Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

tiRNAs & tRFs Biogenesis and Regulation of Diseases: A Review

Author(s): Pan Jiang and Feng Yan*

Volume 26, Issue 31, 2019

Page: [5849 - 5861] Pages: 13

DOI: 10.2174/0929867326666190124123831

Price: $65

Open Access Journals Promotions 2
Abstract

tiRNAs & tRFs are a class of small molecular noncoding tRNA derived from precise processing of mature or precursor tRNAs. Most tiRNAs & tRFs described originate from nucleus-encoded tRNAs, and only a few tiRNAs and tRFs have been reported. They have been suggested to play important roles in inhibiting protein synthesis, regulating gene expression, priming viral reverse transcriptases, and the modulation of DNA damage responses. However, the regulatory mechanisms and potential function of tiRNAs & tRFs remain poorly understood. This review aims to describe tiRNAs & tRFs, including their structure, biological functions and subcellular localization. The regulatory roles of tiRNAs & tRFs in translation, neurodegeneration, metabolic diseases, viral infections, and carcinogenesis are also discussed in detail. Finally, the potential applications of these noncoding tRNAs as biomarkers and gene regulators in different diseases is also highlighted.

Keywords: tRNA, tiRNAs, tRFs, miRNA, biogenesis, regulation, biogenesis of disease.

[1]
Veneziano, D.; Di Bella, S.; Nigita, G.; Laganà, A.; Ferro, A.; Croce, C.M. Noncoding RNA: current deep sequencing data analysis approaches and challenges. Hum. Mutat., 2016, 37(12), 1283-1298.
[http://dx.doi.org/10.1002/humu.23066] [PMID: 27516218]
[2]
Chew, C.L.; Conos, S.A.; Unal, B.; Tergaonkar, V. Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol. Med., 2018, 24(1), 66-84.
[http://dx.doi.org/10.1016/j.molmed.2017.11.003] [PMID: 29246760]
[3]
Edwards, S.L.; Beesley, J.; French, J.D.; Dunning, A.M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet., 2013, 93(5), 779-797.
[http://dx.doi.org/10.1016/j.ajhg.2013.10.012] [PMID: 24210251]
[4]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[5]
Balatti, V.; Nigita, G.; Veneziano, D.; Drusco, A.; Stein, G.S.; Messier, T.L.; Farina, N.H.; Lian, J.B.; Tomasello, L.; Liu, C.G.; Palamarchuk, A.; Hart, J.R.; Bell, C.; Carosi, M.; Pescarmona, E.; Perracchio, L.; Diodoro, M.; Russo, A.; Antenucci, A.; Visca, P.; Ciardi, A.; Harris, C.C.; Vogt, P.K.; Pekarsky, Y.; Croce, C.M. tsRNA signatures in cancer. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 8071-8076.
[http://dx.doi.org/10.1073/pnas.1706908114] [PMID: 28696308]
[6]
Zhu, L.; Liu, X.; Pu, W.; Peng, Y. tRNA-derived small non-coding RNAs in human disease. Cancer Lett., 2018, 419, 1-7.
[http://dx.doi.org/10.1016/j.canlet.2018.01.015] [PMID: 29337107]
[7]
Saikia, M.; Hatzoglou, M. The many virtues of tRNA-derived Stress-induced RNAs (tiRNAs): discovering novel mechanisms of stress response and effect on human health. J. Biol. Chem., 2015, 290(50), 29761-29768.
[http://dx.doi.org/10.1074/jbc.R115.694661] [PMID: 26463210]
[8]
Yamasaki, S.; Ivanov, P.; Hu, G.F.; Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol., 2009, 185(1), 35-42.
[http://dx.doi.org/10.1083/jcb.200811106] [PMID: 19332886]
[9]
Elbarbary, R.A.; Takaku, H.; Uchiumi, N.; Tamiya, H.; Abe, M.; Takahashi, M.; Nishida, H.; Nashimoto, M. Modulation of gene expression by human cytosolic tRNase Z(L) through 5′-half-tRNA. PLoS One, 2009, 4(6)e5908
[http://dx.doi.org/10.1371/journal.pone.0005908] [PMID: 19526060]
[10]
Kumar, P.; Kuscu, C.; Dutta, A. Biogenesis and function of transfer RNA-Related Fragments (tRFs). Trends Biochem. Sci., 2016, 41(8), 679-689.
[http://dx.doi.org/10.1016/j.tibs.2016.05.004] [PMID: 27263052]
[11]
Garcia-Silva, M.R.; Cabrera-Cabrera, F.; Güida, M.C.; Cayota, A. Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes (Basel), 2012, 3(4), 603-614.
[http://dx.doi.org/10.3390/genes3040603] [PMID: 24705078]
[12]
Soares, A.R.; Santos, M. Discovery and function of transfer RNA-derived fragments and their role in disease. Wiley Interdiscip. Rev. RNA, 2017, 8(5)e1423
[http://dx.doi.org/10.1002/wrna.1423] [PMID: 28608481]
[13]
Cole, C.; Sobala, A.; Lu, C.; Thatcher, S.R.; Bowman, A.; Brown, J.W.; Green, P.J.; Barton, G.J.; Hutvagner, G. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA, 2009, 15(12), 2147-2160.
[http://dx.doi.org/10.1261/rna.1738409] [PMID: 19850906]
[14]
Li, S.; Chen, Y.; Sun, D.; Bai, R.; Gao, X.; Yang, Y.; Sheng, J.; Xu, Z. Angiogenin prevents Progranulin A9D mutation-induced neuronal-like cell apoptosis through cleaving tRNAs into tiRNAs. Mol. Neurobiol., 2018, 55(2), 1338-1351.
[http://dx.doi.org/10.1007/s12035-017-0396-7] [PMID: 28127696]
[15]
Dhahbi, J.M. 5′ tRNA Halves: The next generation of immune signaling molecules. Front. Immunol., 2015, 6, 74.
[http://dx.doi.org/10.3389/fimmu.2015.00074] [PMID: 25745425]
[16]
Foretek, D.; Wu, J.; Hopper, A.K.; Boguta, M. Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA, 2016, 22(3), 339-349.
[http://dx.doi.org/10.1261/rna.054973.115] [PMID: 26729922]
[17]
Elkordy, A.; Mishima, E.; Niizuma, K.; Akiyama, Y.; Fujimura, M.; Tominaga, T.; Abe, T. Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J. Neurochem., 2018, 146(5), 560-569.
[http://dx.doi.org/10.1111/jnc.14321] [PMID: 29431851]
[18]
Andersen, K.L.; Collins, K. Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena. Mol. Biol. Cell, 2012, 23(1), 36-44.
[http://dx.doi.org/10.1091/mbc.e11-08-0689] [PMID: 22049026]
[19]
Levitz, R.; Chapman, D.; Amitsur, M.; Green, R.; Snyder, L.; Kaufmann, G. The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J., 1990, 9(5), 1383-1389.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb08253.x] [PMID: 1691706]
[20]
Selitsky, S.R.; Baran-Gale, J.; Honda, M.; Yamane, D.; Masaki, T.; Fannin, E.E.; Guerra, B.; Shirasaki, T.; Shimakami, T.; Kaneko, S.; Lanford, R.E.; Lemon, S.M.; Sethupathy, P. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci. Rep., 2015, 5, 7675.
[http://dx.doi.org/10.1038/srep07675] [PMID: 25567797]
[21]
Saikia, M.; Jobava, R.; Parisien, M.; Putnam, A.; Krokowski, D.; Gao, X.H.; Guan, B.J.; Yuan, Y.; Jankowsky, E.; Feng, Z.; Hu, G.F.; Pusztai-Carey, M.; Gorla, M.; Sepuri, N.B.; Pan, T.; Hatzoglou, M. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol. Cell. Biol., 2014, 34(13), 2450-2463.
[http://dx.doi.org/10.1128/MCB.00136-14] [PMID: 24752898]
[22]
Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.H.; Peng, H.; Zhang, X.; Zhang, Y.; Qian, J.; Duan, E.; Zhai, Q.; Zhou, Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 2016, 351(6271), 397-400.
[http://dx.doi.org/10.1126/science.aad7977] [PMID: 26721680]
[23]
Thompson, D.M.; Parker, R. Stressing out over tRNA cleavage. Cell, 2009, 138(2), 215-219.
[http://dx.doi.org/10.1016/j.cell.2009.07.001] [PMID: 19632169]
[24]
Lee, Y.S.; Shibata, Y.; Malhotra, A.; Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev., 2009, 23(22), 2639-2649.
[http://dx.doi.org/10.1101/gad.1837609] [PMID: 19933153]
[25]
Basso, K.; Sumazin, P.; Morozov, P.; Schneider, C.; Maute, R.L.; Kitagawa, Y.; Mandelbaum, J.; Haddad, J., Jr; Chen, C.Z.; Califano, A.; Dalla-Favera, R. Identification of the human mature B cell miRNome. Immunity, 2009, 30(5), 744-752.
[http://dx.doi.org/10.1016/j.immuni.2009.03.017] [PMID: 19446474]
[26]
Maute, R.L.; Schneider, C.; Sumazin, P.; Holmes, A.; Califano, A.; Basso, K.; Dalla-Favera, R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA, 2013, 110(4), 1404-1409.
[http://dx.doi.org/10.1073/pnas.1206761110] [PMID: 23297232]
[27]
Zhang, X.; He, X.; Liu, C.; Liu, J.; Hu, Q.; Pan, T.; Duan, X.; Liu, B.; Zhang, Y.; Chen, J.; Ma, X.; Zhang, X.; Luo, H.; Zhang, H. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-Interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. Journal of immunology (Baltimore, Md, 2016. 196(4), 1591-1603.
[http://dx.doi.org/10.4049/jimmunol.1500805] [PMID: 26755820]
[28]
Goodarzi, H.; Liu, X.; Nguyen, H.C.; Zhang, S.; Fish, L.; Tavazoie, S.F. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015, 161(4), 790-802.
[http://dx.doi.org/10.1016/j.cell.2015.02.053] [PMID: 25957686]
[29]
Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; Song, L.; Carone, B.R.; Ricci, E.P.; Li, X.Z.; Fauquier, L.; Moore, M.J.; Sullivan, R.; Mello, C.C.; Garber, M.; Rando, O.J. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351(6271), 391-396.
[http://dx.doi.org/10.1126/science.aad6780] [PMID: 26721685]
[30]
Cognat, V.; Morelle, G.; Megel, C.; Lalande, S.; Molinier, J.; Vincent, T.; Small, I.; Duchêne, A.M.; Maréchal-Drouard, L. The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res., 2017, 45(6), 3460-3472.
[http://dx.doi.org/10.1093/nar/gkw1122] [PMID: 27899576]
[31]
Nolte-’t Hoen, E.N. Buermans, H.P.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.; ’t Hoen, P.A. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res., 2012, 40(18), 9272-9285.
[http://dx.doi.org/10.1093/nar/gks658] [PMID: 22821563]
[32]
Lambertz, U.; Oviedo Ovando, M.E.; Vasconcelos, E.J.; Unrau, P.J.; Myler, P.J.; Reiner, N.E. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics, 2015, 16, 151.
[http://dx.doi.org/10.1186/s12864-015-1260-7] [PMID: 25764986]
[33]
Haussecker, D.; Huang, Y.; Lau, A.; Parameswaran, P.; Fire, A.Z.; Kay, M.A. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 2010, 16(4), 673-695.
[http://dx.doi.org/10.1261/rna.2000810] [PMID: 20181738]
[34]
Telonis, A.G.; Loher, P.; Honda, S.; Jing, Y.; Palazzo, J.; Kirino, Y.; Rigoutsos, I. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget, 2015, 6(28), 24797-24822.
