Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Biomarkers of Osteoporosis: An Update

Author(s): Bushra Parveen, Abida Parveen and Divya Vohora*

Volume 19, Issue 7, 2019

Page: [895 - 912] Pages: 18

DOI: 10.2174/1871530319666190204165207

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Osteoporosis, characterized by compromised bone quality and strength is associated with bone fragility and fracture risk. Biomarkers are crucial for the diagnosis or prognosis of a disease as well as elucidating the mechanism of drug action and improve decision making.

Objective: An exhaustive description of traditional markers including bone mineral density, vitamin D, alkaline phosphatase, along with potential markers such as microarchitectural determination, trabecular bone score, osteocalcin, etc. is provided in the current piece of work. This review provides insight into novel pathways such as the Wnt signaling pathway, neuro-osseous control, adipogenic hormonal imbalance, gut-bone axis, genetic markers and the role of inflammation that has been recently implicated in osteoporosis.

Methods: We extensively reviewed articles from the following databases: PubMed, Medline and Science direct. The primary search was conducted using a combination of the following keywords: osteoporosis, bone, biomarkers, bone turnover markers, diagnosis, density, architecture, genetics, inflammation.

Conclusion: Early diagnosis and intervention delay the development of disease and improve treatment outcome. Therefore, probing for novel biomarkers that are able to recognize people at high risk for developing osteoporosis is an effective way to improve the quality of life of patients and to understand the pathomechanism of the disease in a better way.

Keywords: Osteoporosis, bone turnover markers, bone mineral density, biomarkers, neuro-osseous, gut-bone, inflammation, miRNA.

Graphical Abstract
[1]
Malhotra, N.; Mithal, A. Osteoporosis in Indians. Indian J. Med. Res., 2008, 127(3), 263-268.
[PMID: 18497441]
[2]
Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17(12), 1726-1733.
[http://dx.doi.org/10.1007/s00198-006-0172-4] [PMID: 16983459]
[3]
Osteoporosis, A.P. Consensus statement of an expert group., 2003. https://www.iofbonehealth.org Internet [Ac-cessed on February 2018
[4]
Mithal, A.; Kaur, P. Osteoporosis in Asia: a call to action. Curr. Osteoporos. Rep., 2012, 10(4), 245-247.
[http://dx.doi.org/10.1007/s11914-012-0114-3] [PMID: 22898971]
[5]
2004.India Times., http://health.indiatimes.com/articleshow/329953.cms [Accessed on December 2017];
[6]
Bowles, S.K. Drug induced osteoporosis.PSAP VIII. Women’s and men’s Health., , 203-224.
[7]
Duque, G.; Troen, B.R. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J. Am. Geriatr. Soc., 2008, 56(5), 935-941.
[http://dx.doi.org/10.1111/j.1532-5415.2008.01764.x] [PMID: 18454751]
[8]
Sipos, W.; Pietschmann, P.; Rauner, M.; Kerschan-Schindl, K.; Patsch, J. Pathophysiology of osteoporosis. Wien. Med. Wochenschr., 2009, 159(9-10), 230-234.
[http://dx.doi.org/10.1007/s10354-009-0647-y] [PMID: 19484205]
[9]
Manolagas, S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 2000, 21(2), 115-137.
[PMID: 10782361]
[10]
Raisz, L.G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest., 2005, 115(12), 3318-3325.
[http://dx.doi.org/10.1172/JCI27071] [PMID: 16322775]
[11]
Parfitt, A.M.; Villanueva, A.R.; Foldes, J.; Rao, D.S. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J. Bone Miner. Res., 1995, 10(3), 466-473.
[http://dx.doi.org/10.1002/jbmr.5650100319] [PMID: 7785469]
[12]
McCormick, R.K. Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev., 2007, 12(2), 113-145.
[PMID: 17604458]
[13]
Nishizawa, Y.; Nakamura, T.; Ohta, H.; Kushida, K.; Gorai, I.; Shiraki, M.; Fukunaga, M.; Hosoi, T.; Miki, T.; Chaki, O.; Ichimura, S.; Nakatsuka, K.; Miura, M. Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). J. Bone Miner. Metab., 2005, 23(2), 97-104.
[http://dx.doi.org/10.1007/s00774-004-0547-6] [PMID: 15750686]
[14]
Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; Wahl, D.A.; Cooper, C.; Kanis, J.A. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int., 2011, 22(2), 391-420.
[http://dx.doi.org/10.1007/s00198-010-1501-1] [PMID: 21184054]
[15]
Vasikaran, S.; Cooper, C.; Eastell, R.; Griesmacher, A.; Morris, H.A.; Trenti, T.; Kanis, J.A. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med., 2011, 49(8), 1271-1274.
[http://dx.doi.org/10.1515/CCLM.2011.602] [PMID: 21605012]
[16]
Vasikaran, S.D.; Chubb, S.P.; Ebeling, P.R.; Jenkins, N.; Jones, G.R.; Kotowicz, M.A.; Morris, H.A.; Schneider, H.G.; Seibel, M.J.; Ward, G. Harmonised Australian Reference Intervals for Serum PINP and CTX in Adults. Clin. Biochem. Rev., 2014, 35(4), 237-242.
[PMID: 25678728]
[17]
Silver Spring (MD): Food and Drug Administration (US), 2016 [Accessed on 12 March 2018]; Available from: http://ncbi.nlm.nih.gov/books/NBK326791
[18]
Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[19]
Eastell, R.; Robins, S.P.; Colwell, T.; Assiri, A.M.A.; Riggs, B.L.; Russell, R.G.G. Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporos. Int., 1993, 3(5), 255-260.
[http://dx.doi.org/10.1007/BF01623829] [PMID: 8400607]
[20]
Anderson, M.S.; Gendrano, I.N.; Liu, C.; Jeffers, S.; Mahon, C.; Mehta, A.; Mostoller, K.; Zajic, S.; Morris, D.; Lee, J.; Stoch, S.A. Odanacatib, a selective cathepsin K inhibitor, demonstrates comparable pharmacodynamics and pharmacokinetics in older men and postmenopausal women. J. Clin. Endocrinol. Metab., 2014, 99(2), 552-560.
[http://dx.doi.org/10.1210/jc.2013-1688] [PMID: 24276460]
[21]
Bonnick, S.; De Villiers, T.; Odio, A.; Palacios, S.; Chapurlat, R.; DaSilva, C.; Scott, B.B.; Le Bailly De Tilleghem, C.; Leung, A.T.; Gurner, D. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab., 2013, 98(12), 4727-4735.
[http://dx.doi.org/10.1210/jc.2013-2020] [PMID: 24064689]
[22]
Engelke, K.; Nagase, S.; Fuerst, T.; Small, M.; Kuwayama, T.; Deacon, S.; Eastell, R.; Genant, H.K. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J. Bone Miner. Res., 2014, 29(3), 629-638.
[http://dx.doi.org/10.1002/jbmr.2080] [PMID: 24038152]
[23]
Piatek, S.; Adolf, D.; Wex, T.; Halangk, W.; Klose, S.; Westphal, S.; Amthauer, H.; Winckler, S. Multiparameter analysis of serum levels of C-telopeptide crosslaps, bone-specific alkaline phosphatase, cathepsin K, osteoprotegerin and receptor activator of nuclear factor κB ligand in the diagnosis of osteoporosis. Maturitas, 2013, 74(4), 363-368.
[http://dx.doi.org/10.1016/j.maturitas.2013.01.005] [PMID: 23391500]
[24]
Gatti, D.; Viapiana, O.; Fracassi, E.; Idolazzi, L.; Dartizio, C.; Povino, M.R.; Adami, S.; Rossini, M. Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J. Bone Miner. Res., 2012, 27(11), 2259-2263.
[http://dx.doi.org/10.1002/jbmr.1681] [PMID: 22692843]
[25]
Chung, Y.E.; Lee, S.H.; Lee, S.Y.; Kim, S.Y.; Kim, H.H.; Mirza, F.S.; Lee, S.K.; Lorenzo, J.A.; Kim, G.S.; Koh, J.M. Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos. Int., 2012, 23(4), 1235-1243.
[http://dx.doi.org/10.1007/s00198-011-1675-1] [PMID: 21660558]
[26]
Botella, S.; Restituto, P.; Monreal, I.; Colina, I.; Calleja, A.; Varo, N. Traditional and novel bone remodeling markers in premenopausal and postmenopausal women. J. Clin. Endocrinol. Metab., 2013, 98(11), E1740-E1748.
[http://dx.doi.org/10.1210/jc.2013-2264] [PMID: 24001743]
[27]
Gifre, L.; Ruiz-Gaspà, S.; Monegal, A.; Nomdedeu, B.; Filella, X.; Guañabens, N.; Peris, P. Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone, 2013, 57(1), 272-276.
[http://dx.doi.org/10.1016/j.bone.2013.08.016] [PMID: 23981659]
[28]
Catalano, A.; Morabito, N.; Basile, G.; Brancatelli, S.; Cucinotta, D.; Lasco, A. Zoledronic acid acutely increases sclerostin serum levels in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab., 2013, 98(5), 1911-1915.
[http://dx.doi.org/10.1210/jc.2012-4039] [PMID: 23596142]
[29]
Desai, M.; Khatkhatay, M.I.; Taskar, V.; Ansari, Z. Changes in Cytokines, Biomarkers of Bone Turnover and Hormones Are Associated with Bone Loss in Postmenopausal Indian Women. Int. J. Endocrinol. Metab., 2012, 10, 399-403.
[http://dx.doi.org/10.5812/ijem.3339]
[30]
Mödder, U.I.; Achenbach, S.J.; Amin, S.; Riggs, B.L.; Melton, L.J., III; Khosla, S. Relation of serum serotonin levels to bone density and structural parameters in women. J. Bone Miner. Res., 2010, 25(2), 415-422.
[http://dx.doi.org/10.1359/jbmr.090721] [PMID: 19594297]
[31]
Kanis, J.A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet, 2002, 359(9321), 1929-1936.
[http://dx.doi.org/10.1016/S0140-6736(02)08761-5] [PMID: 12057569]
[32]
World Health Organisation [Internet. Assessment of fracture risk and its implications to screening for postmenopausal osteoporosis: technical report series 843, Geneva, 1994 [Accessed on November, 2018]; Available from: http://apps.who.int
[33]
www.nof.org [Accessed on November, 2018];
[34]
www.courses.washington.edu [Accessed on November, 2018];
[35]
Stepan, J.J. Techniques for measuring bone mineral density. Int. Congr. Ser., 2002, 1229, 63-68;
[http://dx.doi.org/10.1016/S0531-5131(01)00477-0]
[36]
Honig, S.; Chang, G. Osteoporosis: an update. Bull. NYU Hosp. Jt. Dis., 2012, 70(3), 140-144.
[PMID: 23259620]
[37]
Sharma, S.; Khandelwal, S. Effective risk assessment tools for osteoporosis in the Indian menopausal female. J Midlife Health, 2010, 1(2), 79-85.
[http://dx.doi.org/10.4103/0976-7800.76217] [PMID: 21716766]
[38]
McCloskey, E. FRAX® Identify-ing people at high risk of fracture. WHO Fracture Risk As-sessment Tool, a new clinical tool for informed treatment de-cisions., 2009, [Internet
[39]
Chowdhury, B. FRAX™ India and the assessment of osteo-porotic fracture risk probability among elderly men and wom-en. Paripex - Ind. J. Res., 2014, 3, 143-145.
[40]
Middleton, R.G.; Shabani, F.; Uzoigwe, C.E.; Shoaib, A.; Moqsith, M.; Venkatesan, M. FRAX and the assessment of the risk of developing a fragility fracture. J. Bone Joint Surg. Br., 2012, 94(10), 1313-1320. [British volume
[http://dx.doi.org/10.1302/0301-620X.94B10.28889] [PMID: 23015554]
[41]
Majumdar, S. Magnetic resonance imaging of trabecular bone structure. Top. Magn. Reson. Imaging, 2002, 13(5), 323-334.
[http://dx.doi.org/10.1097/00002142-200210000-00004] [PMID: 12464745]
[42]
Wehrli, F.W. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging, 2007, 25(2), 390-409.
[http://dx.doi.org/10.1002/jmri.20807] [PMID: 17260403]
[43]
Rossini, M.; Viapiana, O.; Adami, S. Instrumental diagnosis of osteoporosis. Aging (Milano), 1998, 10(3), 240-248.
[PMID: 9801734]
[44]
Lespessailles, E.; Chappard, C.; Bonnet, N.; Benhamou, C.L. Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine, 2006, 73(3), 254-261.
[http://dx.doi.org/10.1016/j.jbspin.2005.12.002] [PMID: 16497531]
[45]
Patsch, J.M.; Burghardt, A.J.; Kazakia, G.; Majumdar, S. Noninvasive imaging of bone microarchitecture. Ann. N. Y. Acad. Sci., 2011, 1240, 77-87.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06282.x] [PMID: 22172043]
[46]
Martineau, P.; Leslie, W.D. The utility and limitations of using trabecular bone score with FRAX. Curr. Opin. Rheumatol., 2018, 30(4), 412-419.
[http://dx.doi.org/10.1097/BOR.0000000000000504] [PMID: 29528866]
[47]
Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M.L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; Reginster, J.Y.; Rizzoli, R.; Kanis, J.A.; Lamy, O.; Laslop, A.; Camargos, B.M.; Re-ginster, J.Y.; Rizzoli, R.; Kanis, J.A. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone, 2015, 78, 216-224.
[http://dx.doi.org/10.1016/j.bone.2015.05.016] [PMID: 25988660]
[48]
Eller-Vainicher, C.; Morelli, V.; Ulivieri, F.M.; Palmieri, S.; Zhukouskaya, V.V.; Cairoli, E.; Pino, R.; Naccarato, A.; Scillitani, A.; Beck-Peccoz, P.; Chiodini, I. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res., 2012, 27(10), 2223-2230.
[http://dx.doi.org/10.1002/jbmr.1648] [PMID: 22549969]
[49]
Romagnoli, E.; Cipriani, C.; Nofroni, I.; Castro, C.; Angelozzi, M.; Scarpiello, A.; Pepe, J.; Diacinti, D.; Piemonte, S.; Carnevale, V.; Minisola, S. “Trabecular Bone Score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone, 2013, 53(1), 154-159.
[http://dx.doi.org/10.1016/j.bone.2012.11.041] [PMID: 23228370]
[50]
Kim, J.H.; Choi, H.J.; Ku, E.J.; Kim, K.M.; Kim, S.W.; Cho, N.H.; Shin, C.S. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J. Clin. Endocrinol. Metab., 2015, 100(2), 475-482.
[http://dx.doi.org/10.1210/jc.2014-2047] [PMID: 25368976]
[51]
Vasikaran, S.D.; Chubb, S.A. The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine, 2016, 52(2), 222-225.
[http://dx.doi.org/10.1007/s12020-016-0900-2] [PMID: 26906711]
[52]
Yoon, B.H.; Yu, W. Clinical Utility of Biochemical Marker of Bone Turnover: Fracture Risk Prediction and Bone Healing. J. Bone Metab., 2018, 25(2), 73-78.
[http://dx.doi.org/10.11005/jbm.2018.25.2.73] [PMID: 29900156]
[53]
Nishizawa, Y.; Nakamura, T.; Ohta, H.; Kushida, K.; Gorai, I.; Shiraki, M.; Fukunaga, M.; Hosoi, T.; Miki, T.; Chaki, O.; Ichimura, S.; Nakatsuka, K.; Miura, M. Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). J. Bone Miner. Metab., 2005, 23(2), 97-104.
[http://dx.doi.org/10.1007/s00774-004-0547-6] [PMID: 15750686]
[54]
Wheater, G.; Elshahaly, M.; Tuck, S.P.; Datta, H.K.; van Laar, J.M. The clinical utility of bone marker measurements in osteoporosis. J. Transl. Med., 2013, 11, 201.
[http://dx.doi.org/10.1186/1479-5876-11-201] [PMID: 23984630]
[55]
Seibel, M.J. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin. Biochem. Rev., 2005, 26(4), 97-122.
[PMID: 16648882]
[56]
Millán, J.L. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal., 2006, 2(2), 335-341.
[http://dx.doi.org/10.1007/s11302-005-5435-6] [PMID: 18404473]
[57]
Greenblatt, M.B.; Tsai, J.N.; Wein, M.N. Bone Turnover Markers in the Diagnosis and Monitoring of Metabolic Bone Disease. Clin. Chem., 2017, 63(2), 464-474.
[http://dx.doi.org/10.1373/clinchem.2016.259085] [PMID: 27940448]
[58]
Vohora, D.; Parveen, B. Tartarate acid resistant phosphatase as a biomarker of bone remodeling. Biomarkers in Bone Disease 2017 volume 1, , 421-442.
[59]
Morris, H.A.; Eastell, R.; Jorgensen, N.R.; Cavalier, E.; Vasikaran, S.; Chubb, S.A.P.; Kanis, J.A.; Cooper, C.; Makris, K. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin. Chim. Acta, 2017, 467, 34-41.
[http://dx.doi.org/10.1016/j.cca.2016.06.036] [PMID: 27374301]
[60]
Delmas, P.D. Biochemical markers of bone turnover. I: Theoretical considerations and clinical use in osteoporosis. Am. J. Med., 1993, 95(5A), 11S-16S.
[http://dx.doi.org/10.1016/0002-9343(93)90375-Y] [PMID: 8256787]
[61]
Boyce, B.F.; Xing, L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther., 2007, 9(Suppl. 1), S1.
[http://dx.doi.org/10.1186/ar2165] [PMID: 17634140]
[62]
Vega, D.; Maalouf, N.M.; Sakhaee, K. The role of receptor activator of nuclear factor-kB (RANK)/RANK li - and/Osteoprotegerin: clinical implications. J. Clin. Endocrinol. Metab., 2007, 92, 4514-4521.
[http://dx.doi.org/10.1210/jc.2007-0646] [PMID: 17895323]
[63]
Jabbar, S.; Drury, J.; Fordham, J.N.; Datta, H.K.; Francis, R.M.; Tuck, S.P. Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J. Clin. Pathol., 2011, 64(4), 354-357.
[http://dx.doi.org/10.1136/jcp.2010.086595] [PMID: 21307155]
[64]
Fadda, S.; Hamdy, A.; Abulkhair, E.; Mahmoud Elsify, H.; Mostafa, A. Serum levels of osteoprotegerin and RANKL in patients with rheumatoid arthritis and their relation to bone mineral density and disease activity. Egypt. Rheumatol., 2015, 37, 1-6.
[http://dx.doi.org/10.1016/j.ejr.2014.06.001]
[65]
Liu, J.M.; Zhao, H.Y.; Ning, G.; Zhao, Y.J.; Chen, Y.; Zhang, Zh.; Sun, L.H.; Xu, M.Y.; Chen, J.L. Relationships between the changes of serum levels of OPG and RANKL with age, menopause, bone biochemical markers and bone mineral density in Chinese women aged 20-75. Calcif. Tissue Int., 2005, 76(1), 1-6.
[http://dx.doi.org/10.1007/s00223-004-0007-2] [PMID: 15455183]
[66]
Li, C.Y.; Jepsen, K.J.; Majeska, R.J.; Zhang, J.; Ni, R.; Gelb, B.D.; Schaffler, M.B. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J. Bone Miner. Res., 2006, 21(6), 865-875.
[http://dx.doi.org/10.1359/jbmr.060313] [PMID: 16753017]
[67]
Gelb, B.D.; Shi, G.P.; Chapman, H.A.; Desnick, R.J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 1996, 273(5279), 1236-1238.
[http://dx.doi.org/10.1126/science.273.5279.1236] [PMID: 8703060]
[68]
Meier, C.; Meinhardt, U.; Greenfield, J.R.; De Winter, J.; Nguyen, T.V.; Dunstan, C.R.; Seibel, M.J. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin. Lab., 2006, 52(1-2), 1-10.
[PMID: 16506358]
[69]
Muñoz-Torres, M.; Reyes-García, R.; Mezquita-Raya, P.; Fernández-García, D.; Alonso, G. Luna, Jde.D.; Ruiz-Requena, M.E.; Escobar-Jiménez, F. Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate. Maturitas, 2009, 64(3), 188-192.
[http://dx.doi.org/10.1016/j.maturitas.2009.09.011] [PMID: 19819089]
[70]
Adolf, D.; Wex, T.; Jahn, O.; Riebau, C.; Halangk, W.; Klose, S.; Westphal, S.; Amthauer, H.; Winckler, S.; Piatek, S. Serum cathepsin K levels are not suitable to differentiate women with chronic bone disorders such as osteopenia and osteoporosis from healthy pre- and postmenopausal women. Maturitas, 2012, 71(2), 169-172.
[http://dx.doi.org/10.1016/j.maturitas.2011.11.024] [PMID: 22197348]
[71]
Henriksen, K.; Tanko, L.B.; Qvist, P.; Delmas, P.D.; Christiansen, C.; Karsdal, M.A. Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos. Int., 2007, 18(5), 681-685.
[http://dx.doi.org/10.1007/s00198-006-0286-8] [PMID: 17124552]
[72]
Prezelj, J.; Ostanek, B.; Logar, D.B.; Marc, J.; Hawa, G.; Kocjan, T. Cathepsin K predicts femoral neck bone mineral density change in nonosteoporotic peri- and early postmenopausal women. Menopause, 2008, 15(2), 369-373.
[http://dx.doi.org/10.1097/gme.0b013e3181271873] [PMID: 17882010]
[73]
Gong, Y.; Slee, R.B.; Fukai, N.; Rawadi, G.; Roman-Roman, S.; Reginato, A.M.; Wang, H.; Cundy, T.; Glorieux, F.H.; Lev, D.; Zacharin, M.; Oexle, K.; Marcelino, J.; Suwairi, W.; Heeger, S.; Sabatakos, G.; Apte, S.; Adkins, W.N.; Allgrove, J.; Arslan-Kirchner, M.; Batch, J.A.; Beighton, P.; Black, G.C.; Boles, R.G.; Boon, L.M.; Borrone, C.; Brunner, H.G.; Carle, G.F.; Dallapiccola, B.; De Paepe, A.; Floege, B.; Halfhide, M.L.; Hall, B.; Hennekam, R.C.; Hirose, T.; Jans, A.; Jüppner, H.; Kim, C.A.; Keppler-Noreuil, K.; Kohlschuetter, A.; LaCombe, D.; Lambert, M.; Lemyre, E.; Letteboer, T.; Peltonen, L.; Ramesar, R.S.; Romanengo, M.; Somer, H.; Steichen-Gersdorf, E.; Steinmann, B.; Sullivan, B.; Superti-Furga, A.; Swoboda, W.; van den Boogaard, M.J.; Van Hul, W.; Vikkula, M.; Votruba, M.; Zabel, B.; Garcia, T.; Baron, R.; Olsen, B.R.; Warman, M.L. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001, 107(4), 513-523.
[http://dx.doi.org/10.1016/S0092-8674(01)00571-2] [PMID: 11719191]
[74]
Amrein, K.; Amrein, S.; Drexler, C.; Dimai, H.P.; Dobnig, H.; Pfeifer, K.; Tomaschitz, A.; Pieber, T.R.; Fahrleitner-Pammer, A. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab., 2012, 97(1), 148-154.
[http://dx.doi.org/10.1210/jc.2011-2152] [PMID: 21994959]
[75]
Mirza, F.S.; Padhi, I.D.; Raisz, L.G.; Lorenzo, J.A. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol. Metab., 2010, 95(4), 1991-1997.
[http://dx.doi.org/10.1210/jc.2009-2283] [PMID: 20156921]
[76]
Winkler, D.G.; Sutherland, M.K.; Geoghegan, J.C.; Yu, C.; Hayes, T.; Skonier, J.E.; Shpektor, D.; Jonas, M.; Kovacevich, B.R. Staehling- Hampton, K.; Appleby, M.; Brunkow, M.E.; Latham, J.A. Osteocyte control of bone formation via scle-rostin, a novel BMP antagonist. EMBO J., 2003, 22, 6267-6276.
[http://dx.doi.org/10.1093/emboj/cdg599] [PMID: 14633986]
[77]
Li, X.; Ominsky, M.S.; Niu, Q.T.; Sun, N.; Daugherty, B.; D’Agostin, D.; Kurahara, C.; Gao, Y.; Cao, J.; Gong, J.; Asuncion, F.; Barrero, M.; Warmington, K.; Dwyer, D.; Stolina, M.; Morony, S.; Sarosi, I.; Kostenuik, P.J.; Lacey, D.L.; Simonet, W.S.; Ke, H.Z.; Paszty, C. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res., 2008, 23(6), 860-869.
[http://dx.doi.org/10.1359/jbmr.080216] [PMID: 18269310]
[78]
Voskaridou, E.; Christoulas, D.; Plata, E.; Bratengeier, C.; Anastasilakis, A.D.; Komninaka, V.; Kaliontzi, D.; Gkotzamanidou, M.; Polyzos, S.A.; Dimopoulou, M.; Terpos, E. High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm. Metab. Res., 2012, 44(12), 909-913.
[http://dx.doi.org/10.1055/s-0032-1312618] [PMID: 22581647]
[79]
Polyzos, S.A.; Anastasilakis, A.D.; Bratengeier, C.; Woloszczuk, W.; Papatheodorou, A.; Terpos, E. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women--the six-month effect of risedronate and teriparatide. Osteoporos. Int., 2012, 23(3), 1171-1176.
[http://dx.doi.org/10.1007/s00198-010-1525-6] [PMID: 21305266]
[80]
Piemonte, S.; Romagnoli, E.; Bratengeier, C.; Woloszczuk, W.; Tancredi, A.; Pepe, J.; Cipriani, C.; Minisola, S. Serum sclerostin levels decline in post-menopausal women with osteoporosis following treatment with intermittent parathyroid hormone. J. Endocrinol. Invest., 2012, 35(9), 866-868.
[PMID: 22842667]
[81]
Memon, A.R.; Butler, J.S.; O’Riordan, M.V.; Guerin, E.; Dimitrov, B.D.; Harty, J.A. Comparison of serum Dkk1 (Dickkopf-1) and bone mineral density in patients on bisphosphonate treatment vs no treatment. J. Clin. Densitom., 2013, 16(1), 118-124.
[http://dx.doi.org/10.1016/j.jocd.2012.07.003] [PMID: 22959779]
[82]
Parveen, B.; Tripathi, M.; Vohora, D. A Cross-Sectional Study to Assess the Modulation of Wnt Inhibitors following Anti-Epileptic Drug Therapy and their Correlation with Vitamin-D and RANKL in Indian Women with Epilepsy. Basic Clin. Pharmacol. Toxicol., 2018, 123, 271-276.
[http://dx.doi.org/10.1111/bcpt.12996] [PMID: 29504704]
[83]
Parveen, B.; Tiwari, A.K.; Jain, M.; Pal, S.; Chattopadhyay, N.; Tripathi, M.; Vohora, D. The anti-epileptic drugs valproate, carbamazepine and levetiracetam cause bone loss and modulate Wnt inhibitors in normal and ovariectomised rats. Bone, 2018, 113, 57-67.
[http://dx.doi.org/10.1016/j.bone.2018.05.011] [PMID: 29758362]
[84]
Eriksen, E.F.; Colvard, D.S.; Berg, N.J.; Graham, M.L.; Mann, K.G.; Spelsberg, T.C.; Riggs, B.L. Evidence of estrogen receptors in normal human osteoblast-like cells. Science, 1988, 241(4861), 84-86.
[http://dx.doi.org/10.1126/science.3388021] [PMID: 3388021]
[85]
Bord, S.; Ireland, D.C.; Beavan, S.R.; Compston, J.E. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 2003, 32(2), 136-141.
[http://dx.doi.org/10.1016/S8756-3282(02)00953-5] [PMID: 12633785]
[86]
McKane, W.R.; Khosla, S.; Burritt, M.F.; Kao, P.C.; Wilson, D.M.; Ory, S.J.; Riggs, B.L. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause--a clinical research center study. J. Clin. Endocrinol. Metab., 1995, 80(12), 3458-3464.
[PMID: 8530583]
[87]
Cosman, F.; Shen, V.; Xie, F.; Seibel, M.; Ratcliffe, A.; Lindsay, R. Estrogen protection against bone resorbing effects of parathyroid hormone infusion. Assessment by use of biochemical markers. Ann. Intern. Med., 1993, 118(5), 337-343.
[http://dx.doi.org/10.7326/0003-4819-118-5-199303010-00003] [PMID: 8430979]
[88]
Ross, F.P. Interleukin 7 and estrogen-induced bone loss. Trends Endocrinol. Metab., 2003, 14(4), 147-149.
[http://dx.doi.org/10.1016/S1043-2760(03)00047-X] [PMID: 12714270]
[89]
Scheidt-Nave, C.; Bismar, H.; Leidig-Bruckner, G.; Woitge, H.; Seibel, M.J.; Ziegler, R.; Pfeilschifter, J. Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade past menopause. J. Clin. Endocrinol. Metab., 2001, 86(5), 2032-2042.
[PMID: 11344203]
[90]
Corina, M.; Vulpoi, C.; Brănişteanu, D. Relationship between bone mineral density, weight, and estrogen levels in pre and postmenopausal women. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2012, 116(4), 946-950.
[PMID: 23700870]
[91]
Sowers, M.R.; Jannausch, M.; McConnell, D.; Little, R.; Greendale, G.A.; Finkelstein, J.S.; Neer, R.M.; Johnston, J.; Ettinger, B. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab., 2006, 91(4), 1261-1267.
[http://dx.doi.org/10.1210/jc.2005-1836] [PMID: 16403818]
[92]
Sun, L.; Peng, Y.; Sharrow, A.C.; Iqbal, J.; Zhang, Z.; Papachristou, D.J.; Zaidi, S.; Zhu, L.L.; Yaroslavskiy, B.B.; Zhou, H.; Zallone, A.; Sairam, M.R.; Kumar, T.R.; Bo, W.; Braun, J.; Cardoso-Landa, L.; Schaffler, M.B.; Moonga, B.S.; Blair, H.C.; Zaidi, M. FSH directly regulates bone mass. Cell, 2006, 125(2), 247-260.
[http://dx.doi.org/10.1016/j.cell.2006.01.051] [PMID: 16630814]
[93]
Gourlay, M.L.; Specker, B.L.; Li, C.; Hammett-Stabler, C.A.; Renner, J.B.; Rubin, J.E. Follicle-stimulating hormone is independently associated with lean mass but not BMD in younger postmenopausal women. Bone, 2012, 50(1), 311-316.
[http://dx.doi.org/10.1016/j.bone.2011.11.001] [PMID: 22086136]
[94]
Tabatabai, L.S.; Stewart, S.L.; Bloom, J.R.; Sellmeyer, D. SUN-0250: FSH Levels Predict Ongoing Bone Loss in Premenopausal Women Treated for Breast Cancer More Than a Year after Treatment. Presentation Number: SUN-0250. Date of Presentation: Endocrine Society's 96th Annual Meeting and Expo, June 21-24, 2014.Chicago
[95]
Prior, J.C.; Vigna, Y.M.; Schechter, M.T.; Burgess, A.E. Spinal bone loss and ovulatory disturbances. N. Engl. J. Med., 1990, 323(18), 1221-1227.
[http://dx.doi.org/10.1056/NEJM199011013231801] [PMID: 2215605]
[96]
Seifert-Klauss, V.; Prior, J.C. Progesterone and bone: actions promoting bone health in women. J. Osteoporos., 2010.2010845180
[http://dx.doi.org/10.4061/2010/845180] [PMID: 21052538]
[97]
Lee, J.R. Osteoporosis reversal: the role of progesterone. Clin. Nutr. Res., 1990, 10, 384-389.
[98]
Leonetti, H.B.; Longo, S.; Anasti, J.N. Transdermal progesterone cream for vasomotor symptoms and postmenopausal bone loss. Obstet. Gynecol., 1999, 94(2), 225-228.
[PMID: 10432132]
[99]
Mitsui, Y.; Gotoh, M.; Fukushima, N.; Shirachi, I.; Otabe, S.; Yuan, X.; Hashinaga, T.; Wada, N.; Mitsui, A.; Yoshida, T.; Yoshida, S.; Yamada, K.; Nagata, K. Hyperadiponectinemia enhances bone formation in mice. BMC Musculoskelet. Disord., 2011, 12, 18-23.
[http://dx.doi.org/10.1186/1471-2474-12-18] [PMID: 21241476]
[100]
Oshima, K.; Nampei, A.; Matsuda, M.; Iwaki, M.; Fukuhara, A.; Hashimoto, J.; Yoshikawa, H.; Shimomura, I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun., 2005, 331(2), 520-526.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.210] [PMID: 15850790]
[101]
Ağbaht, K.; Gürlek, A.; Karakaya, J.; Bayraktar, M. Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine, 2009, 35(3), 371-379.
[http://dx.doi.org/10.1007/s12020-009-9158-2] [PMID: 19288226]
[102]
Okuno, S.; Ishimura, E.; Norimine, K.; Tsuboniwa, N.; Kagitani, S.; Yamakawa, K.; Yamakawa, T.; Sato, K.K.; Hayashi, T.; Shoji, S.; Nishizawa, Y.; Inaba, M. Serum adiponectin and bone mineral density in male hemodialysis patients. Osteoporos. Int., 2012, 23(7), 2027-2035.
[http://dx.doi.org/10.1007/s00198-011-1789-5] [PMID: 21927917]
[103]
Tohidi, M.; Akbarzadeh, S.; Larijani, B.; Kalantarhormozi, M.; Ostovar, A.; Assadi, M.; Vahdat, K.; Farrokhnia, M.; Sanjdideh, Z.; Amirinejad, R.; Nabipour, I. Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone, 2012, 51(5), 876-881.
[http://dx.doi.org/10.1016/j.bone.2012.08.117] [PMID: 22971441]
[104]
Lubkowska, A.; Dobek, A.; Mieszkowski, J.; Garczynski, W.; Chlubek, D. Adiponectin as a biomarker of osteoporosis in postmenopausal women: controversies. Dis. Markers, 2014.2014975178
[http://dx.doi.org/10.1155/2014/975178] [PMID: 24591772]
[105]
Yadav, V.K.; Balaji, S.; Suresh, P.S.; Liu, X.S.; Lu, X.; Li, Z.; Guo, X.E.; Mann, J.J.; Balapure, A.K.; Gershon, M.D.; Medhamurthy, R.; Vidal, M.; Karsenty, G.; Ducy, P. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med., 2010, 16(3), 308-312.
[http://dx.doi.org/10.1038/nm.2098] [PMID: 20139991]
[106]
Inose, H.; Zhou, B.; Yadav, V.K.X.; Guo, X.E.; Karsenty, G.; Ducy, P. Efficacy of serotonin inhibition in mouse models of bone loss. J. Bone Miner. Res., 2011, 26(9), 2002-2011.
[http://dx.doi.org/10.1002/jbmr.439] [PMID: 21608033]
[107]
Zucker, I.; Chodick, G.; Grunhaus, L.; Raz, R.; Shalev, V. Adherence to treatment with selective serotonin reuptake inhibitors and the risk for fractures and bone loss: a population-based cohort study. CNS Drugs, 2012, 26(6), 537-547.
[http://dx.doi.org/10.2165/11633300-000000000-00000] [PMID: 22612695]
[108]
Eom, C.S.; Lee, H.K.; Ye, S.; Park, S.M.; Cho, K.H. Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J. Bone Miner. Res., 2012, 27(5), 1186-1195.
[http://dx.doi.org/10.1002/jbmr.1554] [PMID: 22258738]
[109]
Yadav, V.K.; Ryu, J.H.; Suda, N.; Tanaka, K.F.; Gingrich, J.A.; Schütz, G.; Glorieux, F.H.; Chiang, C.Y.; Zajac, J.D.; Insogna, K.L.; Mann, J.J.; Hen, R.; Ducy, P.; Karsenty, G. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell, 2008, 135(5), 825-837.
[http://dx.doi.org/10.1016/j.cell.2008.09.059] [PMID: 19041748]
[110]
Niziolek, P.J.; Farmer, T.L.; Cui, Y.; Turner, C.H.; Warman, M.L.; Robling, A.G. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone, 2011, 49(5), 1010-1019.
[http://dx.doi.org/10.1016/j.bone.2011.07.034] [PMID: 21855668]
[111]
Galli, C.; Macaluso, G.; Passeri, G. Serotonin: a novel bone mass controller may have implications for alveolar bone. J. Negat. Results Biomed., 2013, 12, 12.
[http://dx.doi.org/10.1186/1477-5751-12-12] [PMID: 23964727]
[112]
Carsote, M.; Radoi, V.; Geleriu, A.; Mihai, A.; Ferechide, D.; Opris, D.; Paun, D.; Poiana, C. The serotonin and the bone assessment. J. Med. Life, 2013, 6(2), 151-155.
[PMID: 23904874]
[113]
Sato, T.; Abe, T.; Chida, D.; Nakamoto, N.; Hori, N.; Kokabu, S.; Sakata, Y.; Tomaru, Y.; Iwata, T.; Usui, M.; Aiko, K.; Yoda, T. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett., 2010, 584(4), 817-824.
[http://dx.doi.org/10.1016/j.febslet.2010.01.001] [PMID: 20067796]
[114]
Liu, P.S.; Chen, Y.Y.; Feng, C.K.; Lin, Y.H.; Yu, T.C. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur. J. Pharmacol., 2011, 650(1), 34-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.031] [PMID: 20888332]
[115]
Walker, L.M.; Preston, M.R.; Magnay, J.L.; Thomas, P.B.; El Haj, A.J. Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone, 2001, 28(6), 603-608.
[http://dx.doi.org/10.1016/S8756-3282(01)00427-6] [PMID: 11425648]
[116]
Bajayo, A.; Bar, A.; Denes, A.; Bachar, M.; Kram, V. Attar- Namdar, M.; Zallone, A.; Kovács, K.J.; Yirmiya, R.; Bab, I. Skeletal parasympathetic innervation communicates central il-1 signals regulating bone mass accrual. Proc. Natl. Acad. Sci. USA, 2012, 109, 15455-15460.
[http://dx.doi.org/10.1073/pnas.1206061109] [PMID: 22949675]
[117]
Inkson, C.A.; Brabbs, A.C.; Grewal, T.S.; Skerry, T.M.; Genever, P.G. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone, 2004, 35(4), 819-827.
[http://dx.doi.org/10.1016/j.bone.2004.05.026] [PMID: 15454088]
[118]
Shi, Y.; Oury, F.; Yadav, V.K.; Wess, J.; Liu, X.S.; Guo, X.E.; Murshed, M.; Karsenty, G. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab., 2010, 11(3), 231-238.
[http://dx.doi.org/10.1016/j.cmet.2010.01.005] [PMID: 20197056]
[119]
Rodríguez de Lores Arnaiz, G.; Schneider, P.G. Calcitonin modifies ligand binding to muscarinic receptor in CNS membranes. Regul. Pept., 2000, 88(1-3), 21-26.
[http://dx.doi.org/10.1016/S0167-0115(99)00109-3] [PMID: 10706948]
[120]
Eimar, H.; Tamimi, I.; Murshed, M.; Tamimi, F. Cholinergic regulation of bone. J. Musculoskelet. Neuronal Interact., 2013, 13(2), 124-132.
[PMID: 23728099]
[121]
Moore, R.E.; Smith, C.K., II; Bailey, C.S.; Voelkel, E.F.; Tashjian, A.H., Jr Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner., 1993, 23(3), 301-315.
[http://dx.doi.org/10.1016/S0169-6009(08)80105-5] [PMID: 7908582]
[122]
Ducy, P.; Amling, M.; Takeda, S.; Priemel, M.; Schilling, A.F.; Beil, F.T.; Shen, J.; Vinson, C.; Rueger, J.M.; Karsenty, G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 2000, 100(2), 197-207.
[http://dx.doi.org/10.1016/S0092-8674(00)81558-5] [PMID: 10660043]
[123]
Takeda, S.; Elefteriou, F.; Levasseur, R.; Liu, X.; Zhao, L.; Parker, K.L.; Armstrong, D.; Ducy, P.; Karsenty, G. Leptin regulates bone formation via the sympathetic nervous system. Cell, 2002, 111(3), 305-317.
[http://dx.doi.org/10.1016/S0092-8674(02)01049-8] [PMID: 12419242]
[124]
Chenu, C.; Serre, C.M.; Raynal, C.; Burt-Pichat, B.; Delmas, P.D. Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone, 1998, 22(4), 295-299.
[http://dx.doi.org/10.1016/S8756-3282(97)00295-0] [PMID: 9556127]
[125]
Serre, C.M.; Farlay, D.; Delmas, P.D.; Chenu, C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone, 1999, 25(6), 623-629.
[http://dx.doi.org/10.1016/S8756-3282(99)00215-X] [PMID: 10593406]
[126]
Dobson, K.R.; Skerry, T.M. The NMDA-type glutamate re-ceptor antagonist MK801 regulates differentiation of rat bone marrow osteoprogenitors and influences adipigenesis. J. Bone Miner. Res., 2000, 15, S272.
[127]
Villareal, D.T.; Civitelli, R.; Chines, A.; Avioli, L.V. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J. Clin. Endocrinol. Metab., 1991, 72(3), 628-634.
[http://dx.doi.org/10.1210/jcem-72-3-628] [PMID: 1997517]
[128]
Collins, D.; Jasani, C.; Fogelman, I.; Swaminathan, R. Vitamin D and bone mineral density. Osteoporos. Int., 1998, 8(2), 110-114.
[http://dx.doi.org/10.1007/BF02672505] [PMID: 9666932]
[129]
Mezquita-Raya, P.; Muñoz-Torres, M.; Luna, J.D.; Luna, V.; Lopez-Rodriguez, F.; Torres-Vela, E.; Escobar-Jiménez, F. Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J. Bone Miner. Res., 2001, 16(8), 1408-1415.
[http://dx.doi.org/10.1359/jbmr.2001.16.8.1408] [PMID: 11499863]
[130]
Bischoff-Ferrari, H.A.; Dietrich, T.; Orav, E.J.; Dawson-Hughes, B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am. J. Med., 2004, 116(9), 634-639.
[http://dx.doi.org/10.1016/j.amjmed.2003.12.029] [PMID: 15093761]
[131]
Adami, S.; Bertoldo, F.; Braga, V.; Fracassi, E.; Gatti, D.; Gandolini, G.; Minisola, S.; Battista Rini, G. 25-hydroxy vitamin D levels in healthy premenopausal women: association with bone turnover markers and bone mineral density. Bone, 2009, 45(3), 423-426.
[http://dx.doi.org/10.1016/j.bone.2009.05.012] [PMID: 19465168]
[132]
Outila, T.A.; Kärkkäinen, M.U.; Lamberg-Allardt, C.J. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am. J. Clin. Nutr., 2001, 74(2), 206-210.
[http://dx.doi.org/10.1093/ajcn/74.2.206] [PMID: 11470722]
[133]
Weber, P. Vitamin K and bone health. Nutrition, 2001, 17(10), 880-887.
[http://dx.doi.org/10.1016/S0899-9007(01)00709-2] [PMID: 11684396]
[134]
Bolton-Smith, C.; McMurdo, M.E.; Paterson, C.R.; Mole, P.A.; Harvey, J.M.; Fenton, S.T.; Prynne, C.J.; Mishra, G.D.; Shearer, M.J. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J. Bone Miner. Res., 2007, 22(4), 509-519.
[http://dx.doi.org/10.1359/jbmr.070116] [PMID: 17243866]
[135]
Braam, L.A.; Knapen, M.H.; Geusens, P.; Brouns, F. Ham-ulya’k, K.; Gerichhausen, M.J.; Vermeer, C. Vitamin K1 sup-plementation retards bone loss in postmenopausal women be-tween 50 and 60 years of age. Calcif. Tissue Int., 2003, 73, 21-26.
[http://dx.doi.org/10.1007/s00223-002-2084-4] [PMID: 14506950]
[136]
Tucker, K.L.; Hannan, M.T.; Qiao, N.; Jacques, P.F.; Selhub, J.; Cupples, L.A.; Kiel, D.P. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J. Bone Miner. Res., 2005, 20(1), 152-158.
[http://dx.doi.org/10.1359/jbmr.2005.20.1.152] [PMID: 15619681]
[137]
Eastell, R.; Vieira, N.E.; Yergey, A.L.; Wahner, H.W.; Silverstein, M.N.; Kumar, R.; Riggs, B.L. Pernicious anaemia as a risk factor for osteoporosis. Clin. Sci. (Lond.), 1992, 82(6), 681-685.
[http://dx.doi.org/10.1042/cs0820681] [PMID: 1320549]
[138]
Melton, M.E.; Kochman, M.L. Reversal of severe osteoporosis with vitamin B12 and etidronate therapy in a patient with pernicious anemia. Metabolism, 1994, 43(4), 468-469.
[http://dx.doi.org/10.1016/0026-0495(94)90078-7] [PMID: 8159105]
[139]
Crandall, C. Vitamin A intake and osteoporosis: a clinical review. J. Womens Health (Larchmt.), 2004, 13(8), 939-953.
[http://dx.doi.org/10.1089/jwh.2004.13.939] [PMID: 15671709]
[140]
Herrmann, M.; Peter Schmidt, J.; Umanskaya, N.; Wagner, A.; Taban-Shomal, O.; Widmann, T.; Colaianni, G.; Wildemann, B.; Herrmann, W. The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin. Chem. Lab. Med., 2007, 45(12), 1621-1632.
[http://dx.doi.org/10.1515/CCLM.2007.362] [PMID: 18067447]
[141]
Leboff, M.S.; Narweker, R.; LaCroix, A.; Wu, L.; Jackson, R.; Lee, J.; Bauer, D.C.; Cauley, J.; Kooperberg, C.; Lewis, C.; Thomas, A.M.; Cummings, S. Homocysteine levels and risk of hip fracture in postmenopausal women. J. Clin. Endocrinol. Metab., 2009, 94(4), 1207-1213.
[http://dx.doi.org/10.1210/jc.2008-1777] [PMID: 19174498]
[142]
Ebesunun, M.O.; Umahoin, K.O.; Alonge, T.O.; Adebusoye, L.A. Plasma homocysteine, B vitamins and bone mineral density in osteoporosis: a possible risk for bone fracture. Afr. J. Med. Med. Sci., 2014, 43(1), 41-47.
[PMID: 25335377]
[143]
Lanham-New, S.A. Symposium on ‘Diet and bone health’ Importance of calcium, vitamin D and vitamin K for osteopo-rosis prevention and treatment. Proc. Nutr. Soc., 2008, 67, 163-176.
[http://dx.doi.org/10.1017/S0029665108007003] [PMID: 18412990]
[144]
Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res., 2015, 4(1), 1-8.
[http://dx.doi.org/10.7762/cnr.2015.4.1.1] [PMID: 25713787]
[145]
Zheng, J.; Mao, X.; Ling, J.; He, Q.; Quan, J.; Jiang, H. Association between serum level of magnesium and postmenopausal osteoporosis: a meta-analysis. Biol. Trace Elem. Res., 2014, 159(1-3), 8-14.
[http://dx.doi.org/10.1007/s12011-014-9961-3] [PMID: 24728877]
[146]
Orchard, T.S.; Larson, J.C.; Alghothani, N.; Bout-Tabaku, S.; Cauley, J.A.; Chen, Z.; LaCroix, A.Z.; Wactawski-Wende, J.; Jackson, R.D. Magnesium intake, bone mineral density, and fractures: results from the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr., 2014, 99(4), 926-933.
[http://dx.doi.org/10.3945/ajcn.113.067488] [PMID: 24500155]
[147]
Zheng, J.; Mao, X.; Ling, J.; He, Q.; Quan, J. Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis. Biol. Trace Elem. Res., 2014, 160(1), 15-23.
[http://dx.doi.org/10.1007/s12011-014-0031-7] [PMID: 24908111]
[148]
Leidi, M.; Dellera, F.; Mariotti, M.; Banfi, G.; Crapanzano, C.; Albisetti, W.; Maier, J.A. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation. J. Nutr. Biochem., 2012, 23(10), 1224-1229.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.016] [PMID: 22209000]
[149]
Belluci, M.M.; Schoenmaker, T.; Rossa-Junior, C.; Orrico, S.R.; de Vries, T.J.; Everts, V. Magnesium deficiency results in an increased formation of osteoclasts. J. Nutr. Biochem., 2013, 24(8), 1488-1498.
[http://dx.doi.org/10.1016/j.jnutbio.2012.12.008] [PMID: 23517915]
[150]
Bhardwaj, P.; Rai, D.V.; Garg, M.L. Zinc as a nutritional approach to bone loss prevention in an ovariectomized rat model. Menopause, 2013, 20(11), 1184-1193.
[http://dx.doi.org/10.1097/GME.0b013e31828a7f4e] [PMID: 23571522]
[151]
Ahn, S.H.; Lee, S.H.; Kim, B.J.; Lim, K.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Koh, J.M.; Kim, G.S. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos. Int., 2013, 24(12), 2961-2970.
[http://dx.doi.org/10.1007/s00198-013-2377-7] [PMID: 23644878]
[152]
Nabipour, I.; Sambrook, P.N.; Blyth, F.M.; Janu, M.R.; Waite, L.M.; Naganathan, V.; Handelsman, D.J.; Le Couteur, D.G.; Cumming, R.G.; Seibel, M.J. Serum uric acid is associated with bone health in older men: a cross-sectional population-based study. J. Bone Miner. Res., 2011, 26(5), 955-964.
[http://dx.doi.org/10.1002/jbmr.286] [PMID: 21541998]
[153]
Parhami, F.; Garfinkel, A.; Demer, L.L. Role of lipids in osteoporosis. Arterioscler. Thromb. Vasc. Biol., 2000, 20(11), 2346-2348.
[http://dx.doi.org/10.1161/01.ATV.20.11.2346] [PMID: 11073836]
[154]
Broulik, P.D.; Kapitola, J. Interrelations between body weight, cigarette smoking and spine mineral density in osteoporotic Czech women. Endocr. Regul., 1993, 27(2), 57-60.
[PMID: 8003710]
[155]
Yamaguchi, T.; Sugimoto, T.; Yano, S.; Yamauchi, M.; Sowa, H.; Chen, Q.; Chihara, K. Plasma lipids and osteoporosis in postmenopausal women. Endocr. J., 2002, 49(2), 211-217.
[http://dx.doi.org/10.1507/endocrj.49.211] [PMID: 12081241]
[156]
Jeong, T.D.; Lee, W.; Choi, S.E.; Kim, J.S.; Kim, H.K.; Bae, S.J.; Chun, S.; Min, W.K. Relationship between serum total cholesterol level and serum biochemical bone turnover markers in healthy pre and postmenopausal women. BioMed Res. Int., 2014.2014398397
[http://dx.doi.org/10.1155/2014/398397] [PMID: 24949440]
[157]
Brownbill, R.A.; Ilich, J.Z. Lipid profile and bone paradox: higher serum lipids are associated with higher bone mineral density in postmenopausal women. J. Womens Health (Larchmt.), 2006, 15(3), 261-270.
[http://dx.doi.org/10.1089/jwh.2006.15.261] [PMID: 16620185]
[158]
Samelson, E.J.; Cupples, L.A.; Hannan, M.T.; Wilson, P.W.; Williams, S.A.; Vaccarino, V.; Zhang, Y.; Kiel, D.P. Long-term effects of serum cholesterol on bone mineral density in women and men: the Framingham Osteoporosis Study. Bone, 2004, 34(3), 557-561.
[http://dx.doi.org/10.1016/j.bone.2003.11.024] [PMID: 15003803]
[159]
Brown, S.A.; Sharpless, J.L. Osteoporosis: an under-appreciated complication of diabetes. Clin. Diabetes, 2004, 22, 10-20.
[http://dx.doi.org/10.2337/diaclin.22.1.10]
[160]
Saha, M.T.; Sievänen, H.; Salo, M.K.; Tulokas, S.; Saha, H.H. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos. Int., 2009, 20(8), 1401-1406.
[http://dx.doi.org/10.1007/s00198-008-0810-0] [PMID: 19083073]
[161]
Yamaguchi, T.; Kanazawa, I.; Yamamoto, M.; Kurioka, S.; Yamauchi, M.; Yano, S.; Sugimoto, T. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone, 2009, 45(2), 174-179.
[http://dx.doi.org/10.1016/j.bone.2009.05.003] [PMID: 19446053]
[162]
Petit, M.A.; Paudel, M.L.; Taylor, B.C.; Hughes, J.M.; Strotmeyer, E.S.; Schwartz, A.V.; Cauley, J.A.; Zmuda, J.M.; Hoffman, A.R.; Ensrud, K.E. Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J. Bone Miner. Res., 2010, 25(2), 285-291.
[http://dx.doi.org/10.1359/jbmr.090725] [PMID: 19594301]
[163]
Yang, J.; Zhang, X.; Wang, W.; Liu, J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem. Funct., 2010, 28(4), 334-341.
[http://dx.doi.org/10.1002/cbf.1668] [PMID: 20517899]
[164]
Wang, W.; Zhang, X.; Zheng, J.; Yang, J. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol. Cell. Biochem., 2010, 338(1-2), 115-122.
[http://dx.doi.org/10.1007/s11010-009-0344-6] [PMID: 19949837]
[165]
Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int., 2010, 21(2), 195-214.
[http://dx.doi.org/10.1007/s00198-009-1066-z] [PMID: 19760059]
[166]
Saito, M.; Fujii, K.; Mori, Y.; Marumo, K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos. Int., 2006, 17(10), 1514-1523.
[http://dx.doi.org/10.1007/s00198-006-0155-5] [PMID: 16770520]
[167]
Schlemmer, A.; Hassager, C. Acute fasting diminishes the circadian rhythm of biochemical markers of bone resorption. Eur. J. Endocrinol., 1999, 140(4), 332-337.
[http://dx.doi.org/10.1530/eje.0.1400332] [PMID: 10097253]
[168]
Xie, D.; Zhong, Q.; Ding, K.H.; Cheng, H.; Williams, S.; Correa, D.; Bollag, W.B.; Bollag, R.J.; Insogna, K.; Troiano, N.; Coady, C.; Hamrick, M.; Isales, C.M. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone, 2007, 40(5), 1352-1360.
[http://dx.doi.org/10.1016/j.bone.2007.01.007] [PMID: 17321229]
[169]
Xie, D.; Cheng, H.; Hamrick, M.; Zhong, Q.; Ding, K.H.; Correa, D.; Williams, S.; Mulloy, A.; Bollag, W.; Bollag, R.J.; Runner, R.R.; McPherson, J.C.; Insogna, K.; Isales, C.M. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone, 2005, 37(6), 759-769.
[http://dx.doi.org/10.1016/j.bone.2005.06.021] [PMID: 16219496]
[170]
Tsukiyama, K.; Yamada, Y.; Yamada, C.; Harada, N.; Kawasaki, Y.; Ogura, M.; Bessho, K.; Li, M.; Amizuka, N.; Sato, M.; Udagawa, N.; Takahashi, N.; Tanaka, K.; Oiso, Y.; Seino, Y. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol., 2006, 20(7), 1644-1651.
[http://dx.doi.org/10.1210/me.2005-0187] [PMID: 16469773]
[171]
Henriksen, D.B.; Alexandersen, P.; Hartmann, B.; Adrian, C.L.; Byrjalsen, I.; Bone, H.G.; Holst, J.J.; Christiansen, C. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone, 2009, 45(5), 833-842.
[http://dx.doi.org/10.1016/j.bone.2009.07.008] [PMID: 19631303]
[172]
Materozzi, M.; Merlotti, D.; Gennari, L.; Bianciardi, S. The Potential Role of miRNAs as New Biomarkers for Osteoporosis. Int. J. Endocrinol., 2018.20182342860
[http://dx.doi.org/10.1155/2018/2342860] [PMID: 29853878]
[173]
Seeliger, C.; Karpinski, K.; Haug, A.T.; Vester, H.; Schmitt, A.; Bauer, J.S.; van Griensven, M. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res., 2014, 29(8), 1718-1728.
[http://dx.doi.org/10.1002/jbmr.2175] [PMID: 24431276]
[174]
Weilner, S.; Schraml, E.; Wieser, M.; Messner, P.; Schneider, K.; Wassermann, K.; Micutkova, L.; Fortschegger, K.; Maier, A.B.; Westendorp, R.; Resch, H.; Wolbank, S.; Redl, H. Jan-sen-Dürr, P.; Pietschmann, P.; Grillari-Voglauer, R.; Grillari, J. Secreted microvescicular miR-31 inhibits osteogenic differen-tiation of mesenchymal stem cells. Aging Cell, 2016, 15, 744-754.
[http://dx.doi.org/10.1111/acel.12484] [PMID: 27146333]
[175]
Mizoguchi, F.; Murakami, Y.; Saito, T.; Miyasaka, N.; Kohsaka, H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res. Ther., 2013, 15(5), R102.
[http://dx.doi.org/10.1186/ar4282] [PMID: 24004633]
[176]
You, L.; Pan, L.; Chen, L.; Gu, W.; Chen, J. MiR-27a is es-sential for the shift from osteogenic differentiation to adipo-genic differentiation of mesenchymal stem cells in postmeno-pausal osteoporosis. Cell. Physiol. Biochem., 2016, 39(1), 253-265.
[http://dx.doi.org/10.1159/000445621] [PMID: 27337099]
[177]
Wang, T.; Xu, Z. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem. Biophys. Res. Commun., 2010, 402(2), 186-189.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.031] [PMID: 20708603]
[178]
Sanguineti, R.; Puddu, A.; Mach, F.; Montecucco, F.; Viviani, G.L. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm., 2014.2014975872
[http://dx.doi.org/10.1155/2014/975872] [PMID: 24771986]
[179]
Reddy, V.P.; Beyaz, A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today, 2006, 11(13-14), 646-654.
[http://dx.doi.org/10.1016/j.drudis.2006.05.016] [PMID: 16793534]
[180]
Hein, G.E. Glycation endproducts in osteoporosis--is there a pathophysiologic importance? Clin. Chim. Acta, 2006, 371(1-2), 32-36.
[http://dx.doi.org/10.1016/j.cca.2006.03.017] [PMID: 16777084]
[181]
Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids, 2012, 42(4), 1151-1161.
[http://dx.doi.org/10.1007/s00726-010-0773-2] [PMID: 20957395]
[182]
Gangoiti, A.V.; Cortizo, A.M.; McCarthy, D. Advanced gly-cation endproducts and alendronate differentially inhibit early and late osteoclastogenesis in vitro. J. Diabetes Metab., 2013, 4, 274.
[183]
Gangoiti, M.V.; Cortizo, A.M.; Arnol, V.; Felice, J.I.; McCarthy, A.D. Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. Eur. J. Pharmacol., 2008, 600(1-3), 140-147.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.031] [PMID: 18973752]
[184]
Naylor, K.; Eastell, R. Bone turnover markers: use in osteoporosis. Nat. Rev. Rheumatol., 2012, 8(7), 379-389.
[http://dx.doi.org/10.1038/nrrheum.2012.86] [PMID: 22664836]
[185]
Szulc, P.; Delmas, P.D. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos. Int., 2008, 19(12), 1683-1704.
[http://dx.doi.org/10.1007/s00198-008-0660-9] [PMID: 18629570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy