Review Article

基础切除修复途径中的氧化还原调节:新老参与者成为癌症治疗的目标

卷 27, 期 12, 2020

页: [1901 - 1921] 页: 21

弟呕挨: 10.2174/0929867326666190430092732

价格: $65

conference banner
摘要

背景:活性氧(ROS)是正常细胞代谢过程(例如线粒体氧化磷酸化)的副产物。虽然低水平的ROS是重要的信号分子,但高水平的ROS可能会破坏蛋白质,脂质和DNA。确实,氧化性DNA损伤是哺乳动物基因组中最常见的损伤类型,与人类疾病(例如癌症和神经退行性疾病)有关。尽管氧化性DNA损伤主要通过碱基切除修复(BER)途径清除,但最近的证据表明,其他途径,例如核苷酸切除修复(NER)和错配修复(MMR)也可以参与这些病变的清除。氧化性DNA损伤的最常见形式之一是碱基损伤8-氧鸟嘌呤(8-oxoG),如果不进行修复,可能会导致复制过程中G:C向A:T的转化,这是一种常见的诱变特征,可导致细胞凋亡。转型。 目的:修复氧化性DNA损伤,包括8-oxoG碱基损伤,涉及一系列酶促反应中许多蛋白质之间的功能相互作用。这篇综述描述了8-oxoG损害的BER初始阶段所涉及的关键蛋白的作用和氧化还原调节,即Apurinic / Apyrimidinic核酸内切酶1(APE1),人8-氧代鸟嘌呤DNA糖基化酶1(hOGG1)和链DNA结合蛋白1(hSSB1)。此外,讨论了靶向这些关键蛋白在癌症中的治疗潜力和方式。 结论:越来越明显的是某些DNA修复蛋白在多种修复途径中起作用。抑制这些因素将为开发更有效的癌症疗法提供有吸引力的策略。

关键词: ROS,BER,APE1,hOGG1,hSSB1 / NABP2 / OBFC2B,DNA修复,癌症治疗剂。

[1]
Finkel, T. Reactive oxygen species and signal transduction. IUBMB Life, 2001, 52(1-2), 3-6.
[http://dx.doi.org/10.1080/15216540252774694] [PMID: 11795590]
[2]
Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol., 2003, 15(2), 247-254.
[http://dx.doi.org/10.1016/S0955-0674(03)00002-4] [PMID: 12648682]
[3]
Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol., 2015, 33, 8-13.
[http://dx.doi.org/10.1016/j.ceb.2014.09.010] [PMID: 25305438]
[4]
David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature, 2007, 447(7147), 941-950.
[http://dx.doi.org/10.1038/nature05978] [PMID: 17581577]
[5]
Mikhed, Y.; Daiber, A.; Steven, S. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int. J. Mol. Sci., 2015, 16(7), 15918-15953.
[http://dx.doi.org/10.3390/ijms160715918] [PMID: 26184181]
[6]
Cadet, J.; Wagner, J.R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol., 2013, 5(2)a012559
[http://dx.doi.org/10.1101/cshperspect.a012559] [PMID: 23378590]
[7]
Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2017.
[PMID: 28587975]
[8]
Ward, J.P.T. From Physiological Redox Signalling to Oxidant Stress. Adv. Exp. Med. Biol., 2017, 967, 335-342.
[http://dx.doi.org/10.1007/978-3-319-63245-2_21] [PMID: 29047097]
[9]
Gibellini, L.; Pinti, M.; Nasi, M.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cossarizza, A. Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin. Cancers (Basel), 2010, 2(2), 1288-1311.
[http://dx.doi.org/10.3390/cancers2021288] [PMID: 24281116]
[10]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[11]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[12]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[13]
Giles, G.I. The redox regulation of thiol dependent signaling pathways in cancer. Curr. Pharm. Des., 2006, 12(34), 4427-4443.
[http://dx.doi.org/10.2174/138161206779010549] [PMID: 17168752]
[14]
Nohl, H.; Breuninger, V.; Hegner, D. Influence of mitochondrial radical formation on energy-linked respiration. Eur. J. Biochem., 1978, 90(2), 385-390.
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12615.x] [PMID: 710436]
[15]
Slupphaug, G.; Kavli, B.; Krokan, H.E. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res., 2003, 531(1-2), 231-251.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.06.002] [PMID: 14637258]
[16]
Storr, S.J.; Woolston, C.M.; Zhang, Y.; Martin, S.G. Redox environment, free radical, and oxidative DNA damage. Antioxid. Redox Signal., 2013, 18(18), 2399-2408.
[http://dx.doi.org/10.1089/ars.2012.4920] [PMID: 23249296]
[17]
Halliwell, B. Oxidants and human disease: some new concepts. FASEB J., 1987, 1(5), 358-364.
[http://dx.doi.org/10.1096/fasebj.1.5.2824268] [PMID: 2824268]
[18]
Keyer, K.; Imlay, J.A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 13635-13640.
[http://dx.doi.org/10.1073/pnas.93.24.13635] [PMID: 8942986]
[19]
Raftery, M. J. Determination of oxidative protein modifications using mass spectrometry. Redox report : communications in free radical research, 2014, 19(4), 140-7.
[20]
Sun, Q.A.; Wu, Y.; Zappacosta, F.; Jeang, K.T.; Lee, B.J.; Hatfield, D.L.; Gladyshev, V.N. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J. Biol. Chem., 1999, 274(35), 24522-24530.
[http://dx.doi.org/10.1074/jbc.274.35.24522] [PMID: 10455115]
[21]
Herold, S.; Röck, G. Mechanistic studies of S-nitrosothiol formation by NO*/O2 and by NO*/methemoglobin. Arch. Biochem. Biophys., 2005, 436(2), 386-396.
[http://dx.doi.org/10.1016/j.abb.2005.02.013] [PMID: 15797251]
[22]
Yuan, K.; Liu, Y.; Chen, H.N.; Zhang, L.; Lan, J.; Gao, W.; Dou, Q.; Nice, E.C.; Huang, C. Thiol-based redox proteomics in cancer research. Proteomics, 2015, 15(2-3), 287-299.
[http://dx.doi.org/10.1002/pmic.201400164] [PMID: 25251260]
[23]
Linke, K.; Jakob, U. Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid. Redox Signal., 2003, 5(4), 425-434.
[http://dx.doi.org/10.1089/152308603768295168] [PMID: 13678530]
[24]
Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 2003, 91(2), 179-194.
[http://dx.doi.org/10.1093/aob/mcf118] [PMID: 12509339]
[25]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular physiology and biochemistry : int. j. of exper. Cellu. physio., biochemistry, and pharmacology, 2017, 44(2), 532-553.
[26]
Papp, L.V.; Holmgren, A.; Khanna, K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal., 2010, 12(7), 793-795.