[http://dx.doi.org/10.18632/oncotarget.4695] [PMID: 26325506]
[35]
Loss-Morais, G.; Waterhouse, P.M.; Margis, R. Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol. Direct, 2013, 8, 6.
[http://dx.doi.org/10.1186/1745-6150-8-6] [PMID: 23402430]
[36]
Heyer, R.; Dörr, M.; Jellen-Ritter, A.; Späth, B.; Babski, J.; Jaschinski, K.; Soppa, J.; Marchfelder, A. High throughput sequencing reveals a plethora of small RNAs including tRNA derived fragments in Haloferax volcanii. RNA Biol., 2012, 9(7), 1011-1018.
[http://dx.doi.org/10.4161/rna.20826] [PMID: 22767255]
[37]
Gebetsberger, J.; Zywicki, M.; Künzi, A.; Polacek, N. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea, 2012.2012260909
[http://dx.doi.org/10.1155/2012/260909] [PMID: 23326205]
[38]
Nunes, C.C.; Gowda, M.; Sailsbery, J.; Xue, M.; Chen, F.; Brown, D.E.; Oh, Y.; Mitchell, T.K.; Dean, R.A. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics, 2011, 12, 288.
[http://dx.doi.org/10.1186/1471-2164-12-288] [PMID: 21635781]
[39]
Cai, P.; Piao, X.; Hao, L.; Liu, S.; Hou, N.; Wang, H.; Chen, Q. A deep analysis of the small non-coding RNA population in Schistosoma japonicum eggs. PLoS One, 2013, 8(5)e64003
[http://dx.doi.org/10.1371/journal.pone.0064003] [PMID: 23691136]
[40]
Nie, Z.; Zhou, F.; Li, D.; Lv, Z.; Chen, J.; Liu, Y.; Shu, J.; Sheng, Q.; Yu, W.; Zhang, W.; Jiang, C.; Yao, Y.; Yao, J.; Jin, Y.; Zhang, Y. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori. BMC Genomics, 2013, 14, 661.
[http://dx.doi.org/10.1186/1471-2164-14-661] [PMID: 24074203]
[41]
Bühler, M.; Spies, N.; Bartel, D.P.; Moazed, D. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat. Struct. Mol. Biol., 2008, 15(10), 1015-1023.
[http://dx.doi.org/10.1038/nsmb.1481] [PMID: 18776903]
[42]
Olovnikov, I.; Chan, K.; Sachidanandam, R.; Newman, D.K.; Aravin, A.A. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol. Cell, 2013, 51(5), 594-605.
[http://dx.doi.org/10.1016/j.molcel.2013.08.014] [PMID: 24034694]
[43]
Ivanov, P.; Emara, M.M.; Villen, J.; Gygi, S.P.; Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell, 2011, 43(4), 613-623.
[http://dx.doi.org/10.1016/j.molcel.2011.06.022] [PMID: 21855800]
[44]
Sobala, A.; Hutvagner, G. Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol., 2013, 10(4), 553-563.
[http://dx.doi.org/10.4161/rna.24285] [PMID: 23563448]
[45]
Burroughs, A.M.; Ando, Y.; de Hoon, M.J.; Tomaru, Y.; Suzuki, H.; Hayashizaki, Y.; Daub, C.O. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol., 2011, 8(1), 158-177.
[http://dx.doi.org/10.4161/rna.8.1.14300] [PMID: 21282978]
[46]
Mleczko, A.M.; Celichowski, P.; Bąkowska-Żywicka, K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. Biochim. Biophys. Acta. Gene Regul. Mech., 2018, 1861(7), 647-656.
[http://dx.doi.org/10.1016/j.bbagrm.2018.06.001] [PMID: 29883755]
[47]
Kim, H.K.; Fuchs, G.; Wang, S.; Wei, W.; Zhang, Y.; Park, H.; Roy-Chaudhuri, B.; Li, P.; Xu, J.; Chu, K.; Zhang, F.; Chua, M.S.; So, S.; Zhang, Q.C.; Sarnow, P.; Kay, M.A. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017, 552(7683), 57-62.
[http://dx.doi.org/10.1038/nature25005] [PMID: 29186115]
[48]
Wang, H.; Zhang, L.; Jiang, Y.; Chen, L.; Duan, Z.; Lv, X.; Zhu, S. A sandwiched electroanalysis method for probing Anthrax DNAs based on glucose-induced gold growth and catalytic coupling of tyramine using gold-mineralized glucose oxidase. Sens. Actuators B Chem., 2018, 261, 441-450.
[http://dx.doi.org/10.1016/j.snb.2018.01.171]
[49]
Emara, M.M.; Ivanov, P.; Hickman, T.; Dawra, N.; Tisdale, S.; Kedersha, N.; Hu, G.F.; Anderson, P. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J. Biol. Chem., 2010, 285(14), 10959-10968.
[http://dx.doi.org/10.1074/jbc.M109.077560] [PMID: 20129916]
[50]
Hsieh, L.C.; Lin, S.I.; Shih, A.C.; Chen, J.W.; Lin, W.Y.; Tseng, C.Y.; Li, W.H.; Chiou, T.J. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol., 2009, 151(4), 2120-2132.
[http://dx.doi.org/10.1104/pp.109.147280] [PMID: 19854858]
[51]
Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr; Jungkamp, A.C.; Munschauer, M.; Ulrich, A.; Wardle, G.S.; Dewell, S.; Zavolan, M.; Tuschl, T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 2010, 141(1), 129-141.
[http://dx.doi.org/10.1016/j.cell.2010.03.009] [PMID: 20371350]
[52]
Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.E.; Humphreys, D.T.; Preiss, T.; Steinmetz, L.M.; Krijgsveld, J.; Hentze, M.W. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012, 149(6), 1393-1406.
[http://dx.doi.org/10.1016/j.cell.2012.04.031] [PMID: 22658674]
[53]
Kumar, P.; Anaya, J.; Mudunuri, S.B.; Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol., 2014, 12, 78.
[http://dx.doi.org/10.1186/s12915-014-0078-0] [PMID: 25270025]
[54]
Luo, S.Q.; He, F.; Luo, J.J.; Dou, S.Q.; Wang, Y.R.; Guo, A.N.; Lu, J. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Res., 2018, 46(10), 5250-5268.
[http://dx.doi.org/10.1093/nar/gky189] [PMID: 29548011]
[55]
Karaiskos, S.; Naqvi, A.S.; Swanson, K.E.; Grigoriev, A. Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biol. Direct, 2015. sophila and their potential targets. Biol. Direct, 2015, 10, 51.
[56]
Dhahbi, J.M.; Spindler, S.R.; Atamna, H.; Boffelli, D.; Martin, D.I. Deep sequencing of serum small RNAs identifies patterns of 5′ tRNA half and YRNA fragment expression associated with breast cancer. Biomark. Cancer, 2014, 6, 37-47.
[http://dx.doi.org/10.4137/BIC.S20764] [PMID: 25520563]
[57]
Zhou, K.; Diebel, K.W.; Holy, J.; Skildum, A.; Odean, E.; Hicks, D.A.; Schotl, B.; Abrahante, J.E.; Spillman, M.A.; Bemis, L.T. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget, 2017, 8(56), 95377-95391.
[http://dx.doi.org/10.18632/oncotarget.20709] [PMID: 29221134]
[58]
Olvedy, M.; Scaravilli, M.; Hoogstrate, Y.; Visakorpi, T.; Jenster, G.; Martens-Uzunova, E.S. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget, 2016, 7(17), 24766-24777.
[http://dx.doi.org/10.18632/oncotarget.8293] [PMID: 27015120]
[59]
Huang, B.; Yang, H.; Cheng, X.; Wang, D.; Fu, S.; Shen, W.; Zhang, Q.; Zhang, L.; Xue, Z.; Li, Y.; Da, Y.; Yang, Q.; Li, Z.; Liu, L.; Qiao, L.; Kong, Y.; Yao, Z.; Zhao, P.; Li, M.; Zhang, R. tRF/miR-1280 Suppresses Stem Cell-like Cells and Metastasis in Colorectal Cancer. Cancer Res., 2017, 77(12), 3194-3206.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3146] [PMID: 28446464]
[60]
Fernández-Santiago, R.; Hoenig, S.; Lichtner, P.; Sperfeld, A.D.; Sharma, M.; Berg, D.; Weichenrieder, O.; Illig, T.; Eger, K.; Meyer, T.; Anneser, J.; Münch, C.; Zierz, S.; Gasser, T.; Ludolph, A. Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. J. Neurol., 2009, 256(8), 1337-1342.
[http://dx.doi.org/10.1007/s00415-009-5124-4] [PMID: 19363631]
[61]
Liu, B.; Zhang, Y.; Wang, Y.; Xiao, Q.; Yang, Q.; Wang, G.; Ma, J.; Zhao, J.; Quinn, T.J.; Chen, S.D.; Liu, J. Angiogenin variants are not associated with Parkinson’s disease in the ethnic Chinese population. Parkinsonism Relat. Disord., 2013, 19(4), 446-447.
[http://dx.doi.org/10.1016/j.parkreldis.2012.11.016] [PMID: 23231972]
[62]
Wang, Q.; Lee, I.; Ren, J.; Ajay, S.S.; Lee, Y.S.; Bao, X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther., 2013, 21(2), 368-379.
[63]
Yeung, M.L.; Bennasser, Y.; Watashi, K.; Le, S.Y.; Houzet, L.; Jeang, K.T. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: Evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res., 2009, 37(19), 6575-6586.
[http://dx.doi.org/10.1093/nar/gkp707] [PMID: 19729508]
[64]
Atala, A. Re: Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. J. Urol., 2016, 195(4 Pt 1), 1168-1169.
[http://dx.doi.org/10.1016/j.juro.2016.01.019] [PMID: 27302822]
[65]
Greenway, M.J.; Alexander, M.D.; Ennis, S.; Traynor, B.J.; Corr, B.; Frost, E.; Green, A.; Hardiman, O. A novel candidate region for ALS on chromosome 14q11.2. Neurology, 2004, 63(10), 1936-1938.
[http://dx.doi.org/10.1212/01.WNL.0000144344.39103.F6] [PMID: 15557516]
[66]
van Es, M.A.; Schelhaas, H.J.; van Vught, P.W.; Ticozzi, N.; Andersen, P.M.; Groen, E.J.; Schulte, C.; Blauw, H.M.; Koppers, M.; Diekstra, F.P.; Fumoto, K.; LeClerc, A.L.; Keagle, P.; Bloem, B.R.; Scheffer, H.; van Nuenen, B.F.; van Blitterswijk, M.; van Rheenen, W.; Wills, A.M.; Lowe, P.P.; Hu, G.F.; Yu, W.; Kishikawa, H.; Wu, D.; Folkerth, R.D.; Mariani, C.; Goldwurm, S.; Pezzoli, G.; Van Damme, P.; Lemmens, R.; Dahlberg, C.; Birve, A.; Fernández-Santiago, R.; Waibel, S.; Klein, C.; Weber, M.; van der Kooi, A.J.; de Visser, M.; Verbaan, D.; van Hilten, J.J.; Heutink, P.; Hennekam, E.A.; Cuppen, E.; Berg, D.; Brown, R.H., Jr; Silani, V.; Gasser, T.; Ludolph, A.C.; Robberecht, W.; Ophoff, R.A.; Veldink, J.H.; Pasterkamp, R.J.; de Bakker, P.I.; Landers, J.E.; van de Warrenburg, B.P.; van den Berg, L.H. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann. Neurol., 2011, 70(6), 964-973.
[http://dx.doi.org/10.1002/ana.22611] [PMID: 22190368]
[67]
Greenway, M.J.; Andersen, P.M.; Russ, C.; Ennis, S.; Cashman, S.; Donaghy, C.; Patterson, V.; Swingler, R.; Kieran, D.; Prehn, J.; Morrison, K.E.; Green, A.; Acharya, K.R.; Brown, R.H., Jr; Hardiman, O. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat. Genet., 2006, 38(4), 411-413.
[http://dx.doi.org/10.1038/ng1742] [PMID: 16501576]
[68]
Gong, B.; Lee, Y.S.; Lee, I.; Shelite, T.R.; Kunkeaw, N.; Xu, G.; Lee, K.; Jeon, S.H.; Johnson, B.H.; Chang, Q.; Ha, T.; Mendell, N.L.; Cheng, X.; Bouyer, D.H.; Boor, P.J.; Ksiazek, T.G.; Walker, D.H. Compartmentalized, functional role of angiogenin during spotted fever group rickettsia-induced endothelial barrier dysfunction: evidence of possible mediation by host tRNA-derived small noncoding RNAs. BMC Infect. Dis., 2013, 13, 285.
[http://dx.doi.org/10.1186/1471-2334-13-285] [PMID: 23800282]
[69]
Zhou, J.; Liu, S.; Chen, Y.; Fu, Y.; Silver, A.J.; Hill, M.S.; Lee, I.; Lee, Y.S.; Bao, X. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J. Gen. Virol., 2017, 98(7), 1600-1610.
[http://dx.doi.org/10.1099/jgv.0.000852] [PMID: 28708049]
[70]
Deng, J.; Ptashkin, R.N.; Chen, Y.; Cheng, Z.; Liu, G.; Phan, T.; Deng, X.; Zhou, J.; Lee, I.; Lee, Y.S.; Bao, X. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol. Ther., 2015, 23(10), 1622-1629.
[http://dx.doi.org/10.1038/mt.2015.124]
[71]
Shen, L.; Gan, M.; Tan, Z.; Jiang, D.; Jiang, Y.; Li, M.; Wang, J.; Li, X.; Zhang, S.; Zhu, L. A Novel Class of tRNA-Derived Small Non-Coding RNAs Respond to Myocardial Hypertrophy and Contribute to Intergenerational Inheritance. Biomolecules, 2018, 8(3), 54.
[http://dx.doi.org/10.3390/biom8030054] [PMID: 30012983]
[72]
Zhang, Y.; Zhang, Y.; Shi, J.; Zhang, H.; Cao, Z.; Gao, X.; Ren, W.; Ning, Y.; Ning, L.; Cao, Y.; Chen, Y.; Ji, W.; Chen, Z.J.; Chen, Q.; Duan, E. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J. Mol. Cell Biol., 2014, 6(2), 172-174.
[http://dx.doi.org/10.1093/jmcb/mjt052] [PMID: 24380870]
[73]
Dhahbi, J.M.; Spindler, S.R.; Atamna, H.; Yamakawa, A.; Boffelli, D.; Mote, P.; Martin, D.I. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics, 2013, 14, 298.
[http://dx.doi.org/10.1186/1471-2164-14-298] [PMID: 23638709]
[74]
Dhahbi, J.M.; Spindler, S.R.; Atamna, H.; Boffelli, D.; Mote, P.; Martin, D.I. 5′-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol. Genomics, 2013, 45(21), 990-998.
[http://dx.doi.org/10.1152/physiolgenomics.00129.2013] [PMID: 24022222]
[75]
Chan, P.P.; Lowe, T.M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res., 2009, 37(Database issue), D93-D97.
[http://dx.doi.org/10.1093/nar/gkn787] [PMID: 18984615]
[76]
Zheng, L.L.; Xu, W.L.; Liu, S.; Sun, W.J.; Li, J.H.; Wu, J.; Yang, J.H.; Qu, L.H. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res., 2016, 44(W1)W185-193
[http://dx.doi.org/10.1093/nar/gkw414] [PMID: 27179031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy