[1]
Turner, S.J.; Senol, E.; Kara, A.; Al-Badriyeh, D.; Kong, D.C.; Dinleyici, E.C. Pharmacoeconomic evaluation of caspofungin versus liposomal amphotericin B in empirical treatment of invasive fungal infections in Turkey. Int. J. Antimicrob. Agents, 2013, 42(3), 276-280.
[2]
Chong, P.P.; Kennedy, C.C.; Hathcock, M.A.; Kremers, W.K.; Razonable, R.R. Epidemiology of invasive fungal infections in lung transplant recipients on long-term azole antifungal prophylaxis. Clin. Transplant., 2015, 29(4), 311-318.
[3]
Saliba, F.; Delvart, V.; Ichai, P.; Kassis, N.; Botterel, F.; Mihaila, L.; Azoulay, D.; Adam, R.; Castaing, D.; Bretagne, S.; Samuel, D. Fungal infections after liver transplantation: Outcomes and risk factors revisited in the MELD era. Clin. Transplant., 2013, 27(4), E454-E461.
[4]
Dos Santos, A.P.M.; McArthur, C.P.; Africa, C.W. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon. Diagn. Microbiol. Infect. Dis., 2014, 79(2), 222-227.
[5]
Healey, K.R.; Zhao, Y.; Perez, W.B.; Lockhart, S.R.; Sobel, J.D.; Farmakiotis, D.; Kontoyiannis, D.P.; Sanglard, D.; Taj-Aldeen, S.J.; Alexander, B.D. etal Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun., 2016, 7, 11128.
[6]
Dimopoulos, G.; Koulenti, D.; Tabah, A.; Poulakou, G.; Vesin, A.; Arvaniti, K.; Lathyris, D.; Matthaiou, D.; Armaganidis, A.; Timsit, J. Bloodstream infections in ICU with increased resistance: epidemiology and outcomes. Minerva Anestesiol., 2015, 81(4), 405-418.
[7]
Ravu, R.R.; Chen, Y.L.; Jacob, M.R.; Pan, X.; Agarwal, A.K.; Khan, S.I.; Heitman, J.; Clark, A.M.; Li, X.C. Synthesis and antifungal activities of miltefosine analogs. Bioorg. Med. Chem. Lett., 2013, 23(17), 4828-4831.
[8]
Miyazaki, M.; Horii, T.; Hata, K.; Watanabe, N.A.; Nakamoto, K.; Tanaka, K.; Shirotori, S.; Murai, N.; Inoue, S.; Matsukura, M. Abe, S.; Yoshimatsu, K.; Asada, M. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob. Agents Chemother., 2011, 55(10), 4652-4658.
[9]
He, S.; Jain, P.; Lin, B.; Ferrer, M.; Hu, Z.; Southall, N.; Hu, X.; Zheng, W.; Neuenswander, B.; Cho, C.H.; Chen, Y.; Worlikar, S.A.; Aubé, J.; Larock, R.C.; Schoenen, F.J.; Marugan, J.J.; Liang, T.J.; Frankowski, K.J. High-throughput screening, discovery, and optimization to develop a benzofuran class of hepatitis C virus inhibitors. ACS Comb. Sci., 2015, 17(10), 641-652.
[10]
Allan, A.C.; Billinton, A.; Brown, S.H.; Chowdhury, A.; Eatherton, A.J.; Fieldhouse, C.; Giblin, G.M.; Goldsmith, P.; Hall, A.; Hurst, D.N.; Naylor, A.; Rawlings, D.A.; Sime, M.; Scoccitti, T.; Theobald, P.J. Discovery of a novel series of nonacidic benzofuran EP1 receptor antagonists. Bioorg. Med. Chem. Lett., 2011, 21(14), 4343-4348.
[11]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[12]
Mostofi, M.; Mohammadi, Z.G.; Mahdavi, M.; Moradi, A.; Nadri, H.; Emami, S.; Alinezhad, H.; Foroumadi, A.; Shafiee, A. Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2015, 103, 361-369.
[13]
Sashidhara, K.V.; Modukuri, R.K.; Jadiya, P.; Dodda, R.P.; Kumar, M.; Sridhar, B.; Kumar, V.; Haque, R.; Siddiqi, M.I.; Nazir, A. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer’s disease: Synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem, 2014, 9(12), 2671-2684.
[14]
Davis, L.; Agnew, M.N.; Effland, R.C.; Klein, J.T.; Kitzen, J.M.; Schwenkler, M.A. 2,3-Dihydro-3-(1-pyrryl)spiro[benzofuran-2,4′-piperidine]s and 2,3-dihydro-3-(1-pyrryl)spiro[benzofuran-2,3′-pyrrolidine]s: Novel antihypertensive agents. J. Med. Chem., 1983, 26(10), 1505-1510.
[15]
Li, W.; Yang, Z.H.; Hu, A.X.; Yan, X.W.; Ding, N.; Ye, J. Design, synthesis, and antitumor activity of (E,Z)-1-(dihydrobenzofuran-5-yl)-3-phenyl-2-(1,2,4-triazol-1-yl)-2-propen-1-ones. Chem. Biol. Drug Des., 2015, 86(6), 1339-1350.
[16]
Bazin, M.A.; Bodero, L.; Tomasoni, C.; Rousseau, B.; Roussakis, C.; Marchand, P. Synthesis and antiproliferative activity of benzofuran-based analogs of cercosporamide against non-small cell lung cancer cell lines. Eur. J. Med. Chem., 2013, 69, 823-832.
[17]
Mathews, M.; Gommoll, C.; Chen, D.; Nunez, R.; Khan, A. Efficacy and safety of vilazodone 20 and 40 mg in major depressive disorder: A randomized, double-blind, placebo-controlled trial. Int. Clin. Psychopharmacol., 2015, 30(2), 67-74.
[18]
Grover, C.; Arora, P.; Manchanda, V. Comparative evaluation of griseofulvin, terbinafine and fluconazole in the treatment of tinea capitis. Int. J. Dermatol., 2012, 51(4), 455-458.
[19]
Shemer, A.; Plotnik, I.B.; Davidovici, B.; Grunwald, M.H.; Magun, R.; Amichai, B. Treatment of tinea capitis - griseofulvin versus fluconazole - a comparative study. J. Dtsch. Dermatol. Ges., 2013, 11(8), 737-742.
[20]
Wallace, S.M. Topically applied antifungal agents. Arch. Dermatol., 1977, 113, 11.
[21]
Zhai, M.; Wang, L.; Liu, S.; Wang, L.; Yan, P.; Wang, J.; Zhang, J.; Guo, H.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors. Eur. J. Med. Chem., 2018, 156, 137-147.
[22]
Xue, W.; Song, B.; He, W.; Wang, H.; Yang, S.; Jin, L.; Hu, D.; Liu, G.; Lu, P. Synthesis and biological activity of novel 1-(2,3,4-trimethoxyphenyl)-2-[5-(3,4,5-trimethoxyphenyl)-1,3,4-thiadiazol-2-yl]thioethanone oxime ester derivatives. J. Heterocycl. Chem., 2006, 43(4), 867-871.
[23]
Tu, S.; Xu, L-H.; Ye, L-Y.; Wang, X.; Sha, Y.; Xiao, Z-Y. Synthesis and fungicidal activities of novel indene-substituted oxime ether strobilurins. J. Agric. Food Chem., 2008, 56(13), 5247-5253.
[24]
Kamble, R.R.; Belgur, S.S.; Aladkatti, R.; Khazi, I.A. Synthesis and evaluation of benzophenone oximes derivatized with sydnone as inhibitors of secretory phospholipase A2 with anti-inflammatory activity. Chem. Pharm. Bull. , 2009, 57(1), 16-21.
[25]
Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.; Kizirgil, A.; Kazaz, C. Synthesis and antimicrobial activity of some novel derivatives of benzofuran: Part 2. The synthesis and antimicrobial activity of some novel 1-(1-benzofuran-2-yl)-2-mesitylethanone derivatives. Eur. J. Med. Chem., 2008, 43(2), 300-308.
[26]
Ahluwalia, V.; Kumar, J.; Rana, V.S.; Singh, R.; Sati, O.P.; Walia, S.; Garg, N. Synthesis and antimicrobial activity of esters of 3-ethoxy-4-hydroxybenzaldehyde oxime. Toxicol. Environ. Chem., 2016, 99(1), 1-9.
[27]
Dai, H.; Chen, J.; Li, H.; Dai, B.; He, H.; Fang, Y.; Shi, Y. Synthesis and bioactivities of novel pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety. Molecules, 2016, 21(3), 276.
[28]
Behrouz, S.; Rad, M.N.; Rostami, S.; Behrouz, M.; Zarehnezhad, E.; Zarehnezhad, A. Design, synthesis, and biological activities of novel azole-bonded beta-hydroxypropyl oxime O-ethers. Mol. Divers., 2014, 18(4), 797-808.
[29]
Kosmalski, T.; Kutkowska, J.; Gzella, A.K.; Nowakiewicz, A. New heterocyclic oxime ethers of 1-(benzofuran-2-yl) ethan-1-one and their antimicrobial activity. Acta Pol. Pharm., 2015, 72, 289-295.
[30]
Kurt, A.; Bolat, Z.; Kırılmış, C. Synthesis, characterization and thermal decomposition kinetics of a novel benzofuran ketoxime derived polymer. Acta Chim. Slov., 2015, 62(2), 428-436.
[31]
Xie, Y.Q.; Huang, Y.B.; Liu, J.S.; Ye, L.Y.; Che, L.M.; Tu, S.; Liu, C.L. Design, synthesis and structure-activity relationship of novel oxime ether strobilurin derivatives containing substituted benzofurans. Pest Manag. Sci., 2015, 71(3), 404-414.
[32]
Pestellini, V.; Giolitti, A.; Pasqui, F.; Abelli, L.; Cutrufo, C.; Desalvia, G.; Evangelista, S.; Meli, A. Synthesis and hypolipidemic activity of new substituted (benzofuran-2-yl)-phenyl-carbinols. Eur. J. Med. Chem., 1988, 23(2), 203-206.
[33]
Rodriguez-Tudela, J.L.; Arendrup, M.C.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F.; Fegeler, W.; Lass-Flörl, C.; Moore, C.; Richardson, M.; Sandven, P.; Velegraki, A.; Verweij, P. EUCAST definitive document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect., 2008, 14(4), 398-405.
[34]
Osmaniye, D.; Kaya, C.B.; Saglik, B.N.; Levent, S.; Acar, C.U.; Atli, O.; Ozkay, Y.; Kaplancikli, Z.A. Synthesis and anticandidal activity of new imidazole-chalcones. Molecules, 2018, 23, 4.
[35]
Levent, S.; Kaya, C.B.; Saglik, B.N.; Osmaniye, D.; Acar, C.U.; Atli, O.; Ozkay, Y.; Kaplancikli, Z.A. Synthesis of oxadiazole-thiadiazole hybrids and their anticandidal activity. Molecules, 2017, 22, 11.
[36]
Kaplancikli, Z.A.; Levent, S.; Osmaniye, D.; Saglik, B.N.; Cevik, U.A.; Cavusoglu, B.K.; Ozkay, Y.; Ilgin, S. Synthesis and anticandidal activity evaluation of new benzimidazole-thiazole derivatives. Molecules, 2017, 22, 12.
[37]
Cevik, U.A.; Saglik, B.N.; Ozkay, Y.; Canturk, Z.; Bueno, J.; Demirci, F.; Koparal, A.S. Synthesis of new fluoro-benzimidazole derivatives as an approach towards the discovery of novel intestinal antiseptic drug candidates. Curr. Pharm. Des., 2017, 23(15), 2276-2286.
[38]
Can, N.Ö.; Acar Çevik, U.; Sağlık, B.N.; Levent, S.; Korkut, B.; Özkay, Y.; Kaplancıklı, Z.A.; Koparal, A.S. Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors. J. Chem., 2017, 2017, 1-15.
[39]
Breivik, O.N.; Owades, J.L. Yeast analysis, spectrophotometric semimicrodetermination of ergosterol in yeast. J. Agric. Food Chem., 1957, 5(5), 360-363.
[40]
QikProp, version 4.8; Schrödinger, LLC: In New York, NY, 2016.
[41]
Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural analyses of Candida albicans sterol 14alpha-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem., 2017, 292(16), 6728-6743.
[42]
Maestro, version 10.6; Schrödinger, LLC: New York, NY, 2016.
[43]
Schrödinger, LLC; New York, NY 2016.
[44]
LigPrep, version 3.8; Schrödinger, LLC: New York, NY, 2016.
[45]
Glide, version 7.1; Schrödinger, LLC: New York, NY, 2016.
[46]
Borra, R.C.; Lotufo, M.A.; Gagioti, S.M.; Barros, F.M.
Andrade, P.M. A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral Res., 2009, 23(3), 255-262.
[47]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722.
[48]
Malik, M.A.; Al-Thabaiti, S.A.; Malik, M.A. Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. Int. J. Mol. Sci., 2012, 13(9), 10880-10898.
[49]
Dhingra, S.; Cramer, R.A. Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: Opportunities for therapeutic development. Front. Microbiol., 2017, 8, 92.
[50]
Lupetti, A.; Danesi, R.; Campa, M.; Del Tacca, M.; Kelly, S. Molecular basis of resistance to azole antifungals. Trends Mol. Med., 2002, 8(2), 76-81.
[51]
Karaca, G.H.; Acar, C.U.; Levent, S.; Saglik, B.N.; Korkut, B.; Ozkay, Y.; Ilgin, S.; Ozturk, Y. New benzimidazole-1,2,4-triazole hybrid compounds: Synthesis, anticandidal activity and cytotoxicity evaluation. Molecules, 2017, 22, 4.
[52]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[53]
Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54(3), 355-366.