[http://dx.doi.org/10.1089/ars.2009.2973] [PMID: 19905883]
[27]
Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal., 2007, 9(7), 775-806.
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[28]
Mariotti, M.; Ridge, P.G.; Zhang, Y.; Lobanov, A.V.; Pringle, T.H.; Guigo, R.; Hatfield, D.L.; Gladyshev, V.N. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One, 2012, 7(3)e33066
[http://dx.doi.org/10.1371/journal.pone.0033066] [PMID: 22479358]
[29]
Luo, M.; He, H.; Kelley, M.R.; Georgiadis, M.M. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid. Redox Signal., 2010, 12(11), 1247-1269.
[http://dx.doi.org/10.1089/ars.2009.2698] [PMID: 19764832]
[30]
Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry (Mosc.), 2014, 79(13), 1562-1583.
[http://dx.doi.org/10.1134/S0006297914130082] [PMID: 25749165]
[31]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[32]
Lu, J.; Holmgren, A. The thioredoxin superfamily in oxidative protein folding. Antioxid. Redox Signal., 2014, 21(3), 457-470.
[http://dx.doi.org/10.1089/ars.2014.5849] [PMID: 24483600]
[33]
Ghezzi, P. Regulation of protein function by glutathionylation. Free Radic. Res., 2005, 39(6), 573-580.
[http://dx.doi.org/10.1080/10715760500072172] [PMID: 16036334]
[34]
Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med., 2015, 80, 148-157.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.013] [PMID: 25433365]
[35]
Davies, M.J. Protein oxidation and peroxidation. Biochem. J., 2016, 473(7), 805-825.
[http://dx.doi.org/10.1042/BJ20151227] [PMID: 27026395]
[36]
Kasamatsu, S.; Nishimura, A.; Morita, M.; Matsunaga, T.; Abdul Hamid, H.; Akaike, T. Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation. Molecules, 2016, 21(12)E1721
[http://dx.doi.org/10.3390/molecules21121721] [PMID: 27983699]
[37]
Nkabyo, Y.S.; Ziegler, T.R.; Gu, L.H.; Watson, W.H.; Jones, D.P. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(6), G1352-G1359.
[http://dx.doi.org/10.1152/ajpgi.00183.2002] [PMID: 12433666]
[38]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[39]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[40]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[41]
Lindahl, T. Instability and decay of the primary structure of DNA. Nature, 1993, 362(6422), 709-715.
[http://dx.doi.org/10.1038/362709a0] [PMID: 8469282]
[42]
Lindahl, T.; Barnes, D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol., 2000, 65, 127-133.
[http://dx.doi.org/10.1101/sqb.2000.65.127] [PMID: 12760027]
[43]
Imlay, J.A.; Chin, S.M.; Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 1988, 240(4852), 640-642.
[http://dx.doi.org/10.1126/science.2834821] [PMID: 2834821]
[44]
Imlay, J.A.; Linn, S. DNA damage and oxygen radical toxicity. Science, 1988, 240(4857), 1302-1309.
[http://dx.doi.org/10.1126/science.3287616] [PMID: 3287616]
[45]
Cadet, J.; Douki, T.; Ravanat, J.L. Oxidatively generated base damage to cellular DNA. Free Radic. Biol. Med., 2010, 49(1), 9-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.025] [PMID: 20363317]
[46]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[47]
Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res., 2004, 567(1), 1-61.
[http://dx.doi.org/10.1016/j.mrrev.2003.11.001] [PMID: 15341901]
[48]
Sedelnikova, O.A.; Redon, C.E.; Dickey, J.S.; Nakamura, A.J.; Georgakilas, A.G.; Bonner, W.M. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat. Res., 2010, 704(1-3), 152-159.
[http://dx.doi.org/10.1016/j.mrrev.2009.12.005] [PMID: 20060490]
[49]
Nie, B.; Gan, W.; Shi, F.; Hu, G.X.; Chen, L.G.; Hayakawa, H.; Sekiguchi, M.; Cai, J.P. Age-dependent accumulation of 8-oxoguanine in the DNA and RNA in various rat tissues. Oxid. Med. Cell. Longev., 2013, 2013303181
[http://dx.doi.org/10.1155/2013/303181] [PMID: 23738036]
[50]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health, 2013, 10(9), 3886-3907.
[http://dx.doi.org/10.3390/ijerph10093886] [PMID: 23985773]
[51]
Grollman, A.P.; Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet., 1993, 9(7), 246-249.
[http://dx.doi.org/10.1016/0168-9525(93)90089-Z] [PMID: 8379000]
[52]
Kasai, H.; Nishimura, S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res., 1984, 12(4), 2137-2145.
[http://dx.doi.org/10.1093/nar/12.4.2137] [PMID: 6701097]
[53]
Kohda, K.; Tada, M.; Hakura, A.; Kasai, H.; Kawazoe, Y. Formation of 8-hydroxyguanine residues in DNA treated with 4-hydroxyaminoquinoline 1-oxide and its related compounds in the presence of seryl-AMP. Biochem. Biophys. Res. Commun., 1987, 149(3), 1141-1148.
[http://dx.doi.org/10.1016/0006-291X(87)90527-4] [PMID: 3122745]
[54]
Mitra, S.; Hazra, T.K.; Roy, R.; Ikeda, S.; Biswas, T.; Lock, J.; Boldogh, I.; Izumi, T. Complexities of DNA base excision repair in mammalian cells. Mol. Cells, 1997, 7(3), 305-312.
[PMID: 9264015]
[55]
Wallace, S.S.; Murphy, D.L.; Sweasy, J.B. Base excision repair and cancer. Cancer Lett., 2012, 327(1-2), 73-89.
[http://dx.doi.org/10.1016/j.canlet.2011.12.038] [PMID: 22252118]
[56]
Daviet, S.; Couvé-Privat, S.; Gros, L.; Shinozuka, K.; Ide, H.; Saparbaev, M.; Ishchenko, A.A. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway. DNA Repair (Amst.), 2007, 6(1), 8-18.
[http://dx.doi.org/10.1016/j.dnarep.2006.08.001] [PMID: 16978929]
[57]
Melis, J.P.; van Steeg, H.; Luijten, M. Oxidative DNA damage and nucleotide excision repair. Antioxid. Redox Signal., 2013, 18(18), 2409-2419.
[http://dx.doi.org/10.1089/ars.2012.5036] [PMID: 23216312]
[58]
Shafirovich, V.; Geacintov, N.E. Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radic. Biol. Med., 2017, 107, 53-61.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.507] [PMID: 27818219]
[59]
Van Houten, B.; Santa-Gonzalez, G.A.; Camargo, M. DNA repair after oxidative stress: current challenges. Curr. Opin. Toxicol., 2018, 7, 9-16.
[http://dx.doi.org/10.1016/j.cotox.2017.10.009] [PMID: 29159324]
[60]
Ide, H.; Kotera, M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol. Pharm. Bull., 2004, 27(4), 480-485.
[http://dx.doi.org/10.1248/bpb.27.480] [PMID: 15056851]
[61]
Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kaçmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 2004, 73, 39-85.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723] [PMID: 15189136]
[62]
Bessho, T.; Roy, R.; Yamamoto, K.; Kasai, H.; Nishimura, S.; Tano, K.; Mitra, S. Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosylase. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 8901-8904.
[http://dx.doi.org/10.1073/pnas.90.19.8901] [PMID: 8415629]
[63]
Bjorâs, M.; Luna, L.; Johnsen, B.; Hoff, E.; Haug, T.; Rognes, T.; Seeberg, E. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J., 1997, 16(20), 6314-6322.
[http://dx.doi.org/10.1093/emboj/16.20.6314] [PMID: 9321410]
[64]
Nghiem, Y.; Cabrera, M.; Cupples, C.G.; Miller, J.H. The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proc. Natl. Acad. Sci. USA, 1988, 85(8), 2709-2713.
[http://dx.doi.org/10.1073/pnas.85.8.2709] [PMID: 3128795]
[65]
Lindahl, T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. USA, 1974, 71(9), 3649-3653.
[http://dx.doi.org/10.1073/pnas.71.9.3649] [PMID: 4610583]
[66]
Parikh, S.S.; Mol, C.D.; Slupphaug, G.; Bharati, S.; Krokan, H.E.; Tainer, J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J., 1998, 17(17), 5214-5226.
[http://dx.doi.org/10.1093/emboj/17.17.5214] [PMID: 9724657]
[67]
Saito, Y.; Uraki, F.; Nakajima, S.; Asaeda, A.; Ono, K.; Kubo, K.; Yamamoto, K. Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. J. Bacteriol., 1997, 179(11), 3783-3785.
[http://dx.doi.org/10.1128/JB.179.11.3783-3785.1997] [PMID: 9171430]
[68]
Masaoka, A.; Matsubara, M.; Tanaka, T.; Terato, H.; Ohyama, Y.; Kubo, K.; Ide, H. Repair roles of hSMUG1 assessed by damage specificity and cellular activity. Nucleic acids research. Supplement, 2001, 2003(3), 263-264.
[69]
Altieri, F.; Grillo, C.; Maceroni, M.; Chichiarelli, S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid. Redox Signal., 2008, 10(5), 891-937.
[http://dx.doi.org/10.1089/ars.2007.1830] [PMID: 18205545]
[70]
Krokan, H.E.; Standal, R.; Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J., 1997, 325(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3250001] [PMID: 9224623]
[71]
Wiederhold, L.; Leppard, J.B.; Kedar, P.; Karimi-Busheri, F.; Rasouli-Nia, A.; Weinfeld, M.; Tomkinson, A.E.; Izumi, T.; Prasad, R.; Wilson, S.H.; Mitra, S.; Hazra, T.K. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell, 2004, 15(2), 209-220.
[http://dx.doi.org/10.1016/j.molcel.2004.06.003] [PMID: 15260972]
[72]
Chen, D.S.; Herman, T.; Demple, B. Two distinct human DNA diesterases that hydrolyze 3@′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res., 1991, 19(21), 5907-5914.
[http://dx.doi.org/10.1093/nar/19.21.5907] [PMID: 1719484]
[73]
Petermann, E.; Keil, C.; Oei, S.L. Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER. DNA Repair (Amst.), 2006, 5(5), 544-555.
[http://dx.doi.org/10.1016/j.dnarep.2005.12.008] [PMID: 16442856]
[74]
Fortini, P.; Pascucci, B.; Parlanti, E.; Sobol, R.W.; Wilson, S.H.; Dogliotti, E. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry, 1998, 37(11), 3575-3580.
[http://dx.doi.org/10.1021/bi972999h] [PMID: 9530283]
[75]
Pascucci, B.; Stucki, M.; Jónsson, Z.O.; Dogliotti, E.; Hübscher, U. Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon. J. Biol. Chem., 1999, 274(47), 33696-33702.
[http://dx.doi.org/10.1074/jbc.274.47.33696] [PMID: 10559260]
[76]
Lindahl, T.; Gally, J.A.; Edelman, G.M. Deoxyribonuclease IV: a new exonuclease from mammalian tissues. Proc. Natl. Acad. Sci. USA, 1969, 62(2), 597-603.
[http://dx.doi.org/10.1073/pnas.62.2.597] [PMID: 5256235]
[77]
Robins, P.; Pappin, D.J.; Wood, R.D.; Lindahl, T. Structural and functional homology between mammalian DNase IV and the 5′-nuclease domain of Escherichia coli DNA polymerase I. J. Biol. Chem., 1994, 269(46), 28535-28538.
[PMID: 7961795]
[78]
Roldán-Arjona, T.; Wei, Y.F.; Carter, K.C.; Klungland, A.; Anselmino, C.; Wang, R.P.; Augustus, M.; Lindahl, T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8016-8020.
[http://dx.doi.org/10.1073/pnas.94.15.8016] [PMID: 9223306]
[79]
Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med., 2017, 107, 110-124.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.029] [PMID: 28109890]
[80]
Sugasawa, K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst.), 2016, 44, 110-117.
[http://dx.doi.org/10.1016/j.dnarep.2016.05.015] [PMID: 27264556]
[81]
Li, J.; Wang, Q.E.; Zhu, Q.; El-Mahdy, M.A.; Wani, G.; Praetorius-Ibba, M.; Wani, A.A. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res., 2006, 66(17), 8590-8597.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1115] [PMID: 16951172]
[82]
Fousteri, M.; Vermeulen, W.; van Zeeland, A.A.; Mullenders, L.H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell, 2006, 23(4), 471-482.
[http://dx.doi.org/10.1016/j.molcel.2006.06.029] [PMID: 16916636]
[83]
Egly, J.M.; Coin, F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst.), 2011, 10(7), 714-721.
[http://dx.doi.org/10.1016/j.dnarep.2011.04.021] [PMID: 21592869]
[84]
Compe, E.; Egly, J.M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol., 2012, 13(6), 343-354.
[http://dx.doi.org/10.1038/nrm3350] [PMID: 22572993]
[85]
Gaillard, P.H.L.; Wood, R.D. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res., 2001, 29(4), 872-879.
[http://dx.doi.org/10.1093/nar/29.4.872] [PMID: 11160918]
[86]
Constantinou, A.; Gunz, D.; Evans, E.; Lalle, P.; Bates, P.A.; Wood, R.D.; Clarkson, S.G. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J. Biol. Chem., 1999, 274(9), 5637-5648.
[http://dx.doi.org/10.1074/jbc.274.9.5637] [PMID: 10026181]
[87]
Mocquet, V.; Lainé, J.P.; Riedl, T.; Yajin, Z.; Lee, M.Y.; Egly, J.M. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J., 2008, 27(1), 155-167.
[http://dx.doi.org/10.1038/sj.emboj.7601948] [PMID: 18079701]
[88]
Moser, J.; Kool, H.; Giakzidis, I.; Caldecott, K.; Mullenders, L.H.; Fousteri, M.I. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol. Cell, 2007, 27(2), 311-323.
[http://dx.doi.org/10.1016/j.molcel.2007.06.014] [PMID: 17643379]
[89]
Koch, S.C.; Simon, N.; Ebert, C.; Carell, T. Molecular mechanisms of xeroderma pigmentosum (XP) proteins. Q. Rev. Biophys., 2016, 49e5.
[90]
Black, J.O. Xeroderma Pigmentosum. Head Neck Pathol., 2016, 10(2), 139-144.
[http://dx.doi.org/10.1007/s12105-016-0707-8] [PMID: 26975629]
[91]
Natale, V.; Raquer, H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J. Rare Dis., 2017, 12(1), 65.
[http://dx.doi.org/10.1186/s13023-017-0616-2] [PMID: 28376890]
[92]
Kropachev, K.; Ding, S.; Terzidis, M.A.; Masi, A.; Liu, Z.; Cai, Y.; Kolbanovskiy, M.; Chatgilialoglu, C.; Broyde, S.; Geacintov, N.E.; Shafirovich, V. Structural basis for the recognition of diastereomeric 5@′,8-cyclo-2@′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Res., 2014, 42(8), 5020-5032.
[http://dx.doi.org/10.1093/nar/gku162] [PMID: 24615810]
[93]
Klungland, A.; Höss, M.; Gunz, D.; Constantinou, A.; Clarkson, S.G.; Doetsch, P.W.; Bolton, P.H.; Wood, R.D.; Lindahl, T. Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell, 1999, 3(1), 33-42.
[http://dx.doi.org/10.1016/S1097-2765(00)80172-0] [PMID: 10024877]
[94]
Rodriguez, G.P.; Song, J.B.; Crouse, G.F. In vivo bypass of 8-oxodG. PLoS Genet., 2013, 9(8)e1003682
[http://dx.doi.org/10.1371/journal.pgen.1003682] [PMID: 23935538]
[95]
Colussi, C.; Parlanti, E.; Degan, P.; Aquilina, G.; Barnes, D.; Macpherson, P.; Karran, P.; Crescenzi, M.; Dogliotti, E.; Bignami, M. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr. Biol., 2002, 12(11), 912-918.
[http://dx.doi.org/10.1016/S0960-9822(02)00863-1] [PMID: 12062055]
[96]
Russo, M.T.; De Luca, G.; Degan, P.; Bignami, M. Different DNA repair strategies to combat the threat from 8-oxoguanine. Mutat. Res., 2007, 614(1-2), 69-76.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.03.007] [PMID: 16769088]
[97]
Avkin, S.; Livneh, Z. Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells. Mutat. Res., 2002, 510(1-2), 81-90.
[http://dx.doi.org/10.1016/S0027-5107(02)00254-3] [PMID: 12459445]
[98]
Liu, D.; Keijzers, G.; Rasmussen, L.J. DNA mismatch repair and its many roles in eukaryotic cells. Mutat. Res., 2017, 773, 174-187.
[http://dx.doi.org/10.1016/j.mrrev.2017.07.001] [PMID: 28927527]
[99]
Lamers, M.H.; Perrakis, A.; Enzlin, J.H.; Winterwerp, H.H.; de Wind, N.; Sixma, T.K. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature, 2000, 407(6805), 711-717.
[http://dx.doi.org/10.1038/35037523] [PMID: 11048711]
[100]
Owen, B.A.H.; H Lang, W.; McMurray, C.T. The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat. Struct. Mol. Biol., 2009, 16(5), 550-557.
[http://dx.doi.org/10.1038/nsmb.1596] [PMID: 19377479]
[101]
Honda, M.; Okuno, Y.; Hengel, S.R.; Martín-López, J.V.; Cook, C.P.; Amunugama, R.; Soukup, R.J.; Subramanyam, S.; Fishel, R.; Spies, M. Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate. Proc. Natl. Acad. Sci. USA, 2014, 111(3), E316-E325.
[http://dx.doi.org/10.1073/pnas.1312988111] [PMID: 24395779]
[102]
Macpherson, P.; Barone, F.; Maga, G.; Mazzei, F.; Karran, P.; Bignami, M. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha. Nucleic Acids Res., 2005, 33(16), 5094-5105.
[http://dx.doi.org/10.1093/nar/gki813] [PMID: 16174844]
[103]
Kadyrov, F.A.; Dzantiev, L.; Constantin, N.; Modrich, P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell, 2006, 126(2), 297-308.
[http://dx.doi.org/10.1016/j.cell.2006.05.039] [PMID: 16873062]
[104]
Zhang, Y.; Yuan, F.; Presnell, S.R.; Tian, K.; Gao, Y.; Tomkinson, A.E.; Gu, L.; Li, G.M. Reconstitution of 5@-directed human mismatch repair in a purified system. Cell, 2005, 122(5), 693-705.
[http://dx.doi.org/10.1016/j.cell.2005.06.027] [PMID: 16143102]
[105]
Longley, M.J.; Pierce, A.J.; Modrich, P. DNA polymerase delta is required for human mismatch repair in vitro. J. Biol. Chem., 1997, 272(16), 10917-10921.
[http://dx.doi.org/10.1074/jbc.272.16.10917] [PMID: 9099749]
[106]
Hoege, C.; Pfander, B.; Moldovan, G.L.; Pyrowolakis, G.; Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 2002, 419(6903), 135-141.
[http://dx.doi.org/10.1038/nature00991] [PMID: 12226657]
[107]
Bienko, M.; Green, C.M.; Crosetto, N.; Rudolf, F.; Zapart, G.; Coull, B.; Kannouche, P.; Wider, G.; Peter, M.; Lehmann, A.R.; Hofmann, K.; Dikic, I. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science, 2005, 310(5755), 1821-1824.
[http://dx.doi.org/10.1126/science.1120615] [PMID: 16357261]
[108]
Friedberg, E.C.; Lehmann, A.R.; Fuchs, R.P. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell, 2005, 18(5), 499-505.
[http://dx.doi.org/10.1016/j.molcel.2005.03.032] [PMID: 15916957]
[109]
Vaisman, A.; Woodgate, R. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol., 2017, 52(3), 274-303.
[http://dx.doi.org/10.1080/10409238.2017.1291576] [PMID: 28279077]
[110]
van der Kemp, P.A.; de Padula, M.; Burguiere-Slezak, G.; Ulrich, H.D.; Boiteux, S. PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res., 2009, 37(8), 2549-2559.
[http://dx.doi.org/10.1093/nar/gkp105] [PMID: 19264809]
[111]
Hegde, M.L.; Izumi, T.; Mitra, S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. Prog. Mol. Biol. Transl. Sci., 2012, 110, 123-153.
[http://dx.doi.org/10.1016/B978-0-12-387665-2.00006-7] [PMID: 22749145]
[112]
Scott, T.L.; Rangaswamy, S.; Wicker, C.A.; Izumi, T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid. Redox Signal., 2014, 20(4), 708-726.
[http://dx.doi.org/10.1089/ars.2013.5529] [PMID: 23901781]
[113]
Nishimura, S. 8-Hydroxyguanine: a base for discovery. DNA Repair (Amst.), 2011, 10(11), 1078-1083.
[http://dx.doi.org/10.1016/j.dnarep.2011.04.006] [PMID: 22121518]
[114]
Nishimura, S. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Radic. Biol. Med., 2002, 32(9), 813-821.
[http://dx.doi.org/10.1016/S0891-5849(02)00778-5] [PMID: 11978483]
[115]
German, P.; Szaniszlo, P.; Hajas, G.; Radak, Z.; Bacsi, A.; Hazra, T.K.; Hegde, M.L.; Ba, X.; Boldogh, I. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair. DNA Repair (Amst.), 2013, 12(10), 856-863.
[http://dx.doi.org/10.1016/j.dnarep.2013.06.006] [PMID: 23890570]
[116]
Rowland, M.M.; Schonhoft, J.D.; McKibbin, P.L.; David, S.S.; Stivers, J.T. Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Res., 2014, 42(14), 9295-9303.
[http://dx.doi.org/10.1093/nar/gku621] [PMID: 25016526]
[117]
Richard, D.J.; Bolderson, E.; Cubeddu, L.; Wadsworth, R.I.; Savage, K.; Sharma, G.G.; Nicolette, M.L.; Tsvetanov, S.; McIlwraith, M.J.; Pandita, R.K.; Takeda, S.; Hay, R.T.; Gautier, J.; West, S.C.; Paull, T.T.; Pandita, T.K.; White, M.F.; Khanna, K.K. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453(7195), 677-681.
[http://dx.doi.org/10.1038/nature06883] [PMID: 18449195]
[118]
Richard, D.J.; Cubeddu, L.; Urquhart, A.J.; Bain, A.; Bolderson, E.; Menon, D.; White, M.F.; Khanna, K.K. hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity. Nucleic Acids Res., 2011, 39(9), 3643-3651.
[http://dx.doi.org/10.1093/nar/gkq1340] [PMID: 21227926]
[119]
Richard, D.J.; Savage, K.; Bolderson, E.; Cubeddu, L.; So, S.; Ghita, M.; Chen, D.J.; White, M.F.; Richard, K.; Prise, K.M.; Schettino, G.; Khanna, K.K. hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Res., 2011, 39(5), 1692-1702.
[http://dx.doi.org/10.1093/nar/gkq1098] [PMID: 21051358]
[120]
Yang, S.H.; Zhou, R.; Campbell, J.; Chen, J.; Ha, T.; Paull, T.T. The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO J., 2013, 32(1), 126-139.
[http://dx.doi.org/10.1038/emboj.2012.314] [PMID: 23178594]
[121]
Bolderson, E.; Petermann, E.; Croft, L.; Suraweera, A.; Pandita, R.K.; Pandita, T.K.; Helleday, T.; Khanna, K.K.; Richard, D.J. Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Res., 2014, 42(10), 6326-6336.
[http://dx.doi.org/10.1093/nar/gku276] [PMID: 24753408]
[122]
Paquet, N.; Adams, M.N.; Leong, V.; Ashton, N.W.; Touma, C.; Gamsjaeger, R.; Cubeddu, L.; Beard, S.; Burgess, J.T.; Bolderson, E.; O’Byrne, K.J.; Richard, D.J. hSSB1 (NABP2/ OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway. Nucleic Acids Res., 2015, 43(18), 8817-8829.
[http://dx.doi.org/10.1093/nar/gkv790] [PMID: 26261212]
[123]
Richard, D.J.; Bolderson, E.; Khanna, K.K. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit. Rev. Biochem. Mol. Biol., 2009, 44(2-3), 98-116.
[http://dx.doi.org/10.1080/10409230902849180] [PMID: 19367476]
[124]
Wu, Y.; Lu, J.; Kang, T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(7), 671-677.
[http://dx.doi.org/10.1093/abbs/gmw044] [PMID: 27217471]
[125]
Ashton, N.W.; Bolderson, E.; Cubeddu, L.; O’Byrne, K.J.; Richard, D.J. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol. Biol., 2013, 14, 9.
[http://dx.doi.org/10.1186/1471-2199-14-9] [PMID: 23548139]
[126]
Wold, M.S.; Kelly, T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA, 1988, 85(8), 2523-2527.
[http://dx.doi.org/10.1073/pnas.85.8.2523] [PMID: 2833742]
[127]
Huang, J.; Gong, Z.; Ghosal, G.; Chen, J. SOSS complexes participate in the maintenance of genomic stability. Mol. Cell, 2009, 35(3), 384-393.
[http://dx.doi.org/10.1016/j.molcel.2009.06.011] [PMID: 19683501]
[128]
Li, Y.; Bolderson, E.; Kumar, R.; Muniandy, P.A.; Xue, Y.; Richard, D.J.; Seidman, M.; Pandita, T.K.; Khanna, K.K.; Wang, W. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem., 2009, 284(35), 23525-23531.
[http://dx.doi.org/10.1074/jbc.C109.039586] [PMID: 19605351]
[129]
Skaar, J.R.; Ferris, A.L.; Wu, X.; Saraf, A.; Khanna, K.K.; Florens, L.; Washburn, M.P.; Hughes, S.H.; Pagano, M. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res., 2015, 25(3), 288-305.
[http://dx.doi.org/10.1038/cr.2015.19] [PMID: 25675981]
[130]
Skaar, J.R.; Richard, D.J.; Saraf, A.; Toschi, A.; Bolderson, E.; Florens, L.; Washburn, M.P.; Khanna, K.K.; Pagano, M. INTS3 controls the hSSB1-mediated DNA damage response. J. Cell Biol., 2009, 187(1), 25-32.
[http://dx.doi.org/10.1083/jcb.200907026] [PMID: 19786574]
[131]
Xu, S.; Feng, Z.; Zhang, M.; Wu, Y.; Sang, Y.; Xu, H.; Lv, X.; Hu, K.; Cao, J.; Zhang, R.; Chen, L.; Liu, M.; Yun, J.P.; Zeng, Y.X.; Kang, T. hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas. Oncogene, 2011, 30(19), 2219-2229.
[http://dx.doi.org/10.1038/onc.2010.596] [PMID: 21242961]
[132]
Xu, S.; Wu, Y.; Chen, Q.; Cao, J.; Hu, K.; Tang, J.; Sang, Y.; Lai, F.; Wang, L.; Zhang, R.; Li, S.P.; Zeng, Y.X.; Yin, Y.; Kang, T. hSSB1 regulates both the stability and the transcriptional activity of p53. Cell Res., 2013, 23(3), 423-435.
[http://dx.doi.org/10.1038/cr.2012.162] [PMID: 23184057]
[133]
Zhang, F.; Ma, T.; Yu, X. A core hSSB1-INTS complex participates in the DNA damage response. J. Cell Sci., 2013, 126(Pt 21), 4850-4855.
[http://dx.doi.org/10.1242/jcs.132514] [PMID: 23986477]
[134]
Paquet, N.; Adams, M.N.; Ashton, N.W.; Touma, C.; Gamsjaeger, R.; Cubeddu, L.; Leong, V.; Beard, S.; Bolderson, E.; Botting, C.H.; O’Byrne, K.J.; Richard, D.J. hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress. Sci. Rep., 2016, 6, 27446.
[http://dx.doi.org/10.1038/srep27446] [PMID: 27273218]
[135]
Ba, X.; Boldogh, I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol., 2018, 14, 669-678.
[http://dx.doi.org/10.1016/j.redox.2017.11.008] [PMID: 29175754]
[136]
Bruner, S.D.; Norman, D.P.; Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 2000, 403(6772), 859-866.
[http://dx.doi.org/10.1038/35002510] [PMID: 10706276]
[137]
Bravard, A.; Vacher, M.; Gouget, B.; Coutant, A.; de Boisferon, F.H.; Marsin, S.; Chevillard, S.; Radicella, J.P. Redox regulation of human OGG1 activity in response to cellular oxidative stress. Mol. Cell. Biol., 2006, 26(20), 7430-7436.
[http://dx.doi.org/10.1128/MCB.00624-06] [PMID: 16923968]
[138]
Bravard, A.; Campalans, A.; Vacher, M.; Gouget, B.; Levalois, C.; Chevillard, S.; Radicella, J.P. Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium. Mutat. Res., 2010, 685(1-2), 61-69.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.013] [PMID: 19800894]
[139]
Campalans, A.; Amouroux, R.; Bravard, A.; Epe, B.; Radicella, J.P. UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles. J. Cell Sci., 2007, 120(Pt 1), 23-32.
[http://dx.doi.org/10.1242/jcs.03312] [PMID: 17148573]
[140]
Kohno, T.; Shinmura, K.; Tosaka, M.; Tani, M.; Kim, S.R.; Sugimura, H.; Nohmi, T.; Kasai, H.; Yokota, J. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene, 1998, 16(25), 3219-3225.
[http://dx.doi.org/10.1038/sj.onc.1201872] [PMID: 9681819]
[141]
Lee, A.J.; Hodges, N.J.; Chipman, J.K. Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: role of the Ser326Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2@′-deoxyguanosine DNA glycosylase 1. Cancer Epidemiol. Biomarkers Prev., 2005, 14(2), 497-505.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0295] [PMID: 15734978]
[142]
Hill, J.W.; Evans, M.K. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res., 2006, 34(5), 1620-1632.
[http://dx.doi.org/10.1093/nar/gkl060] [PMID: 16549874]
[143]
Kaur, M.P.; Guggenheim, E.J.; Pulisciano, C.; Akbar, S.; Kershaw, R.M.; Hodges, N.J. Cellular accumulation of Cys326-OGG1 protein complexes under conditions of oxidative stress. Biochem. Biophys. Res. Commun., 2014, 447(1), 12-18.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.044] [PMID: 24680828]
[144]
Thakur, S.; Sarkar, B.; Cholia, R.P.; Gautam, N.; Dhiman, M.; Mantha, A.K. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp. Mol. Med., 2014, 46e106.
[145]
Mol, C.D.; Izumi, T.; Mitra, S.; Tainer, J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature, 2000, 403(6768), 451-456.
[http://dx.doi.org/10.1038/35000249] [PMID: 10667800]
[146]
Sung, J.S.; Demple, B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J., 2006, 273(8), 1620-1629.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05192.x] [PMID: 16623699]
[147]
Dyrkheeva, N.S.; Lebedeva, N.A.; Lavrik, O.I. AP Endonuclease 1 as a Key Enzyme in Repair of Apurinic/Apyrimidinic Sites. Biochemistry (Mosc.), 2016, 81(9), 951-967.
[http://dx.doi.org/10.1134/S0006297916090042] [PMID: 27682167]
[148]
Chohan, M.; Mackedenski, S.; Li, W.M.; Lee, C.H. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3@ RNA phosphatase and 3@ exoribonuclease activities. J. Mol. Biol., 2015, 427(2), 298-311.
[http://dx.doi.org/10.1016/j.jmb.2014.12.001] [PMID: 25498387]
[149]
Bhakat, K.K.; Mantha, A.K.; Mitra, S. Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid. Redox Signal., 2009, 11(3), 621-638.
[http://dx.doi.org/10.1089/ars.2008.2198] [PMID: 18715144]
[150]
Luo, M.; Delaplane, S.; Jiang, A.; Reed, A.; He, Y.; Fishel, M.; Nyland, R.L., II; Borch, R.F.; Qiao, X.; Georgiadis, M.M.; Kelley, M.R. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid. Redox Signal., 2008, 10(11), 1853-1867.
[http://dx.doi.org/10.1089/ars.2008.2120] [PMID: 18627350]
[151]
Xanthoudakis, S.; Miao, G.G.; Curran, T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc. Natl. Acad. Sci. USA, 1994, 91(1), 23-27.
[http://dx.doi.org/10.1073/pnas.91.1.23] [PMID: 7506414]
[152]
Demple, B.; Herman, T.; Chen, D.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA, 1991, 88(24), 11450-11454.
[http://dx.doi.org/10.1073/pnas.88.24.11450] [PMID: 1722334]
[153]
Xanthoudakis, S.; Curran, T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J., 1992, 11(2), 653-665.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05097.x] [PMID: 1537340]
[154]
Nishi, T.; Shimizu, N.; Hiramoto, M.; Sato, I.; Yamaguchi, Y.; Hasegawa, M.; Aizawa, S.; Tanaka, H.; Kataoka, K.; Watanabe, H.; Handa, H. Spatial redox regulation of a critical cysteine residue of NF-kappa B in vivo. J. Biol. Chem., 2002, 277(46), 44548-44556.
[http://dx.doi.org/10.1074/jbc.M202970200] [PMID: 12213807]
[155]
Ema, M.; Hirota, K.; Mimura, J.; Abe, H.; Yodoi, J.; Sogawa, K.; Poellinger, L.; Fujii-Kuriyama, Y. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J., 1999, 18(7), 1905-1914.
[http://dx.doi.org/10.1093/emboj/18.7.1905] [PMID: 10202154]
[156]
Tell, G.; Zecca, A.; Pellizzari, L.; Spessotto, P.; Colombatti, A.; Kelley, M.R.; Damante, G.; Pucillo, C. An ‘environment to nucleus’ signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res., 2000, 28(5), 1099-1105.
[http://dx.doi.org/10.1093/nar/28.5.1099] [PMID: 10666449]
[157]
Huang, R.P.; Adamson, E.D. Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol., 1993, 12(3), 265-273.
[http://dx.doi.org/10.1089/dna.1993.12.265] [PMID: 8466649]
[158]
Ueno, M.; Masutani, H.; Arai, R.J.; Yamauchi, A.; Hirota, K.; Sakai, T.; Inamoto, T.; Yamaoka, Y.; Yodoi, J.; Nikaido, T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J. Biol. Chem., 1999, 274(50), 35809-35815.
[http://dx.doi.org/10.1074/jbc.274.50.35809] [PMID: 10585464]
[159]
Xanthoudakis, S.; Miao, G.; Wang, F.; Pan, Y.C.; Curran, T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J., 1992, 11(9), 3323-3335.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05411.x] [PMID: 1380454]
[160]
Ando, K.; Hirao, S.; Kabe, Y.; Ogura, Y.; Sato, I.; Yamaguchi, Y.; Wada, T.; Handa, H. A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. Nucleic Acids Res., 2008, 36(13), 4327-4336.
[http://dx.doi.org/10.1093/nar/gkn416] [PMID: 18586825]
[161]
Luo, M.; Zhang, J.; He, H.; Su, D.; Chen, Q.; Gross, M.L.; Kelley, M.R.; Georgiadis, M.M. Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemistry, 2012, 51(2), 695-705.
[http://dx.doi.org/10.1021/bi201034z] [PMID: 22148505]
[162]
Walker, L.J.; Robson, C.N.; Black, E.; Gillespie, D.; Hickson, I.D. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol. Cell. Biol., 1993, 13(9), 5370-5376.
[http://dx.doi.org/10.1128/MCB.13.9.5370] [PMID: 8355688]
[163]
Kim, Y.J.; Kim, D.; Illuzzi, J.L.; Delaplane, S.; Su, D.; Bernier, M.; Gross, M.L.; Georgiadis, M.M.; Wilson, D.M., III S-glutathionylation of cysteine 99 in the APE1 protein impairs abasic endonuclease activity. J. Mol. Biol., 2011, 414(3), 313-326.
[http://dx.doi.org/10.1016/j.jmb.2011.10.023] [PMID: 22024594]
[164]
Sweasy, J.B.; Lang, T.; DiMaio, D. Is base excision repair a tumor suppressor mechanism? Cell Cycle, 2006, 5(3), 250-259.
[http://dx.doi.org/10.4161/cc.5.3.2414] [PMID: 16418580]
[165]
Curtin, N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer, 2012, 12(12), 801-817.
[http://dx.doi.org/10.1038/nrc3399] [PMID: 23175119]
[166]
Xu, Z.; Yu, L.; Zhang, X. Association between the hOGG1 Ser326Cys polymorphism and lung cancer susceptibility: a meta-analysis based on 22,475 subjects. Diagn. Pathol., 2013, 8, 144.
[http://dx.doi.org/10.1186/1746-1596-8-144] [PMID: 23971971]
[167]
Bapat, A.; Fishel, M.L.; Kelley, M.R. Going ape as an approach to cancer therapeutics. Antioxid. Redox Signal., 2009, 11(3), 651-668.
[http://dx.doi.org/10.1089/ars.2008.2218] [PMID: 18715143]
[168]
Fishel, M.L.; Kelley, M.R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med., 2007, 28(3-4), 375-395.
[http://dx.doi.org/10.1016/j.mam.2007.04.005] [PMID: 17560642]
[169]
Raffoul, J.J.; Heydari, A.R.; Hillman, G.G. DNA Repair and Cancer Therapy: Targeting APE1/Ref-1 Using Dietary Agents. J. Oncol., 2012, 2012370481
[http://dx.doi.org/10.1155/2012/370481] [PMID: 22997517]
[170]
Evans, A.R.; Limp-Foster, M.; Kelley, M.R. Going APE over ref-1. Mutat. Res., 2000, 461(2), 83-108.
[http://dx.doi.org/10.1016/S0921-8777(00)00046-X] [PMID: 11018583]
[171]
Zou, G.M.; Karikari, C.; Kabe, Y.; Handa, H.; Anders, R.A.; Maitra, A. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis. J. Cell. Physiol., 2009, 219(1), 209-218.
[http://dx.doi.org/10.1002/jcp.21666] [PMID: 19097035]
[172]
Kelley, M.R.; Luo, M.; Reed, A.; Su, D.; Delaplane, S.; Borch, R.F.; Nyland, R.L., II; Gross, M.L.; Georgiadis, M.M. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP endonuclease/redox signaling enzyme APE1/Ref-1. Antioxid. Redox Signal., 2011, 14(8), 1387-1401.
[http://dx.doi.org/10.1089/ars.2010.3410] [PMID: 20874257]
[173]
Bennett, S.E.; Kitner, J. Characterization of the aldehyde reactive probe reaction with AP-sites in DNA: influence of AP-lyase on adduct stability. Nucleosides Nucleotides Nucleic Acids, 2006, 25(7), 823-842.
[http://dx.doi.org/10.1080/15257770600726133] [PMID: 16898421]
[174]
Lau, J.P.; Weatherdon, K.L.; Skalski, V.; Hedley, D.W. Effects of gemcitabine on APE/ref-1 endonuclease activity in pancreatic cancer cells, and the therapeutic potential of antisense oligonucleotides. Br. J. Cancer, 2004, 91(6), 1166-1173.
[http://dx.doi.org/10.1038/sj.bjc.6602080] [PMID: 15316562]
[175]
Mendez, F.; Goldman, J.D.; Bases, R.E. Abasic sites in DNA of HeLa cells induced by lucanthone. Cancer Invest., 2002, 20(7-8), 983-991.
[http://dx.doi.org/10.1081/CNV-120005914] [PMID: 12449731]
[176]
Turner, S.; Bases, R.; Pearlman, A.; Nobler, M.; Kabakow, B. The adjuvant effect of lucanthone (miracil D) in clinical radiation therapy. Radiology, 1975, 114(3), 729-731.
[http://dx.doi.org/10.1148/114.3.729] [PMID: 1118579]
[177]
Truong, M.T. Current role of radiation therapy in the management of malignant brain tumors. Hematol. Oncol. Clin. North Am., 2006, 20(2), 431-453.
[http://dx.doi.org/10.1016/j.hoc.2006.01.022] [PMID: 16730301]
[178]
Herring, C.J.; West, C.M.; Wilks, D.P.; Davidson, S.E.; Hunter, R.D.; Berry, P.; Forster, G.; MacKinnon, J.; Rafferty, J.A.; Elder, R.H.; Hendry, J.H.; Margison, G.P. Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers. Br. J. Cancer, 1998, 78(9), 1128-1133.
[http://dx.doi.org/10.1038/bjc.1998.641] [PMID: 9820167]
[179]
Koukourakis, M.I.; Giatromanolaki, A.; Kakolyris, S.; Sivridis, E.; Georgoulias, V.; Funtzilas, G.; Hickson, I.D.; Gatter, K.C.; Harris, A.L. Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int. J. Radiat. Oncol. Biol. Phys., 2001, 50(1), 27-36.
[http://dx.doi.org/10.1016/S0360-3016(00)01561-3] [PMID: 11316543]
[180]
Herring, C.J.; Deans, B.; Elder, R.H.; Rafferty, J.A.; MacKinnon, J.; Barzilay, G.; Hickson, I.D.; Hendry, J.H.; Margison, G.P. Expression levels of the DNA repair enzyme HAP1 do not correlate with the radiosensitivities of human or HAP1-transfected rat cell lines. Br. J. Cancer, 1999, 80(7), 940-945.
[http://dx.doi.org/10.1038/sj.bjc.6690447] [PMID: 10362100]
[181]
Naidu, M.D.; Mason, J.M.; Pica, R.V.; Fung, H.; Peña, L.A. Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. J. Radiat. Res. (Tokyo), 2010, 51(4), 393-404.
[http://dx.doi.org/10.1269/jrr.09077] [PMID: 20679741]
[182]
Madhusudan, S.; Smart, F.; Shrimpton, P.; Parsons, J.L.; Gardiner, L.; Houlbrook, S.; Talbot, D.C.; Hammonds, T.; Freemont, P.A.; Sternberg, M.J.; Dianov, G.L.; Hickson, I.D. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res., 2005, 33(15), 4711-4724.
[http://dx.doi.org/10.1093/nar/gki781] [PMID: 16113242]
[183]
Earle, J.D.; Foley, J.F.; Wieand, H.S.; Kvols, L.K.; McKenna, P.J.; Krook, J.E.; Tschetter, L.K.; Schutt, A.J.; Twito, D.I. Evaluation of external-beam radiation therapy plus 5-fluorouracil (5-FU) versus external-beam radiation therapy plus hycanthone (HYC) in confined, unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys., 1994, 28(1), 207-211.
[http://dx.doi.org/10.1016/0360-3016(94)90159-7] [PMID: 8270443]
[184]
Wilson, D.M., III; Simeonov, A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell. Mol. Life Sci., 2010, 67(21), 3621-3631.
[http://dx.doi.org/10.1007/s00018-010-0488-2] [PMID: 20809131]
[185]
Gullett, N.P.; Ruhul Amin, A.R.; Bayraktar, S.; Pezzuto, J.M.; Shin, D.M.; Khuri, F.R.; Aggarwal, B.B.; Surh, Y.J.; Kucuk, O. Cancer prevention with natural compounds. Semin. Oncol., 2010, 37(3), 258-281.
[http://dx.doi.org/10.1053/j.seminoncol.2010.06.014] [PMID: 20709209]
[186]
Yang, S.; Irani, K.; Heffron, S.E.; Jurnak, F.; Meyskens, F.L., Jr Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther., 2005, 4(12), 1923-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0229] [PMID: 16373707]
[187]
Raffoul, J.J.; Banerjee, S.; Singh-Gupta, V.; Knoll, Z.E.; Fite, A.; Zhang, H.; Abrams, J.; Sarkar, F.H.; Hillman, G.G. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res., 2007, 67(5), 2141-2149.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2147] [PMID: 17332344]
[188]
Singh-Gupta, V.; Joiner, M. C.; Runyan, L.; Yunker, C. K.; Sarkar, F. H.; Miller, S.; Gadgeel, S. M.; Konski, A. A.; Hillman, G. G. Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2011, 6(4), 688-98
[189]
NIH Clinical Trial Database. www.clinicaltrials.gov
[190]
Atkins, R. J.; Ng, W.; Stylli, S. S.; Hovens, C. M.; Kaye, A. H. Repair mechanisms help glioblastoma resist treatment. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2015, 22(1), 14-20.
[191]
Montaldi, A.P.; Godoy, P.R.; Sakamoto-Hojo, E.T. APE1/REF-1 down-regulation enhances the cytotoxic effects of temozolomide in a resistant glioblastoma cell line. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 793, 19-29.
[http://dx.doi.org/10.1016/j.mrgentox.2015.06.001] [PMID: 26520369]
[192]
Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol., 1999, 57(7), 727-741.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[193]
Chen, S.; Xiong, G.; Wu, S.; Mo, J. Downregulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 enhances the sensitivity of human pancreatic cancer cells to radiotherapy in vitro. Cancer Biother. Radiopharm., 2013, 28(2), 169-176.
[http://dx.doi.org/10.1089/cbr.2012.1266] [PMID: 23268706]
[194]
Gavrilov, K.; Saltzman, W.M. Therapeutic siRNA: principles, challenges, and strategies. Yale J. Biol. Med., 2012, 85(2), 187-200.
[PMID: 22737048]
[195]
Haller, D.G. Chemotherapy for advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys., 2003, 56(4)(Suppl.), 16-23.
[http://dx.doi.org/10.1016/S0360-3016(03)00448-6] [PMID: 12826247]
[196]
Donley, N.; Jaruga, P.; Coskun, E.; Dizdaroglu, M.; McCullough, A.K.; Lloyd, R.S. Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chem. Biol., 2015, 10(10), 2334-2343.
[http://dx.doi.org/10.1021/acschembio.5b00452] [PMID: 26218629]
[197]
Tahara, Y.K.; Auld, D.; Ji, D.; Beharry, A.A.; Kietrys, A.M.; Wilson, D.L.; Jimenez, M.; King, D.; Nguyen, Z.; Kool, E.T. Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J. Am. Chem. Soc., 2018, 140(6), 2105-2114.
[http://dx.doi.org/10.1021/jacs.7b09316] [PMID: 29376367]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy