Review Article

治疗幽门螺杆菌感染的主要目标——脲酶抑制剂设计的见解

卷 27, 期 23, 2020

页: [3967 - 3982] 页: 16

弟呕挨: 10.2174/0929867326666190301143549

价格: $65

conference banner
摘要

脲酶由多种植物、真菌和细菌表达,与许多细菌的毒力因子直接相关,其中包括幽门螺杆菌。幽门螺杆菌是一种与多种胃肠疾病有关的革兰氏阴性菌,是世界上最常见的细菌感染之一。幽门螺杆菌脲酶(HPU)是一种镍依赖性金属酶,在胃的酸性pH引起的环境应激下表达。该酶通过尿素水解产物的酸性中和作用,促进胃pH值的增加,进而对微生物的定植和发病起关键作用。与此同时,幽门螺杆菌感染的标准治疗也存在局限性,如临床应用中细菌对抗生素的耐药性不断增加。作为开发新型治疗手段的一种策略,脲酶抑制剂已被证明是很有前景的,有广泛的化合物,包括天然的、合成的和半合成的产品被研究和潜在开发为新药。在此背景下,本文综述了HPU抑制领域的进展,提出并讨论了研究新分子的基础,旨在识别更有效的治疗实体。

关键词: 幽门螺杆菌,脲酶,给药,消化性溃疡,胃炎,胃腺癌。

« Previous
[1]
Sanders, M.K.; Peura, D.A. Helicobacter pylori-Associated Diseases. Curr. Gastroenterol. Rep., 2002, 4(6), 448-454.
[http://dx.doi.org/10.1007/s11894-002-0019-x] [PMID: 12441033]
[2]
Howden, C.W.; Chey, W.D.; Vakil, N.B. Clinical rationale for confirmation testing after treatment of Helicobacter pylori infection: implications of rising antibiotic resistance. Gastroenterol. Hepatol. (N. Y.), 2014, 10(7)(Suppl. 3), 1-19.
[PMID: 25892981]
[3]
World Health Organization (WHO) Report from the World Health Organization’s Third Product Development for Vaccines Advisory Committee (PDVAC) Meeting, Geneva, 8-10th June 2016., Available at:. https://www.who.int/ immunization/research/meetings_workshops/PDVAC_ 2016_report.pdf (Accessed: January 31, 2019).
[4]
Wroblewski, L.E.; Peek, R.M., Jr Helicobacter pylori: Pathogenic enablers - toxic relationships in the stomach. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(6), 317-318.
[http://dx.doi.org/10.1038/nrgastro.2016.68] [PMID: 27147493]
[5]
Roesler, B.M.; Rabelo-Gonçalves, E.M.A.; Zeitune, J.M.R. Virulence factors of Helicobacter pylori: a review. Clin. Med. Insights Gastroenterol., 2014, 7, 9-17.
[http://dx.doi.org/10.4137/CGast.S13760] [PMID: 24833944]
[6]
Hunt, R.H.; Xiao, S.D.; Megraud, F.; Leon-Barua, R.; Bazzoli, F.; van der Merwe, S.; Vaz Coelho, L.G.; Fock, M.; Fedail, S.; Cohen, H.; Malfertheiner, P.; Vakil, N.; Hamid, S.; Goh, K.L.; Wong, B.C.Y.; Krabshuis, J.; Le Mair, A. World Gastroenterology Organization. Helicobacter pylori in developing countries. World Gastroenterology Organisation Global Guideline. J. Gastrointestin. Liver Dis, 2011, 20(3), 299-304.
[PMID: 21961099]
[7]
Garza-González, E.; Perez-Perez, G.I.; Maldonado-Garza, H.J.; Bosques-Padilla, F.J. A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J. Gastroenterol., 2014, 20(6), 1438-1449.
[http://dx.doi.org/10.3748/wjg.v20.i6.1438] [PMID: 24587620]
[8]
Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.
[http://dx.doi.org/10.1038/ajg.2016.563] [PMID: 28071659]
[9]
Safavi, M.; Sabourian, R.; Foroumadi, A. Treatment of Helicobacter pylori infection: Current and future insights. World J. Clin. Cases, 2016, 4(1), 5-19.
[http://dx.doi.org/10.12998/wjcc.v4.i1.5] [PMID: 26798626]
[10]
Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. European helicobacter and microbiota study group and consensus panel. Management of Helicobacter pylori infection- the Maastricht V/florence consensus report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[11]
World Health Organization (WHO). WHO publishes list of bacteria for which new antibiotics are urgently needed,, 2017.Available at:. http://www.who.int/mediacentre/ news/releases/2017/bac teria-antibiotics-needed/en/
[12]
Sumner, J.B. The isolation and crystallization of the enzyme urease. Preliminary paper. J. Biol. Chem., 1926, 69, 435-441.
[13]
Mora, D.; Arioli, S. Microbial urease in health and disease. PLoS Pathog., 2014, 10(12)e1004472
[http://dx.doi.org/10.1371/journal.ppat.1004472] [PMID: 25501953]
[14]
Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615] [PMID: 21457123]
[15]
Balasubramanian, A.; Ponnuraj, K. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2008, 64(Pt 7), 662-664.
[http://dx.doi.org/10.1107/S1744309108016849] [PMID: 18607103]
[16]
Dixon, N.E.; Gazzola, T.C.; blakeley, R.L.; Zermer, B. Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc., 1975, 97(14), 4131-4133.
[http://dx.doi.org/10.1021/ja00847a045] [PMID: 1159216]
[17]
Balasubramanian, A.; Ponnuraj, K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol., 2010, 400(3), 274-283.
[http://dx.doi.org/10.1016/j.jmb.2010.05.009] [PMID: 20471401]
[18]
Phadnis, S.H.; Parlow, M.H.; Levy, M.; Ilver, D.; Caulkins, C.M.; Connors, J.B.; Dunn, B.E. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun., 1996, 64(3), 905-912.
[http://dx.doi.org/10.1128/IAI.64.3.905-912.1996] [PMID: 8641799]
[19]
Hassan, S.T.; Šudomová, M. The development of urease inhibitors: what opportunities exist for better treatment of Helicobacter pylori infection in children? Children (Basel), 2017, 4(1), 1-5.
[http://dx.doi.org/10.3390/children4010002] [PMID: 28054971]
[20]
Scott, D.R.; Marcus, E.A.; Weeks, D.L.; Sachs, G. Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology, 2002, 123(1), 187-195.
[http://dx.doi.org/10.1053/gast.2002.34218] [PMID: 12105847]
[21]
Patrick, G. An introduction to medicinal chemistry, 6th ed; Oxford University Press, 2017.
[22]
Gordon, D. A pH-sensitive channel regulates urea access to Helicobacter pylori urease. Gastroenterology, 2000, 118(2), 249-250.
[http://dx.doi.org/10.1016/S0016-5085(00)70200-9] [PMID: 10691368]
[23]
Weeks, D.L.; Eskandari, S.; Scott, D.R.; Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science, 2000, 287(5452), 482-485.
[http://dx.doi.org/10.1126/science.287.5452.482] [PMID: 10642549]
[24]
Amieva, M.; Peek, R.M., Jr Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology, 2016, 150(1), 64-78.
[http://dx.doi.org/10.1053/j.gastro.2015.09.004] [PMID: 26385073]
[25]
Mendz, G.L.; Holmes, E.M.; Ferrero, R.L. In situ characterization of Helicobacter pylori arginase. Biochim. Biophys. Acta, 1998, 1388(2), 465-477.
[http://dx.doi.org/10.1016/S0167-4838(98)00207-6] [PMID: 9858781]
[26]
Gobert, A.P.; McGee, D.J.; Akhtar, M.; Mendz, G.L.; Newton, J.C.; Cheng, Y.; Mobley, H.L.T.; Wilson, K.T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13844-13849.
[http://dx.doi.org/10.1073/pnas.241443798] [PMID: 11717441]
[27]
Gobert, A.P.; Wilson, K.T. The immune battle against Helicobacter pylori infection: no offense. Trends Microbiol., 2016, 24(5), 366-376.
[http://dx.doi.org/10.1016/j.tim.2016.02.005] [PMID: 26916789]
[28]
Malfertheiner, P.; Link, A.; Selgrad, M. Helicobacter pylori: perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(10), 628-638.
[http://dx.doi.org/10.1038/nrgastro.2014.99] [PMID: 25001975]
[29]
Foegeding, N.J.; Caston, R.R.; McClain, M.S.; Ohi, M.D.; Cover, T.L. An overview of Helicobacter pylori VacA toxin biology. Toxins (Basel), 2016, 8(6), 1-21.
[http://dx.doi.org/10.3390/toxins8060173] [PMID: 27271669]
[30]
Cover, T.L.; Blaser, M.J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem., 1992, 267(15), 10570-10575.
[PMID: 1587837]
[31]
Lima, V.P.; Rabenhorst, S.H.B. Genes associados à virulência de Helicobacter pylori. Rev. Bras. Cancerol., 2009, 55(4), 389-396.
[32]
Peter, J. Causes of failure of eradication of Helicobacter pylori antibiotic resistance is the major cause, and susceptibility testing may help. BMJ, 2002, 325(7354), 3-4.
[http://dx.doi.org/10.1136/bmj.325.7354.3] [PMID: 12098709]
[33]
Odenbreit, S.; Püls, J.; Sedlmaier, B.; Gerland, E.; Fischer, W.; Haas, R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 2000, 287(5457), 1497-1500.
[http://dx.doi.org/10.1126/science.287.5457.1497] [PMID: 10688800]
[34]
Oleastro, M.; Ménard, A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology (Basel), 2013, 2(3), 1110-1134.
[http://dx.doi.org/10.3390/biology2031110] [PMID: 24833057]
[35]
Mobley, H.L.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev., 1995, 59(3), 451-480.
[http://dx.doi.org/10.1128/MMBR.59.3.451-480.1995] [PMID: 7565414]
[36]
Scott, D.R.; Marcus, E.A.; Weeks, D.L.; Lee, A.; Melchers, K.; Sachs, G. Expression of the Helicobacter pylori ureI gene is required for acidic pH activation of cytoplasmic urease. Infect. Immun., 2000, 68(2), 470-477.
[http://dx.doi.org/10.1128/IAI.68.2.470-477.2000] [PMID: 10639406]
[37]
Skouloubris, S.; Thiberge, J.M.; Labigne, A.; De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun., 1998, 66(9), 4517-4521.
[http://dx.doi.org/10.1128/IAI.66.9.4517-4521.1998] [PMID: 9712811]
[38]
Scott, D.R.; Marcus, E.A.; Wen, Y.; Oh, J.; Sachs, G. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc. Natl. Acad. Sci. USA, 2007, 104(17), 7235-7240.
[http://dx.doi.org/10.1073/pnas.0702300104] [PMID: 17438279]
[39]
Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol., 2001, 8(6), 505-509.
[http://dx.doi.org/10.1038/88563] [PMID: 11373617]
[40]
Mobley, H.L.T. Helicobacter pylori: physiology and genetics, Urease. Am. Soc. Microbiol.,, 2001, 179-191.
[http://dx.doi.org/10.1128/9781555818005.ch16] [PMID: 21290719]
[41]
Minkara, M.S.; Ucisik, M.N.; Weaver, M.N.; Merz, K.M., Jr Molecular dynamics study of Helicobacter pylori urease. J. Chem. Theory Comput., 2014, 10(5), 1852-1862.
[http://dx.doi.org/10.1021/ct5000023] [PMID: 24839409]
[42]
Pinkse, M.W.H.; Maier, C.S.; Kim, J.I.; Oh, B.H.; Heck, A.J.R. Macromolecular assembly of Helicobacter pylori urease investigated by mass spectrometry. J. Mass Spectrom., 2003, 38(3), 315-320.
[http://dx.doi.org/10.1002/jms.443] [PMID: 12644993]
[43]
Ha, N.C.; Oh, S.T.; Oh, B.H. 1E97: Crystal structure of Helicobacter pylori urease,, 2001.Available at:. http://www.rcsb.org/structure/1E9Z
[http://dx.doi.org/10.2210/pdb1E9Z/pdb]
[44]
Habala, L.; Devínsky, F.; Egger, A.E. Review: metal complexes as urease inhibitors. J. Coord. Chem., 2018, 71, 907-940.
[http://dx.doi.org/10.1080/00958972.2018.1458228]
[45]
Krajewska, B.; Ureases, I. Functional, catalytic and kinetic properties: a review. J. Mol. Catal., B Enzym., 2009, 59(1-3), 9-21.
[http://dx.doi.org/10.1016/j.molcatb.2009.01.003]
[46]
Amtul, Z.; Rahman, A.U.; Siddiqui, R.A.; Choudhary, M.I. Chemistry and mechanism of urease inhibition. Curr. Med. Chem., 2002, 9(14), 1323-1348.
[http://dx.doi.org/10.2174/0929867023369853] [PMID: 12132990]
[47]
Debraekeleer, A.; Remaut, H. Future perspective for potential Helicobacter pylori eradication therapies. Future Microbiol., 2018, 13, 671-687.
[http://dx.doi.org/10.2217/fmb-2017-0115] [PMID: 29798689]
[48]
Shah, M.R.; Soomro, Z.H. Urease inhibition In. Enzyme Inhibition and Bioapplications, 2012, 303-314.
[http://dx.doi.org/10.5772/34807]
[49]
Upadhyay, L.S.B. Urease inhibitors: a review. Indian J. Biotechnol., 2012, 11(4), 381-388.
[50]
Sheng, G.H.; Zhou, Q.C.; Hu, X.M.; Wang, C.F.; Chen, X.F.; Xue, D.; Yan, K.; Ding, S.S.; Wang, J.; Du, Z.Y.; Liu, Z.H.; Zhang, C.Y.; Zhu, H.L. Synthesis, structure, urease inhibitory, and cytotoxic activities of two complexes with protocatechuic acid derivative and phenanthroline. J. Coord. Chem., 2015, 68(9), 1571-1582.
[http://dx.doi.org/10.1080/00958972.2015.1023718]
[51]
Shaw, W.H.R. The inhibition of urease by various metal ions. J. Am. Chem. Soc., 1954, 76(8), 2160-2163.
[http://dx.doi.org/10.1021/ja01637a034]
[52]
Shaw, W.H.R.; Raval, D.N. The inhibition of urease by metal ions at pH 8.9. J. Am. Chem. Soc., 1961, 83(15), 3184-3187.
[http://dx.doi.org/10.1021/ja01476a004]
[53]
Ambrose, J.F.; Kistiakowsky, G.B.; Kridl, A.G. Inhibition of urease by silver ions. J. Am. Chem. Soc., 1951, 73(3), 1232-1236.
[http://dx.doi.org/10.1021/ja01147a106]
[54]
Pan, L.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Zhu, H.; Zhao, X.; Qu, D.; Niu, F.; You, Z. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands. J. Inorg. Biochem., 2016, 159, 22-28.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.017] [PMID: 26908284]
[55]
You, Z.; Liu, M.; Wang, C.; Sheng, G.; Zhao, X.; Qu, D.; Niu, F. Inhibition studies of Helicobacter pylori urease with Schiff base copper(II) complexes. RSC Advances, 2016, 6(20), 16679-16690.
[http://dx.doi.org/10.1039/C6RA00500D]
[56]
de Fátima, Â.; Pereira, C.P.; Olímpio, C.R.S.D.G.; de Freitas Oliveira, B.G.; Franco, L.L.; da Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors - A brief review. J. Adv. Res., 2018, 13, 113-126.
[http://dx.doi.org/10.1016/j.jare.2018.03.007] [PMID: 30094086]
[57]
You, Z.L.; Lu, Y.; Zhang, N.; Ding, B.W.; Sun, H.; Hou, P.; Wang, C. Preparation and structural characterization of hetero- dinuclear Schiff base copper(II)-zinc(II) complexes and their inhibition studies on Helicobacter pylori urease. Polyhedron, 2011, 30(13), 2186-2194.
[http://dx.doi.org/10.1016/j.poly.2011.05.048]
[58]
Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M.K.; Sharma, S.R.; Choudhary, M. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes. J. Mol. Struct., 2018, 1156(15), 1-11.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.062]
[59]
Kobashi, K.; Hase, J.; Uehara, K. Specific inhibition of urease by hydroxamic acids. Biochim. Biophys. Acta, 1962, 65, 380-383.
[http://dx.doi.org/10.1016/0006-3002(62)91067-3] [PMID: 14033904]
[60]
Odake, S.; Morikawa, T.; Tsuchiya, M.; Imamura, L.; Kobashi, K. Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives. Biol. Pharm. Bull., 1994, 17(10), 1329-1332.
[http://dx.doi.org/10.1248/bpb.17.1329] [PMID: 7874052]
[61]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021]
[62]
Kumar, S.; Kayastha, A.M. Acetohydroxamic acid - a competitive inhibitor of urease from soybean “Glycine max”. J. Proteins Proteomics, 2010, 1(1), 3-8.
[63]
Zhou, J.T.; Li, C.L.; Tan, L.H.; Xu, Y.F.; Liu, Y.H.; Mo, Z.Z.; Dou, Y.X.; Su, R.; Su, Z.R.; Huang, P.; Xie, J.H. Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS One, 2017, 12(1)e0168944
[http://dx.doi.org/10.1371/journal.pone.0168944] [PMID: 28045966]
[64]
Kobashi, K.; Kumaki, K.; Hase, J.I. Effect of acyl residues of hydroxamic acids on urease inhibition. Biochim. Biophys. Acta, 1971, 227(2), 429-441.
[http://dx.doi.org/10.1016/0005-2744(71)90074-X] [PMID: 5550827]
[65]
Ni, W.W.; Liu, Q.; Ren, S.Z.; Li, W.Y.; Yi, L.L.; Jing, H.; Sheng, L.X.; Wan, Q.; Zhong, P.F.; Fang, H.L.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorg. Med. Chem., 2018, 26(14), 4145-4152.
[http://dx.doi.org/10.1016/j.bmc.2018.07.003] [PMID: 29983280]
[66]
Pope, A.J.; Toseland, C.D.; Rushant, B.; Richardson, S.; McVey, M.; Hills, J. Effect of potent urease inhibitor, fluorofamide, on Helicobacter sp. in vivo and in vitro. Dig. Dis. Sci., 1998, 43(1), 109-119.
[http://dx.doi.org/10.1023/A:1018884322973] [PMID: 9508511]
[67]
Faraci, W.S.; Yang, B.V.; O’Rourke, D.; Spencer, R.W. Inhibition of Helicobacter pylori urease by phenyl phosphorodiamidates: mechanism of action. Bioorg. Med. Chem., 1995, 3(5), 605-610.
[http://dx.doi.org/10.1016/0968-0896(95)00043-G] [PMID: 7648208]
[68]
Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol., 2010, 63(5), 424-430.
[http://dx.doi.org/10.1136/jcp.2009.072595] [PMID: 20418234]
[69]
Oliveira, F.M.; Barbosa, L.C.A.; Demuner, A.J.; Maltha, C.R.A.; Pereira, S.R.; Horta, L.P.; Modolo, L.V. Synthesis, molecular properties and DFT studies of new phosphoramidates as potential urease inhibitors. Med. Chem. Res., 2014, 23, 5174-5187.
[http://dx.doi.org/10.1007/s00044-014-1113-y]
[70]
Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res., 2018, 13, 101-112.
[http://dx.doi.org/10.1016/j.jare.2018.01.007] [PMID: 30094085]
[71]
Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Akhtar, M.N.; Khan, A.; Jończyk, J. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(17), 6049-6058.
[http://dx.doi.org/10.1016/j.bmc.2015.05.038] [PMID: 26081763]
[72]
Barakat, A.; Al-Majid, A.M.; Lotfy, G.; Arshad, F.; Yousuf, S.; Choudhary, M.I.; Ashraf, S.; Ul-Haq, Z. Synthesis and dynamics studies of barbituric acid derivatives as urease inhibitors. Chem. Cent. J., 2015, 9, 63.
[http://dx.doi.org/10.1186/s13065-015-0140-1] [PMID: 26583043]
[73]
Sivapriya, K.; Suguna, P.; Banerjee, A.; Saravanan, V.; Rao, D.N.; Chandrasekaran, S. Facile one-pot synthesis of thio and selenourea derivatives: a new class of potent urease inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6387-6391.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.085] [PMID: 17889535]
[74]
Tago, K.; Minami, E.; Masuda, K.; Akiyama, T.; Kogen, H. Synthesis of plaunotol derivatives and their antibacterial activities against Helicobacter pylori. Bioorg. Med. Chem., 2001, 9(7), 1781-1791.
[http://dx.doi.org/10.1016/S0968-0896(01)00080-3] [PMID: 11425580]
[75]
Kogen, H.; Tago, K.; Arai, M.; Minami, E.; Masuda, K.; Akiyama, T. A highly stereoselective synthesis of plaunotol and its thiourea derivatives as potent antibacterial agents against Helicobacter pylori. Bioorg. Med. Chem. Lett., 1999, 9(10), 1347-1350.
[http://dx.doi.org/10.1016/S0960-894X(99)00203-6] [PMID: 10360733]
[76]
Uesato, S.; Hashimoto, Y.; Nishino, M.; Nagaoka, Y.; Kuwajima, H. N-substituted hydroxyureas as urease inhibitors. Chem. Pharm. Bull. (Tokyo), 2002, 50(9), 1280-1282.
[http://dx.doi.org/10.1248/cpb.50.1280] [PMID: 12237554]
[77]
Saeed, A.; Ur-Rehman, S.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1-acyl-3- arylthioureas: synthesis, kinetic mechanism and molecular docking studies. Drug Res. (Stuttg.), 2017, 67(10), 596-605.
[http://dx.doi.org/10.1055/s-0043-113832] [PMID: 28672409]
[78]
Rauf, M.K.; Yaseen, S.; Badshah, A.; Zaib, S.; Arshad, R.; Imtiaz-Ud-Din, ; Tahir, M.N.; Iqbal, J. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Ni(II) complexes with N,N,N′-trisubstituted thioureas. J. Biol. Inorg. Chem., 2015, 20(3), 541-554.
[http://dx.doi.org/10.1007/s00775-015-1239-5] [PMID: 25604966]
[79]
Modolo, L.V.; de Souza, A.X.; Horta, L.P.; Araujo, D.P.; de Fátima, Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res., 2015, 6(1), 35-44.
[http://dx.doi.org/10.1016/j.jare.2014.09.001] [PMID: 25685542]
[80]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; He, J.; Ouyang, H.; Feng, Y.T.; Lu, C.L.; Lin, W.Q.; Wang, J.X.; Xiang, Y.P.; Zhu, H.L. Synthesis, structure-activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 63, 685-695.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.016] [PMID: 23567958]
[81]
Ichikawa, S. Function-oriented synthesis: how to design simplified analogues of antibacterial nucleoside natural products? Chem. Rec., 2016, 16(3), 1106-1115.
[http://dx.doi.org/10.1002/tcr.201500247] [PMID: 27027613]
[82]
Tabak, M.; Armon, R.; Neeman, I. Cinnamon extracts’ inhibitory effect on Helicobacter pylori. J. Ethnopharmacol., 1999, 67(3), 269-277.
[http://dx.doi.org/10.1016/S0378-8741(99)00054-9] [PMID: 10617061]
[83]
Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 2013, 18(2), 2135-2149.
[http://dx.doi.org/10.3390/molecules18022135] [PMID: 23434867]
[84]
Biglar, M.; Soltani, K.; Nabati, F.; Bazl, R.; Mojab, F.; Amanlou, M. A preliminary investigation of the jack-bean urease inhibition by randomly selected traditionally used herbal medicine. Iran. J. Pharm. Res., 2012, 11(3), 831-837.
[PMID: 24250509]
[85]
Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini Rev. Med. Chem., 2011, 11(2), 169-177.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[86]
Xiao, Z.P.; Wang, X.D.; Peng, Z.Y.; Huang, S.; Yang, P.; Li, Q.S.; Zhou, L.H.; Hu, X.J.; Wu, L.J.; Zhou, Y.; Zhu, H.L. Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors. J. Agric. Food Chem., 2012, 60(42), 10572-10577.
[http://dx.doi.org/10.1021/jf303393n] [PMID: 23067328]
[87]
Li, C.; Lin, G.; Zuo, Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm. Drug Dispos., 2011, 32(8), 427-445.
[http://dx.doi.org/10.1002/bdd.771] [PMID: 21928297]
[88]
Lee, B.W.; Park, I.H.; Yim, D.; Choi, S.S. Comprehensive evaluation of the anti- Helicobacter pylori activity of Scutellariae radix. Nat. Prod. Sci., 2017, 23(1), 46.
[http://dx.doi.org/10.20307/nps.2017.23.1.46]
[89]
Tan, L.; Li, C.; Chen, H.; Mo, Z.; Zhou, J.; Liu, Y.; Ma, Z.; Xu, Y.; Yang, X.; Xie, J.; Su, Z. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. Eur. J. Pharm. Sci., 2017, 110, 77-86.
[http://dx.doi.org/10.1016/j.ejps.2017.02.004] [PMID: 28167234]
[90]
Lage, T.C.A.; Maciel, T.M.S.; Mota, Y.C.C.; Sisto, F.; Sabino, J.R.; Santos, J.C.C.; Figueiredo, I.M.; Masia, C.; De Fátima, Â.; Fernandes, S.A.; Modolo, L.V. In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New J. Chem., 2018, 42(7), 5356-5366.
[http://dx.doi.org/10.1039/C8NJ00072G]
[91]
Nostro, A.; Cellini, L.; Di Bartolomeo, S.; Di Campli, E.; Grande, R.; Cannatelli, M.A.; Marzio, L.; Alonzo, V. Antibacterial effect of plant extracts against Helicobacter pylori. Phytother. Res., 2005, 19(3), 198-202.
[http://dx.doi.org/10.1002/ptr.1640] [PMID: 15934015]
[92]
O’Gara, E.A.; Hill, D.J.; Maslin, D.J. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl. Environ. Microbiol., 2000, 66(5), 2269-2273.
[http://dx.doi.org/10.1128/AEM.66.5.2269-2273.2000] [PMID: 10788416]
[93]
Cellini, L.; Di Campli, E.; Masulli, M.; Di Bartolomeo, S.; Allocati, N. Inhibition of Helicobacter pylori by garlic extract (Allium sativum). FEMS Immunol. Med. Microbiol., 1996, 13(4), 273-277.
[http://dx.doi.org/10.1111/j.1574-695X.1996.tb00251.x] [PMID: 8739190]
[94]
Fahey, J.W.; Haristoy, X.; Dolan, P.M.; Kensler, T.W.; Scholtus, I.; Stephenson, K.K.; Talalay, P.; Lozniewski, A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7610-7615.
[http://dx.doi.org/10.1073/pnas.112203099] [PMID: 12032331]
[95]
Yanaka, A.; Fahey, J.W.; Fukumoto, A.; Nakayama, M.; Inoue, S.; Zhang, S.; Tauchi, M.; Suzuki, H.; Hyodo, I.; Yamamoto, M. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev. Res. (Phila.), 2009, 2(4), 353-360.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0192] [PMID: 19349290]
[96]
U.S. Food and Drug Administration (FDA). FDA Approved Drug Products 2020.Available at:. http://www.accessdata. fda.gov/scripts/cder/daf/
[97]
Macegoniuk, K.; Grela, E.; Palus, J.; Rudzińska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2- Benzisoselenazol-3(2 H)-one derivatives as a new class of bacterial urease inhibitors. J. Med. Chem., 2016, 59(17), 8125-8133.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00986] [PMID: 27524377]
[98]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy