General Review Article

镧,镓及其对氧化应激的影响

卷 26, 期 22, 2019

页: [4280 - 4295] 页: 16

弟呕挨: 10.2174/0929867326666190104165311

价格: $65

conference banner
摘要

金属在活生物体中扮演的角色已得到充分确立,并需要进行广泛的研究。其中一些参与电子交换反应。由于氧化应激,此类反应会导致自由基产生,从而对生物系统产生不利影响。由于“非生物”金属在现代文明中起着至关重要的作用,因此也值得一提。镧系元素(Ln)被广泛用于现代技术中。结果,人类对它们的暴露正在增加。它们具有许多已建立的医学应用,并且因其潜在的抗病毒,抗癌和抗炎特性而受到广泛研究。目前的审查集中在镧(La)及其对氧化应激的影响。镓(Ga)是另一种在现代高科技中广泛使用的金属。在某些方面,它显示出与La的某些相似之处,因此它也是本综述的主题。两种金属均表现出离子拟态,使其能够特异性靶向恶性细胞,引发细胞凋亡,从而使其简单的盐和配位复合物有望成为未来抗癌药物的候选物。

关键词: 镧,镓,氧化应激,抗氧化剂,抗癌剂,细胞凋亡。

« Previous
[1]
Roat-Malone, R.M. Bioinorganic chemistry-A Short Course. Washington College, Chestertown, MD. In John Wiley & Sons, Inc, Hoboken, New Jersey. 2003.
[2]
Frausto da Silva, J.J.R.; Williams, R.J.P. The biological chemistry of the elements: the inorganic chemistry of life; In: Clarendon Press: New York, 1991.
[3]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[4]
Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 591-602.
[http://dx.doi.org/10.2174/156801105774574694] [PMID: 16305481]
[5]
Patlevič, P.; Vašková, J.; Švorc, P., Jr; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res., 2016, 5(4), 250-258.
[http://dx.doi.org/10.1016/j.imr.2016.07.004] [PMID: 28462126]
[6]
Halliwell, B.; Gutteridge, J.M. Cellular responces to oxidative stress: adaptation, damage, repair, senescence and death: Chapter 4 in Free radicals in biology and medicine In: Univeristy Press, HaHalliwell, B.; Gutteridge, J.M.C., Eds.; 187-267. 2007, pp.
[7]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[8]
Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta, 2014, 436, 332-347.
[http://dx.doi.org/10.1016/j.cca.2014.06.004] [PMID: 24933428]
[9]
Wu, J.Q.; Kosten, T.R.; Zhang, X.Y. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 200-206.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.015] [PMID: 23470289]
[10]
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[11]
Bar-Or, D.; Bar-Or, R.; Rael, L.T.; Brody, E.N. Oxidative stress in severe acute illness. Redox Biol., 2015, 4, 340-345.
[http://dx.doi.org/10.1016/j.redox.2015.01.006] [PMID: 25644686]
[12]
Yousri, R.; Noaman, E.; El Shawi, O.; Fahmy, N.; Ghaz, M. Evaluation of antioxidant status and radioprotective activity of a novel anti-cancer drug in mice. JCT. J. Cancer Ther., 2011, 2, 616-628.
[http://dx.doi.org/10.4236/jct.2011.25083]
[13]
Sarosiek, K.A.; Letai, A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics - recent successes, current challenges and future promise. FEBS J., 2016, 283(19), 3523-3533.
[http://dx.doi.org/10.1111/febs.13714] [PMID: 26996748]
[14]
European Society for Medical Oncology. ESMO Clinical Practice Guidelines., 2017.http://www.esmo.org/Guidelines
[15]
Fuchs-Tarlovsky, V. Role of antioxidants in cancer therapy. Nutrition, 2013, 29(1), 15-21.
[http://dx.doi.org/10.1016/j.nut.2012.02.014] [PMID: 22784609]
[16]
Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol., 2016, 37(4), 4281-4291.
[http://dx.doi.org/10.1007/s13277-016-4873-9] [PMID: 26815507]
[17]
Thyagarajan-Sahu, A.; Sahu, R.P. Potential contribution of antioxidants to cancer therapy: immunomodulation and radiosensitization. Cancer Ther., 2017, 1-7.
[18]
Deuter, D. Antioxidants and Cancer therapy., 2017.http://awomanshealth.com/antioxidants-cancer-therapy/
[19]
Saeidnia, S.; Abdollahi, M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol. Appl. Pharmacol., 2013, 271(1), 49-63.
[http://dx.doi.org/10.1016/j.taap.2013.05.004] [PMID: 23680455]
[20]
Wang, B.; Yan, L.; Huo, W.; Lu, Q.; Cheng, Z.; Zhang, J.; Li, Z. Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China. Environ. Pollut, 2017, 220(Pt B), 837-842.
[http://dx.doi.org/10.1016/j.envpol.2016.10.066] [PMID: 27816296]
[21]
Rim, K-T. Effects of rare earth elements on the environment and human health: a literature review. Toxicol. Environ. Health. Sci., 2016, 8(3), 189-200.
[22]
Misra, S.N.; Gagnani, M.A. M, I.D.; Shukla, R.S. Biological and clinical aspects of Lanthanide coordination compounds. Bioinorg. Chem. Appl., 2004, 2(3-4), 155-192.
[http://dx.doi.org/10.1155/S1565363304000111] [PMID: 18365075]
[23]
Evans, C.H. Biochemistry of Lanthanides. Plenum. Pres, 1990.
[http://dx.doi.org/10.1007/978-1-4684-8748-0]
[24]
David Van Horn, J. Electronic table of Shannon Ionic Radii., 2017.
[25]
Babula, P.; Adam, V.; Kizek, R. Lanthanides, Rare Earth Elements and Protective Thiols. Encyclopedia of Metalloproteins. Universky, V.N.; Kretsinger, R.H;, Permyakov, E.A., Ed.; Springer Science: New York. 2013, pp. 1143- 1149.
[26]
Evans, C.H. Biochemistry of Lanthanides. In. plenum. Pres, 1990.
[27]
Evans, C.H. Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci., 1983, 8(12), 445-449.
[http://dx.doi.org/10.1016/0968-0004(83)90032-4]
[28]
Moermond, C.T.; Tijink, J.; van Wezel, A.P.; Koelmans, A.A. Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, The Netherlands. Environ. Toxicol. Chem., 2001, 20(9), 1916-1926.
[http://dx.doi.org/10.1002/etc.5620200909] [PMID: 11521817]
[29]
Wakabayashi, T.; Ymamoto, A.; Kazaana, A.; Nakano, Y.; Nojiri, Y.; Kashiwazaki, M. Antibacterial, antifungal and nematicidal activities of rare earth ions. Biol. Trace Elem. Res., 2016, 174(2), 464-470.
[http://dx.doi.org/10.1007/s12011-016-0727-y] [PMID: 27147430]
[30]
Buenzli, J-C.G. Met. Ions Biol. Syst., 2004, 42, 39.
[PMID: 15206099]
[31]
Corneillie, T.M.; Lee, K.C.; Whetstone, P.A.; Wong, J.P.; Meares, C.F. Irreversible engineering of the multielement-binding antibody 2D12.5 and its complementary ligands. Bioconjug. Chem., 2004, 15(6), 1392-1402.
[http://dx.doi.org/10.1021/bc049824m] [PMID: 15546207]
[32]
Brouwers, A.H.; van Eerd, J.E.M.; Frielink, C.; Oosterwijk, E.; Oyen, W.J.G.; Corstens, F.H.M.; Boerman, O.C. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J. Nucl. Med., 2004, 45(2), 327-337.
[PMID: 14960657]
[33]
André, J.P.; Geraldes, C.F.G.C.; Martins, J.A.; Merbach, A.E.; Prata, M.I.M.; Santos, A.C.; de Lima, J.J.P.; Tóth, E. Lanthanide(III) complexes of DOTA-glycoconjugates: a potential new class of lectin-mediated medical imaging agents. Chemistry, 2004, 10(22), 5804-5816.
[http://dx.doi.org/10.1002/chem.200400187] [PMID: 15472943]
[34]
Aime, S.; Cavallotti, C.; Cravotto, G.; Giovenzana, G.B.; Palmisano, G. Synthesis of new polyoxapolycarboxylic ligands for lanthanide(III) ions complexation. Tetrahedron Lett., 2004, 45(30), 5901.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.132]
[35]
Platas-Iglesias, C.; Mato-Iglesias, M.; Djanashvili, K.; Muller, R.N.; Elst, L.V.; Peters, J.A.; de Blas, A.; Rodríguez-Blas, T. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chemistry, 2004, 10(14), 3579-3590.
[http://dx.doi.org/10.1002/chem.200306031] [PMID: 15252806]
[36]
Facchetti, A.; Abbotto, A.; Beverina, L.; Bradamante, S.; Mariani, P.; Stern, C.L.; Marks, T.J.; Vacca, A.; Pagani, G.A. Novel coordinating motifs for lanthanide(III) ions based on 5-(2-pyridyl)tetrazole and 5-(2-pyridyl-1-oxide)tetrazole. Potential new contrast agents. Chem. Commun. (Camb.), 2004, (15), 1770-1771.
[http://dx.doi.org/10.1039/B401919A] [PMID: 15278178]
[37]
Manning, H.C.; Goebel, T.; Thompson, R.C.; Price, R.R.; Lee, H.; Bornhop, D.J. Targeted molecular imaging agents for cellular-scale bimodal imaging. Bioconjug. Chem., 2004, 15(6), 1488-1495.
[http://dx.doi.org/10.1021/bc049904q] [PMID: 15546219]
[38]
Weibel, N.; Charbonnière, L.J.; Guardigli, M.; Roda, A.; Ziessel, R. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. J. Am. Chem. Soc., 2004, 126(15), 4888-4896.
[http://dx.doi.org/10.1021/ja031886k] [PMID: 15080694]
[39]
White, G.F.; Litvinenko, K.L.; Meech, S.R.; Andrews, D.L.; Thomson, A. Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin. J. Photochem. Photobiol. Sci., 2004, 3, 47.
[http://dx.doi.org/10.1039/b306760b]
[40]
Shukla, R.B. J. Magn. Reson., Ser. A, 113, 1995, 196.; Caravan P.; Mehrkhodavandi P. Orvig C. Inorg. Chem., 1997, 36, 1321.
[41]
Kell, D. B. J. Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflamatory and degenerative diseases. OBMC Med. Gen, 2009.
[http://dx.doi.org/10.1186/1755-8794-2-2]
[42]
Cho, M.; Ogechukwu, P.; Eze, O.P.; Xu, R. A brief review of the controversial role of iron in colorectal carcinogenesis. Clin. Exp. Pathol., 2013, 3(1), 137-141.
[http://dx.doi.org/10.4172/2161-0681.1000137]
[43]
He, X.; Zhang, Z.; Zhang, H.; Zhao, Y.; Chai, Z. Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol. Sci., 2008, 103(2), 354-361.
[http://dx.doi.org/10.1093/toxsci/kfn046] [PMID: 18319242]
[44]
Zheng, H.L.; Zhao, Z.Q.; Zhang, C.G.; Feng, J.Z.; Ke, Z.L.; Su, M.J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride. Biometals, 2000, 13(2), 157-163.
[http://dx.doi.org/10.1023/A:1009232821175] [PMID: 11016404]
[45]
Shi, P.; Chen, C.G.; Huang, Z.W. Effects of La3+ on the active oxygen-scavenging enzyme activities in cucumbes seedling leaves. Russ. J. Plant Physiol., 2005, 52(3), 294-297.
[http://dx.doi.org/10.1007/s11183-005-0044-3]
[46]
Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q.; Liu, Y.; Wang, W. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ. Toxicol. Pharmacol., 2011, 31(1), 25-32.
[http://dx.doi.org/10.1016/j.etap.2010.09.001] [PMID: 21787666]
[47]
Liu, J.X.; Wang, X.; Wang, R.J.; Li, D.B. [Protective effects of La (NO3)3 on ryegrass seedlings photosynthetic apparatus under NaHCO3 stress Ying Yong Sheng Tai Xue Bao, 2010, 21(11), 2836-2842.
[PMID: 21361007]
[48]
Yang, H.; Zhang, X.; Liu, H.; Cui, W.; Zhang, Q.; Li, Y.; Yu, Z.; Jia, X. Lanthanum nitrate genotoxicity evaluation: Ames test, mouse micronucleus assay, and chromosome aberration test. Mutat. Res., 2016, 810, 1-5.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.008] [PMID: 27776686]
[49]
Damment, S.J.; Beevers, C.; Gatehouse, D.G. Evaluation of the potential genotoxicity of the phosphate binder lanthanum carbonate. Mutagenesis, 2005, 20(1), 29-37.
[http://dx.doi.org/10.1093/mutage/gei003] [PMID: 15625069]
[50]
Kostova, I.; Traykova, M.; Rastogi, V.K. New lanthanide complexes with antioxidant activity. Med. Chem., 2008, 4(4), 371-378.
[http://dx.doi.org/10.2174/157340608784872181] [PMID: 18673150]
[51]
Martin, J.; Mladěnka, P.; Saso, L.; Kostova, I. Lanthanide(III) complexes are more active inhibitors of the Fenton reaction than pure ligands. Redox Rep., 2016, 21(2), 84-89.
[http://dx.doi.org/10.1179/1351000215Y.0000000031] [PMID: 26193444]
[52]
Wang, Q.; Yang, Z.Y.; Qi, G.F.; Qin, D.D. Synthesis, crystal structure, antioxidant activities and DNA-binding studies of the Ln(III) complexes with 7-methoxychromone-3-carbaldehyde-(4′-hydroxy) benzoyl hydrazone. Eur. J. Med. Chem., 2009, 44(6), 2425-2433.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.023] [PMID: 19038478]
[53]
Li, Y.; Yang, Z.Y.; Li, T.R.; Liu, Z.C.; Wang, B.D. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with Schiff base ligand derived from 3-carbaldehyde chromone and aminophenazone. J. Fluoresc., 2011, 21(3), 1091-1102.
[http://dx.doi.org/10.1007/s10895-010-0782-2] [PMID: 21161345]
[54]
Wang, Q.; Yang, Z.Y.; Qi, G.F.; Qin, D.D. Crystal structures, DNA-binding studies and antioxidant activities of the Ln(III) complexes with 7-methoxychromone- 3-carbaldehyde-isonicotinoyl hydrazone. Biometals, 2009, 22(6), 927-940.
[http://dx.doi.org/10.1007/s10534-009-9245-0] [PMID: 19404747]
[55]
Shen, L.; Lan, Z.; Sun, X.; Shi, L.; Liu, Q.; Ni, J. Proteomic analysis of lanthanum citrate-induced apoptosis in human cervical carcinoma SiHa cells. Biometals, 2010, 23(6), 1179-1189.
[http://dx.doi.org/10.1007/s10534-010-9368-3] [PMID: 20814718]
[56]
Kostova, I.; Momekov, I.; Tzanova, T.; Karaivanova, M. M. Synthesis, characterization, and cytotoxic activity of new lanthanum(iii) complexes of bis-coumarins. Bioinorg. Chem. Appl., 2006, 2006.
[http://dx.doi.org/10.1155/BCA/2006/25651]
[57]
Devirian, T.A.; Volpe, S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr., 2003, 43(2), 219-231.
[http://dx.doi.org/10.1080/10408690390826491] [PMID: 12705642]
[58]
Aftab, T.; Khan, M.M.A.; Idrees, M.; Naeem, M.; Ram, M. Boron induced oxidative stress, antioxidant defence, response and changes in artemisinin content in Artemisia annua. L. J. Agr. Crop. Sci., 2010, 196, 423-430.
[http://dx.doi.org/10.1111/j.1439-037X.2010.00427.x]
[59]
Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Romero, L.; Ruiz, J.M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot., 2007, 100(4), 747-756.
[http://dx.doi.org/10.1093/aob/mcm156] [PMID: 17660516]
[60]
Molassiotis, A.; Sotiropoulos, T.; Tanou, G.; Diamantidis, G.; Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot., 2006, 56, 54-62.
[http://dx.doi.org/10.1016/j.envexpbot.2005.01.002]
[61]
Nayak, P. Aluminum: impacts and disease. Environ. Res., 2002, 89(2), 101-115.
[http://dx.doi.org/10.1006/enrs.2002.4352] [PMID: 12123643]
[62]
Yu, L.; Zhai, Q.; Tian, F.; Liu, X.; Wang, G.; Zhao, J.; Zhang, H.; Narbad, A.; Chen, W. Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients, 2016, 8(12), 783.
[http://dx.doi.org/10.3390/nu8120783] [PMID: 27918411]
[63]
Kumar, V.; Gill, K.D. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology, 2014, 41, 154-166.
[http://dx.doi.org/10.1016/j.neuro.2014.02.004] [PMID: 24560992]
[64]
Van Den Bossche, B.; Van de Wiele, C. Receptor imaging in oncology by means of nuclear medicine: current status. J. Clin. Oncol., 2004, 22(17), 3593-3607.
[http://dx.doi.org/10.1200/JCO.2004.10.216] [PMID: 15337810]
[65]
Onthank, D.C.; Liu, S.; Silva, P.J.; Barrett, J.A.; Harris, T.D.; Robinson, S.P.; Edwards, D.S. 90Y and 111In complexes of a DOTA-conjugated integrin alpha v beta 3 receptor antagonist: different but biologically equivalent. Bioconjug. Chem., 2004, 15(2), 235-241.
[http://dx.doi.org/10.1021/bc034108q] [PMID: 15025518]
[66]
Tanaka, A.; Hirata, M.; Kiyohara, Y.; Nakano, M.; Omae, K.; Shiratani, M.; Koga, K. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 2010, 518, 2934-2936.
[http://dx.doi.org/10.1016/j.tsf.2009.10.123]
[67]
Tanaka, A. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicol. Appl. Pharmacol., 2004, 198(3), 405-411.
[http://dx.doi.org/10.1016/j.taap.2003.10.019] [PMID: 15276420]
[68]
Gottschling, B.C.; Maronpot, R.R.; Hailey, J.R.; Peddada, S.; Moomaw, C.R.; Klaunig, J.E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci., 2001, 64(1), 28-40.
[http://dx.doi.org/10.1093/toxsci/64.1.28] [PMID: 11606799]
[69]
Galván-Arzate, S.; Santamaría, A. Thallium toxicity. Toxicol. Lett., 1998, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0378-4274(98)00126-X] [PMID: 9801025]
[70]
Kiliç, G.A.; Kutlu, M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem. Toxicol., 2010, 48(3), 980-987.
[http://dx.doi.org/10.1016/j.fct.2010.01.013] [PMID: 20079794]
[71]
Burton, J.D.; Culkin, F.; Riley, J.P. The Abundances of Gallium And Germanium in Terrestrial Materials., 1959.
[http://dx.doi.org/10.1016/0016-7037(59)90052-3]
[72]
Caul, H.J.; Smith, D.L.; Harold, J.; Caul, B.S. Alloys of gallium with powdered metals as possible replacement for dental amalgam. J. Am. Dent. Assoc., 1956, 53(3), 315-324.
[http://dx.doi.org/10.14219/jada.archive.1956.0187] [PMID: 13357247]
[73]
Bernstein, L.R. Pharmacol, Rev. Therapeutic gallium compounds. In: Curr. Top. Med. Chem, Jakupec, M.A.; Keppler, B.K., Eds.; 1575. 2005, 4p.
[74]
Chitambar, C.R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health, 2010, 7(5), 2337-2361.
[http://dx.doi.org/10.3390/ijerph7052337] [PMID: 20623028]
[75]
Chitambar, C. R. Apoptotic Mechanisms of gallium nitrate: basic and clinical investigations. Oncol. Journ, 2004.
[76]
Vallabhajosula, S.R.; Harwig, J.F.; Wolf, W. The mechanism of tumor localization of gallium-67 citrate: role of transferrin binding and effect of tumor pH. Int. J. Nucl. Med. Biol., 1981, 8(4), 363-370.
[http://dx.doi.org/10.1016/0047-0740(81)90044-9] [PMID: 6948788]
[77]
Chitambar, C.R.; Seligman, P.A. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium. J. Clin. Invest., 1986, 78(6), 1538-1546.
[http://dx.doi.org/10.1172/JCI112746] [PMID: 3465751]
[78]
Chitambar, C.R.; Zivkovic, Z. Uptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res., 1987, 47(15), 3929-3934.
[PMID: 3475168]
[79]
Kinuya, S.; Li, X.F.; Yokoyama, K.; Mori, H.; Shiba, K.; Watanabe, N.; Shuke, N.; Bunko, H.; Michigishi, T.; Tonami, N. Hypoxia as a factor for 67Ga accumulation in tumour cells. Nucl. Med. Commun., 2004, 25(1), 49-53.
[http://dx.doi.org/10.1097/00006231-200401000-00007] [PMID: 15061264]
[80]
Chitambar, C.R.; Zivkovic, Z. Uptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res., 1987, 47(15), 3929-3934.
[PMID: 3475168]
[81]
Valiahdi, S.M.; Jakupec, M.A.; Marculescu, R.; Berger, W.; Rappersberger, K.; Keppler, B.K. Mol. Cancer Ther., 2007, 6, 3426S.
[82]
Perchellet, E.M.; Ladesich, J.B.; Collery, P.; Perchellet, J.P. Microtubule-disrupting effects of gallium chloride in vitro. Anticancer Drugs, 1999, 10(5), 477-488.
[http://dx.doi.org/10.1097/00001813-199906000-00008] [PMID: 10477168]
[83]
Johnston, G.S. Clinical applications of gallium in oncology. Int. J. Nucl. Med. Biol., 1981, 8(4), 249-255.
[http://dx.doi.org/10.1016/0047-0740(81)90030-9] [PMID: 6948781]
[84]
Chan, S.M.; Hoffer, P.B.; Maric, N.; Duray, P. Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibody. J. Nucl. Med., 1987, 28(8), 1303-1307.
[PMID: 3475407]
[85]
Chitambar, C.R.; Matthaeus, W.G.; Antholine, W.E.; Graff, K.; O’Brien, W.J. Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood, 1988, 72(6), 1930-1936.
[PMID: 3058232]
[86]
Yang, M.; Chitambar, C.R. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic. Biol. Med., 2008, 45(6), 763-772.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.031] [PMID: 18586083]
[87]
Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther., 2007, 322(3), 1228-1236.
[http://dx.doi.org/10.1124/jpet.107.126342] [PMID: 17600139]
[88]
Chitambar, C.R.; Zahir, S.A.; Ritch, P.S.; Anderson, T. Evaluation of continuous-infusion gallium nitrate and hydroxyurea in combination for the treatment of refractory non-Hodgkin’s lymphoma. Am. J. Clin. Oncol., 1997, 20(2), 173-178.
[http://dx.doi.org/10.1097/00000421-199704000-00015] [PMID: 9124195]
[89]
Crawford, E.D.; Saiers, J.H.; Baker, L.H.; Costanzi, J.H.; Bukowski, R.M. Gallium nitrate in advanced bladder carcinoma: Southwest Oncology Group study. Urology, 1991, 38(4), 355-357.
[http://dx.doi.org/10.1016/0090-4295(91)80152-W] [PMID: 1755146]
[90]
Seidman, A.D.; Scher, H.I.; Heinemann, M.H.; Bajorin, D.F.; Sternberg, C.N.; Dershaw, D.D.; Silverberg, M.; Bosl, G.J. Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer, 1991, 68(12), 2561-2565.
[http://dx.doi.org/10.1002/1097-0142(19911215)68:12<2561:AID-CNCR2820681205>3.0.CO;2-G] [PMID: 1933802]
[91]
Seligman, P.A.; Crawford, E.D. Treatment of advanced transitional cell carcinoma of the bladder with continuous-infusion gallium nitrate. J. Natl. Cancer Inst., 1991, 83(21), 1582-1584.
[http://dx.doi.org/10.1093/jnci/83.21.1582] [PMID: 1960756]
[92]
Chitambar, C.R. Gallium compounds as antineoplastic agents. Curr. Opin. Oncol., 2004, 16(6), 547-552.
[http://dx.doi.org/10.1097/01.cco.0000142071.22226.d2] [PMID: 15627016]
[93]
Niesvizky, R. Gallium nitrate in multiple myeloma: prolonged survival in a cohort of patients with advanced-stage disease. Semin. Oncol., 2003, 30(2)(Suppl. 5), 20-24.
[http://dx.doi.org/10.1016/S0093-7754(03)00172-6] [PMID: 12776256]
[94]
Warrell, R.P., Jr; Lovett, D.; Dilmanian, F.A.; Schneider, R.; Heelan, R.T. Low-dose gallium nitrate for prevention of osteolysis in myeloma: results of a pilot randomized study. J. Clin. Oncol., 1993, 11(12), 2443-2450.
[http://dx.doi.org/10.1200/JCO.1993.11.12.2443] [PMID: 8246033]
[95]
Warrell, R.P., Jr; Alcock, N.W.; Bockman, R.S. Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J. Clin. Oncol., 1987, 5(2), 292-298.
[http://dx.doi.org/10.1200/JCO.1987.5.2.292] [PMID: 3806170]
[96]
Warrell, R.P., Jr; Murphy, W.K.; Schulman, P.; O’Dwyer, P.J.; Heller, G. A randomized double-blind study of gallium nitrate compared with etidronate for acute control of cancer-related hypercalcemia. J. Clin. Oncol., 1991, 9(8), 1467-1475.
[http://dx.doi.org/10.1200/JCO.1991.9.8.1467] [PMID: 1906532]
[97]
Cvitkovic, F.; Armand, J.P.; Tubiana-Hulin, M.; Rossi, J.F.; Warrell, R.P. Jr. Randomized, double-blind, phase II trial of gallium nitrate compared with pamidronate for acute control of cancer-related hypercalcemia. Cancer J., 2006, 12(1), 47-53.
[http://dx.doi.org/10.1097/00130404-200601000-00009] [PMID: 16613662]
[98]
Betoulle, S.; Etienne, J.C.; Vernet, G. Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull. Environ. Contam. Toxicol., 2002, 68(6), 817-823.
[http://dx.doi.org/10.1007/s00128-002-0028-3] [PMID: 12012056]
[99]
Whitacre, C.; Apseloff, G.; Cox, K.; Matkovic, V.; Jewell, S.; Gerber, N. Suppression of experimental autoimmune encephalomyelitis by gallium nitrate. J. Neuroimmunol., 1992, 39(1-2), 175-181.
[http://dx.doi.org/10.1016/0165-5728(92)90186-O] [PMID: 1377710]
[100]
Matkovic, V.; Balboa, A.; Clinchot, D.; Whitacre, C.; Zwilling, B.; Brown, D.; Weisbrode, S.E.; Apseloff, G.; Gerber, N. Gallium prevents adjuvant arthritis in rats and interferes with macrophage/T-cell function in the immune response. Curr. Ther. Res. Clin. Exp., 1991, 50, 255-267.
[101]
Apseloff, G.; Hackshaw, K.V.; Whitacre, C.; Weisbrode, S.E.; Gerber, N. Gallium nitrate suppresses lupus in MRL/lpr mice. Naunyn Schmiedebergs Arch. Pharmacol., 1997, 356(4), 517-525.
[http://dx.doi.org/10.1007/PL00005085] [PMID: 9349640]
[102]
Orosz, C.G.; Wakely, E.; Bergese, S.D.; VanBuskirk, A.M.; Ferguson, R.M.; Mullet, D.; Apseloff, G.; Gerber, N. Prevention of murine cardiac allograft rejection with gallium nitrate. Comparison with anti-CD4 monoclonal antibody. Transplantation, 1996, 61(5), 783-791.
[http://dx.doi.org/10.1097/00007890-199603150-00019] [PMID: 8607184]
[103]
Kandil, E.; Aziz, N.A. Synergistic efficacy of γ-radiation together with gallium trichloride and/or doxorubicin against Ehrlich carcinoma in female mice. Tumour Biol., 2016, 37(2), 1825-1834.
[http://dx.doi.org/10.1007/s13277-015-3954-5] [PMID: 26318299]
[104]
Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther., 2007, 322(3), 1228-1236.
[http://dx.doi.org/10.1124/jpet.107.126342] [PMID: 17600139]
[105]
Yang, M.; Chitambar, C.R. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic. Biol. Med., 2008, 45(6), 763-772.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.031] [PMID: 18586083]
[106]
Bériault, R.; Hamel, R.; Chenier, D.; Mailloux, R.J.; Joly, H.; Appanna, V.D. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Biometals, 2007, 20(2), 165-176.
[http://dx.doi.org/10.1007/s10534-006-9024-0] [PMID: 16900398]
[107]
Harrington, J.R.; Martens, R.J.; Cohen, N.D.; Bernstein, L.R. Antimicrobial activity of gallium against virulent Rhodococcus equi in vitro and in vivo. J. Vet. Pharmacol. Ther., 2006, 29(2), 121-127.
[http://dx.doi.org/10.1111/j.1365-2885.2006.00723.x] [PMID: 16515666]
[108]
Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B.E.; Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest., 2007, 117(4), 877-888.
[http://dx.doi.org/10.1172/JCI30783] [PMID: 17364024]
[109]
Chang, H.F.; Wang, S.L.; Yeh, K.C. Effect of gallium exposure in arabidopsis thaliana is similar to aluminum stress. Environ. Sci. Technol., 2017, 51(3), 1241-1248.
[http://dx.doi.org/10.1021/acs.est.6b05760] [PMID: 28088849]
[110]
Stuehr, D.; Pou, S.; Rosen, G.M. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem., 2001, 276(18), 14533-14536.
[http://dx.doi.org/10.1074/jbc.R100011200] [PMID: 11279231]
[111]
Cole, G.M.; Lim, G.P.; Yang, F.; Teter, B.; Begum, A.; Ma, Q.; Harris-White, M.E.; Frautschy, S.A. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging, 2005, 26(1)(Suppl. 1), 133-136.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.005] [PMID: 16266772]
[112]
Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxidative Medicine and Cellular Longevity, 2011, 2011
[http://dx.doi.org/10.1155/2011/809696]
[113]
Bossmann, S.H.; Oliveros, E.; Kantor, M.; Niebler, S.; Bonfill, A.; Shahin, N.; Wörner, M.; Braun, A.M. New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes. Water Sci. Technol., 2004, 49(4), 75-80.
[http://dx.doi.org/10.2166/wst.2004.0224] [PMID: 15077951]
[114]
Kuzkaya, N.; Weissmann, N.; Harrison, D.G.; Dikalov, S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem. Pharmacol., 2005, 70(3), 343-354.
[http://dx.doi.org/10.1016/j.bcp.2005.05.009] [PMID: 15963955]
[115]
Haenen, G.; Paquay, J.; Korthouwer, R.; Bast, A. Peroxynitrite scavenging by flavonoids. Biochem and Biobhys. Res. Comm., 236, 591-593.RC977016. 1997.
[http://dx.doi.org/10.1006/bbrc.1997.7016]
[116]
Tsuda, T.; Kato, Y.; Osawa, T. Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett., 2000, 484(3), 207-210.
[http://dx.doi.org/10.1016/S0014-5793(00)02150-5] [PMID: 11078880]
[117]
Goldstein, S.; Czapski, G. Reactivity of peroxynitrite versus simultaneous generation of (*) NO and O(2)(*)(-) toward NADH. Chem. Res. Toxicol., 2000, 13(8), 736-741.
[http://dx.doi.org/10.1021/tx000099n] [PMID: 10956061]
[118]
Heijnen, C.G.M.; Haenen, G.R.M.M.; van Acker, F.A.A.; van der Vijgh, W.J.F.; Bast, A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol. In Vitro, 2001, 15(1), 3-6.
[http://dx.doi.org/10.1016/S0887-2333(00)00053-9] [PMID: 11259863]
[119]
Reiter, R.J.; Melchiorri, D.; Sewerynek, E.; Poeggeler, B.; Barlow-Walden, L.; Chuang, J.; Ortiz, G.G.; Acuña-Castroviejo, D. A review of the evidence supporting melatonin’s role as an antioxidant. J. Pineal Res., 1995, 18(1), 1-11.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00133.x] [PMID: 7776173]
[120]
Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52.
[http://dx.doi.org/10.1016/j.canlet.2008.02.044] [PMID: 18406051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy