitors. J. Recept. Signal Transduct. Res., 2021, 41(2), 159-169.
[http://dx.doi.org/10.1080/10799893.2020.1800734] [PMID: 32718219]
[62]
Park, M.J.; Kang, Y.H. Isolation of isocoumarins and flavonoids as α-glucosidase inhibitors from Agrimonia pilosa L. Molecules, 2020, 25(11), 2572.
[http://dx.doi.org/10.3390/molecules25112572] [PMID: 32486502]
[63]
Wang, L.; Tan, N.; Wang, H.; Hu, J.; Diwu, W.; Wang, X. A systematic analysis of natural α-glucosidase inhibitors from flavonoids of Radix scutellariae using ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology. BMC Complement. Med. Ther., 2020, 20(1), 72.
[http://dx.doi.org/10.1186/s12906-020-2871-3] [PMID: 32143602]
[64]
Milella, L.; Milazzo, S.; De Leo, M.; Vera Saltos, M.B.; Faraone, I.; Tuccinardi, T.; Lapillo, M.; De Tommasi, N.; Braca, A. α-glucosidase and α-amylase inhibitors from Arcytophyllum thymifolium. J. Nat. Prod., 2016, 79(8), 2104-2112.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00484] [PMID: 27509358]
[65]
Thant, T.M.; Aminah, N.S.; Kristanti, A.N.; Ramadhan, R.; Phuwapraisirisan, P.; Takaya, Y. A new pyrano coumarin from Clausena excavata roots displaying dual inhibition against α-glucosidase and free radical. Nat. Prod. Res., 2021, 35(4), 556-561.
[http://dx.doi.org/10.1080/14786419.2019.1586696] [PMID: 30908081]
[66]
Li, C.W.; Chu, Y.C.; Huang, C.Y.; Fu, S.L.; Chen, J.J. Evaluation of antioxidant and anti-α-glucosidase activities of various solvent ex-tracts and major bioactive components from the seeds of Myristica fragrans. Molecules, 2020, 25(21), 5198.
[http://dx.doi.org/10.3390/molecules25215198] [PMID: 33171671]
[67]
Vu, V.T.; Nguyen, M.T.; Khoi, N.M.; Xu, X.J.; Kong, L.Y.; Luo, J.G. New lignans and acetophenone derivatives with α-glucosidase inhibitory activity from the leaves of Melicope patulinervia. Fitoterapia, 2021, 148, 104805.
[http://dx.doi.org/10.1016/j.fitote.2020.104805] [PMID: 33316359]
[68]
Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-glucosidase and alpha-amylase inhibi-tory activities, molecular docking, and antioxidant capacities of Salvia aurita constituents. Antioxidants, 2020, 9(11), 1149.
[http://dx.doi.org/10.3390/antiox9111149] [PMID: 33228164]
[69]
Ruiz-Vargas, J.A.; Morales-Ferra, D.L.; Ramírez-Ávila, G.; Zamilpa, A.; Negrete-León, E.; Acevedo-Fernández, J.J.; Peña-Rodríguez, L.M. α-Glucosidase inhibitory activity and in vivo antihyperglycemic effect of secondary metabolites from the leaf infusion of Ocimum campechianum mill. J. Ethnopharmacol., 2019, 243, 112081.
[http://dx.doi.org/10.1016/j.jep.2019.112081] [PMID: 31319121]
[70]
Quan, Y.S.; Zhang, X.Y.; Yin, X.M.; Wang, S.H.; Jin, L.L. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum. Bioorg. Med. Chem. Lett., 2020, 30(24), 127665.
[http://dx.doi.org/10.1016/j.bmcl.2020.127665] [PMID: 33152378]
[71]
Liu, L.; Zou, M.; Yin, Q.; Zhang, Z.; Zhang, X. Phenylpropanoids from Liparis nervosa and their in vitro antioxidant and α-glucosidase inhibitory activities. Med. Chem. Res., 2021, 30(4), 1005-1010.
[http://dx.doi.org/10.1007/s00044-021-02709-6]
[72]
Yang, L.; Yang, Y.L.; Dong, W.H.; Li, W.; Wang, P.; Cao, X.; Yuan, J.Z.; Chen, H.Q.; Mei, W.L.; Dai, H.F. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 853-862.
[http://dx.doi.org/10.1080/14756366.2019.1576657] [PMID: 31010356]
[73]
Hichri, F.; Omri, A.; Hossan, A.S.M.; Ben Jannet, H. Alpha-glucosidase and amylase inhibitory effects of Eruca vesicaria subsp. longi-rostris essential oils: Synthesis of new 1,2,4-triazole-thiol derivatives and 1,3,4-thiadiazole with potential inhibitory activity. Pharm. Biol., 2019, 57(1), 564-570.
[http://dx.doi.org/10.1080/13880209.2019.1642363] [PMID: 31454271]
[74]
Malik, A.; Ardalani, H.; Anam, S.; McNair, L.M.; Kromphardt, K.J.K.; Frandsen, R.J.N.; Franzyk, H.; Staerk, D.; Kongstad, K.T.; Kongstad, K.T. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia, 2020, 142, 104522.
[http://dx.doi.org/10.1016/j.fitote.2020.104522] [PMID: 32088281]
[75]
Macabeo, A.P.G.; Pilapil, L.A.E.; Garcia, K.Y.M.; Quimque, M.T.J.; Phukhamsakda, C.; Cruz, A.J.C.; Hyde, K.D.; Stadler, M. Alpha-glucosidase- and lipase-inhibitory phenalenones from a new species of Pseudolophiostoma originating from Thailand. Molecules, 2020, 25(4), 965.
[http://dx.doi.org/10.3390/molecules25040965] [PMID: 32093426]
[76]
Kaur, J.; Sharma, P.; Kaur, R.; Kaur, S.; Kaur, A. Assessment of alpha glucosidase inhibitors produced from endophytic fungus Alter-naria destruens as antimicrobial and antibiofilm agents. Mol. Biol. Rep., 2020, 47(1), 423-432.
[http://dx.doi.org/10.1007/s11033-019-05145-3] [PMID: 31760557]
[77]
Wu, Y.; Chen, Y.; Huang, X.; Pan, Y.; Liu, Z.; Yan, T.; Cao, W.; She, Z. α-glucosidase inhibitors: Diphenyl ethers and phenolic bisabo-lane sesquiterpenoids from the mangrove endophytic fungus Aspergillus flavus QQSG-3. Mar. Drugs, 2018, 16(9), 307.
[http://dx.doi.org/10.3390/md16090307] [PMID: 30200400]
[78]
Rangel-Grimaldo, M.; Rivero-Cruz, I.; Madariaga-Mazón, A.; Figueroa, M.; Mata, R. α-glucosidase inhibitors from Preussia minimoides. J. Nat. Prod., 2017, 80(3), 582-587.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00574] [PMID: 27673367]
[79]
Zheng, X.; Sun, H.; Wu, L.; Kong, X.; Song, Q.; Zhu, Z. Structural characterization and inhibition on α-glucosidase of the polysaccha-rides from fruiting bodies and mycelia of Pleurotus eryngii. Int. J. Biol. Macromol., 2020, 156, 1512-1519.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.199] [PMID: 31783073]
[80]
Lee, S.K.; Ryu, S.H.; Turk, A.; Yeon, S.W.; Jo, Y.H.; Han, Y.K.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of α-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom (Hericium erinaceus). J. Ethnopharmacol., 2020, 262, 113197.
[http://dx.doi.org/10.1016/j.jep.2020.113197] [PMID: 32738392]
[81]
Wei, J.; Zhang, X.Y.; Deng, S.; Cao, L.; Xue, Q.H.; Gao, J.M. α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophae-us. Nat. Prod. Res., 2017, 31(17), 2062-2066.
[http://dx.doi.org/10.1080/14786419.2016.1269100] [PMID: 28013556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy