[1]
Zhao, H.; Cui, G.; Jin, J.; Chen, X.; Xu, B. Synthesis and Pin1 inhibitory activity of thiazole derivatives. Bioorg.& Med. Chem., 2016, 24(22), 5911-5920.
[2]
Taha, M.; Ismail, N.H.; Imran, S.; Selvaraj, M.; Rahim, F. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6, 3003-3012.
[3]
Mouri, K.; Saito, S.; Yamaguchi, S. Highly flexible p-expanded cyclooctatetraenes: cyclic thiazole tetramers with head-to-tail connection. Angew. Chem. Int. Ed., 2012, 51, 5971-5975.
[4]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. Synthesis, characterization and antimicrobial activity of some new biquinoline derivatives containing a thiazole moiety. Chin. Chem. Lett., 2012, 23, 454-457.
[5]
Mukhopadhyay, C.; Ray, S. Rapid and straightforward one-pot expeditious synthesis of 2-amino-5-alkylidene-thiazol-4-ones at room temperature. Tetrahedron Lett., 2011, 52, 6431-6438.
[6]
Heravi, M.M.; Moghimi, S. An efficient synthesis of thiazol-2-imine derivatives via a one-pot, three-component reaction. Tetrahedron Lett., 2012, 53, 392-394.
[7]
Li, Z.; Yang, Q.; Qian, X. Novel heterocyclic family of phenyl naphthothiazole carboxamides derived from naphthalimides: Synthesis, antitumor evaluation, and DNA photocleavage. Bioorg. Med. Chem., 2005, 13, 3149-3155.
[8]
Li, Y.; Xu, Y.; Qianb, X.; Qu, B. Naphthalimide-thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetrahedron Lett., 2004, 45, 1247-1251.
[9]
De Souza, M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem., 2005, 26, 429-449.
[10]
Shi, Q.; Liu, S.; Wood, M.K.; Shao, H.; Shi, L. Long-term outcomes associated with triple-goal achievement in patients with type 2 diabetes mellitus (T2DM). Diabetes Res. Clin. Pract., 2018, 140, 45-54.
[11]
Qiu, X.L.; Li, G.; Wu, G.; Zhu, J.; Zhou, L.; Chen, P.L.; Chamberlin, A.R.; Lee, W.H. Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 Analogues. J. Med. Chem., 2009, 52, 1757-1767.
[12]
Tsoua, H.; MacEwan, G.; Birnberg, G.; Grosu, G.; Bursavich, M.G.; Bard, J.; Brooijmansa, N.; Toral-Barzab, L.; Hollanderb, I.; Mansoura, T.S.; Ayral-Kaloustiana, K.; Yub, S. Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxy-benzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR). Bioorg. Med. Chem. Lett., 2010, 20, 2321-2325.
[13]
Mohammed, H.B.; Hemant, K.S.; Garikapati, N.S. Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models. Org. Med. Chem. Lett., 2011, 1, 1-12.
[14]
Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20, 3378-3395.
[15]
Liu, L.; Siegmund, A.; Xi, N.; Lefko, P.K.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.Y.; Teffera, Y.; Yang, Y.J.; Zhang, Y.H.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-Hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy) pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51, 3688-3691.
[16]
Peach, M.L.; Tan, N.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R.; Nicklaus, M.C.; Bottaro, D.P. Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52, 943-951.
[17]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60, 1113-1117.
[18]
Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147, 386-396.
[19]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67, 967-975.
[20]
Bacco, F.D.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103, 645-661.
[21]
Zhu, W.; Wang, W.; Xu, S.; Wang, J.; Tang, Q.; Wu, C.; Zhao, Y.; Zheng, P. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24, 1749-1756.
[22]
Zhang, Z.; Lee, J.C.; Li, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44, 852-860.
[23]
Li, S.; Huang, Q.; Liu, Y.; Zhang, X.; Liu, S.; He, C.; Gong, P. Design, synthesis and antitumour activity of bisquinoline derivatives connected by 4-oxy-3-fluoroaniline moiety. Eur. J. Med. Chem., 2013, 64, 62-73.
[24]
Dömling, A. Recent developments in isocyanide based multi-component reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89.
[25]
Rivera, D.G.; León, F.; Concepción, O.; Morales, F.E.; Wessjohann, L.A. A multiple multi-component approach to chimeric peptide-peptoid podands. Chemistry Eur. J.,, 2013, 19, 6417-6428.
[26]
Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multi-component reactions and their libraries. Molecules, 2003, 8, 53-66.
[27]
Van Berkel, S.S.; Bögels, B.G.; Wijdeven, M.A.; Westermann, B.; Rutjes, F.P. Recentadvances in asymmetric isocyanide-based multi-component reactions. Eur. J. Org. Chem., 2012, 2012, 3543-3559.
[28]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multi-component reactions. Chem. Rev., 2014, 114, 8323-8359.
[29]
Lia, M.M.; Duana, C.S.; Yub, Y.Q.; Xua, D.Z. A general and efficient one-pot synthesis of spiro[2-amino-4H-pyrans] via tandem multi-component reactions catalyzed by Dabco-based ionic liquids. Dyes Pigments, 2018, 150, 202-206.
[30]
Keivanloo, A.; Kazemi, S.S.; Isfahani, H.N.; Bamoniri, A. Novel multi-component synthesis of 1,4-disubstituted pyrrolo[1,2-a]quinoxalines through palladium-catalyzed coupling reaction/hetero-annulation in water. Tetrahedron, 2016, 72, 6536-6542.
[31]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28, 517-520.
[32]
Lu, Y.; Yan, Y.; Wang, L.; Wang, X.; Gao, J.; Xi, T.; Wang, Z.; Jiang, F. Design, facile synthesis and biological evaluations of novel pyrano[3,2-a]phenazine hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2017, 127, 928-943.
[33]
Lu, Y.; Wang, L.; Wang, X.; Xi, T.; Liao, J.; Wang, Z.; Jiang, F. Design, combinatorial synthesis and biological evaluations of novel 3-amino-10-((1-aryl-1H-1,2,3-triazol-5-yl)methyl)-20-oxospiro [benzo[a] pyrano[2,3-c]phenazine-1,3′-indoline]-2-carbonitrile antitumorhybrid molecules. Eur. J. Med. Chem., 2017, 135, 125-141.