Review Article

碳基纳米材料在生物医学中的应用进展

卷 26, 期 38, 2019

页: [6851 - 6877] 页: 27

弟呕挨: 10.2174/0929867326666181126113605

价格: $65

Open Access Journals Promotions 2
摘要

碳基纳米材料(CBN)的独特的机械,电,热,化学和光学特性,例如:富勒烯,石墨烯,碳纳米管及其衍生物,使它们成为包括生物医学在内的各种应用的广泛使用的材料。 CBN在生物医学中的最新应用很少:癌症治疗,靶向药物递送,生物传感,细胞和组织成像以及再生医学。 但是,功能化会增加CBN的毒性,并使它们可溶于生物医学应用所需的几种溶剂(包括水)中。 因此,本综述代表了对用于生物医学用途的碳纳米材料的开发的完整研究。 特别地,特别描述了作为在碳纳米材料中递送药物的媒介的CBN。 还讨论了各种CBN的计算建模方法。 此外,重点介绍了这一快速发展领域的招股说明书,问题和可能面临的挑战。

关键词: 碳基纳米材料,功能化,药物输送,生物医学,毒性,交叉。

[1]
Advani, S.G. Processing and properties of nanocomposites; World Scientific: Singapore, 2006.
[http://dx.doi.org/10.1142/6317]
[2]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
[http://dx.doi.org/10.1038/318162a0]
[3]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[4]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[5]
Na, S.R.; Suk, J.W.; Ruoff, R.S.; Huang, R.; Liechti, K.M. Ultra long-range interactions between large area graphene and silicon. ACS Nano, 2014, 8(11), 11234-11242.
[http://dx.doi.org/10.1021/nn503624f] [PMID: 25317979]
[6]
Nguyen, T-T.; Ambrosetti, A.; Stephane, B.; Alexandre, T. Micrometer-scale stress from van der Waals interactions in the delamination of graphene from substrates In: APS Meeting Abstracts; , 2018. abstract id.X40.011.
[7]
Enderling, H.; Rejniak, K.A. Simulating cancer: computational models in oncology. Front. Oncol., 2013, 3, 233.
[http://dx.doi.org/10.3389/fonc.2013.00233] [PMID: 24062986]
[8]
McKenna, M.T.; Weis, J.A.; Brock, A.; Quaranta, V.; Yankeelov, T.E. Precision medicine with imprecise therapy: computational modeling for chemotherapy in breastcancer. Transl. Oncol., 2018, 11(3), 732-742.
[http://dx.doi.org/10.1016/j.tranon.2018.03.009] [PMID: 29674173]
[9]
Azuaje, F. Computational models for predicting drug responses in cancer research. Brief. Bioinform., 2017, 18(5), 820-829.
[http://dx.doi.org/10.1093/bib/bbw065] [PMID: 27444372]
[10]
Kaddi, C.D.; Phan, J.H. Wang, M.D. Computational nanomedicine: modeling of nanoparticle mediated hyperthermal cancer therapy. Nanomedicine (Lond.), 2013, 8(8), 1323-1333.
[http://dx.doi.org/10.2217/nnm.13.117] [PMID: 23914967]
[11]
Katira, P.; Bonnecaze, R.T.; Zaman, M.H. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front. Oncol., 2013, 3, 145.
[http://dx.doi.org/10.3389/fonc.2013.00145] [PMID: 23781492]
[12]
Budarapu, P.R.; Reinoso, J.; Paggi, M. Concurrently coupled solid shell-based adaptive multiscale method for fracture. Comput. Methods Appl. Mech. Eng., 2017, 319, 338-365.
[http://dx.doi.org/10.1016/j.cma.2017.02.023]
[13]
Ojo, S.; Budarapu, P.R.; Paggi, M. A nonlocal adaptive discrete empirical interpolation method combined with modified hp-refinement for order reduction of molecular dynamicssystems. Comput. Mater. Sci., 2017, 140, 189-208.
[http://dx.doi.org/10.1016/j.commatsci.2017.08.022]
[14]
Budarapu, P.R.; Javvaji, B.; Sutrakar, V.K.; Mahapatra, D.R.; Zi, G.; Paggi, M.; Rabczuk, T. Lattice orientation and crack size effect on the mechanical properties of graphene. Int. J. Fract., 2017, 203(1), 81-91.
[http://dx.doi.org/10.1007/s10704-016-0115-9]
[15]
Hamdia, K.M.; Silani, M.; Zhuang, X.; He, P.; Rabczuk, T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites usingpolynomial chaos expansions. Int. J. Fract., 2017, 206(2), 215-227.
[http://dx.doi.org/10.1007/s10704-017-0210-6]
[16]
Javvaji, B.; Budarapu, P.R.; Sutrakar, V.K.; Mahapatra, D.R.; Zi, G.; Paggi, M.; Rabczuk, T. Mechanical properties of graphene: molecular dynamics simulations correlated to continuum based scaling laws. Comput. Mater. Sci., 2016, 125, 319-327.
[http://dx.doi.org/10.1016/j.commatsci.2016.08.016]
[17]
Talebi, H.; Silani, M.; Rabczuk, T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw., 2015, 80, 82-92.
[http://dx.doi.org/10.1016/j.advengsoft.2014.09.016]
[18]
Budarapu, P.R.; Gracie, R.; Bordas, S.P.A.; Rabczuk, T. An adaptive multiscale method forquasi-static crack growth. Comput. Mech., 2014, 53(6), 1129-1148.
[http://dx.doi.org/10.1007/s00466-013-0952-6]
[19]
Talebi, H.; Silani, M.; Bordas, S.P.A.; Kerfriden, P.; Rabczuk, T. A computational library for multiscale modeling of material failure. Comput. Mech., 2014, 53(5), 1047-1071.
[http://dx.doi.org/10.1007/s00466-013-0948-2]
[20]
Beex, L.A.A.; Peerlings, R.H.J.; Geers, M.G.D. A quasicontinuum methodology for multiscale analyses of discrete microstructural models. Int. J. Numer. Methods Eng., 2011, 87(7), 701-718.
[http://dx.doi.org/10.1002/nme.3134]
[21]
Beex, L.A.A.; Kerfriden, P.; Rabczuk, T.; Bordas, S.P.A. Quasicontinuum-based multiscale approaches for plate like beam lattices experiencing in-plane and out-of-plane deformation. Comput. Methods Appl. Mech. Eng., 2014, 279, 348-378.
[http://dx.doi.org/10.1016/j.cma.2014.06.018]
[22]
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S. Statistical extraction of process zones and representative subspaces in fracture of random composites. Int. J. Multiscale Comput. Eng., 2013, 11(3), 253-287.
[http://dx.doi.org/10.1615/IntJMultCompEng.2013005939]
[23]
Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P. A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput. Methods Appl. Mech. Eng., 2013, 256, 169-188.
[http://dx.doi.org/10.1016/j.cma.2012.12.004] [PMID: 23750055]
[24]
Kerfriden, P.; Garcia, J.J.R.; Bordas, S.P-A. Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error. Int. J. Numer. Methods Eng., 2014, 97(6), 395-422.
[http://dx.doi.org/10.1002/nme.4588]
[25]
Hoang, K.C.; Kerfriden, P.; Khoo, B.C.; Bordas, S. An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. Numer. Methods Partial Differ. Equ., 2015, 31(2), 575-608.
[http://dx.doi.org/10.1002/num.21932]
[26]
Talebi, H.; Silani, M.; Bordas, S.P.A.; Kerfriden, P.; Rabczuk, T. Molecular dynamics/XFEM coupling by a three dimensional extended bridging domain with applications to dynamic brittle fracture. Int. J. Multiscale Comput. Eng., 2013, 11(6), 527-541.
[http://dx.doi.org/10.1615/IntJMultCompEng.2013005838]
[27]
Roy, U.; Drozd, V.; Durygin, A.; Rodriguez, J.; Barber, P.; Atluri, V.; Liu, X.; Voss, T.G.; Saxena, S.; Nair, M. Characterization of nanodiamond-based anti-HIV drug delivery to the brain. Sci. Rep., 2018, 8(1), 1603.
[http://dx.doi.org/10.1038/s41598-017-16703-9] [PMID: 29371638]
[28]
Chen, X.; Zhang, W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev., 2017, 46(3), 734-760.
[http://dx.doi.org/10.1039/C6CS00109B] [PMID: 27942638]
[29]
Choi, M.; Kim, K-G.; Heo, J.; Jeong, H.; Kim, S.Y.; Hong, J. Hong, J. Multilayered graphene nano-film for controlled protein delivery by desired electro-stimuli. Sci. Rep., 2015, 5, 17631.
[http://dx.doi.org/10.1038/srep17631] [PMID: 26621344]
[30]
Ding, D.; Xu, Y.; Zou, Y.; Chen, L.; Chen, Z.; Tan, W. Graphitic nanocapsules: design, synthesis and bioanalytical applications. Nanoscale, 2017, 9(30), 10529-10543.
[http://dx.doi.org/10.1039/C7NR02587D] [PMID: 28715021]
[31]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedicalapplications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[32]
Kim, H.; Miura, Y.; Macosko, C.W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater., 2010, 22(11), 3441-3450.
[http://dx.doi.org/10.1021/cm100477v]
[33]
Stankovich, S. Graphene-based composite materials. Nature, 2006, 442(7100), 282.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[34]
Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A. Prud’Homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6), 327-331.
[http://dx.doi.org/10.1038/nnano.2008.96] [PMID: 18654541]
[35]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[36]
Garg, B.; Bisht, T.; Ling, Y-C. Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules, 2014, 19(9), 14582-14614.
[http://dx.doi.org/10.3390/molecules190914582] [PMID: 25225721]
[37]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[38]
Gupta, T.K.; Singh, B.P.; Tripathi, R.K.; Dhakate, S.R.; Singh, V.N.; Panwar, O.S.; Mathur, R.B. Superior nano-mechanical properties of reduced grapheneoxide reinforced polyurethane composites. RSC Advances, 2015, 5(22), 16921-16930.
[http://dx.doi.org/10.1039/C4RA14223C]
[39]
Gao, W. The chemistry of graphene oxide. In: Graphene Oxide; Gao, W., Ed.; Springer: Cham, Switzerland, 2015; pp. 61-95.
[http://dx.doi.org/10.1007/978-3-319-15500-5_3]
[40]
Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon, 1988, 26(3), 357-361.
[http://dx.doi.org/10.1016/0008-6223(88)90227-8]
[41]
Risi, G.; Bloise, N.; Merli, D.; Icaro-Cornaglia, A.; Profumo, A.; Fagnoni, M.; Quartarone, E.; Imbriani, M.; Visai, L. In vitro study of multiwall carbon nanotubes (MWCNTS) with adsorbed mitoxantrone (MTO) as a drug delivery system to treat breast cancer. RSC Advances, 2014, 4(36), 18683-18693.
[http://dx.doi.org/10.1039/C4RA02366H]
[42]
Sitko, R.; Zawisza, B.; Malicka, E. Modification of carbon nanotubes for pre concentration, separation and determination of trace-metal ions. Trends Analyt. Chem., 2012, 37, 22-31.
[http://dx.doi.org/10.1016/j.trac.2012.03.016]
[43]
Jakubus, A.; Paszkiewicz, M.; Stepnowski, P. Carbon nanotubes application in the extraction techniques of pesticides: a review. Crit. Rev. Anal. Chem., 2017, 47(1), 76-91.
[http://dx.doi.org/10.1080/10408347.2016.1209105] [PMID: 27404790]
[44]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[45]
Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev., 2013, 65(15), 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[46]
Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers. Colloid Polym. Sci., 2014, 292(10), 2571-2580.
[http://dx.doi.org/10.1007/s00396-014-3305-x]
[47]
Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-engineered dendrimers in gene delivery. Chem. Rev., 2015, 115(11), 5274-5300.
[http://dx.doi.org/10.1021/cr500542t] [PMID: 25944558]
[48]
Robertson, D.H.; Brenner, D.W.; Mintmire, J.W. Energetics of nanoscale graphitic tubules. Phys. Rev. B Condens. Matter, 1992, 45(21), 12592-12595.
[http://dx.doi.org/10.1103/PhysRevB.45.12592] [PMID: 10001304]
[49]
Azam, M.A.; Abdul Manaf, N.S.; Talib, E.; Bistamam, M.S.A. Aligned carbon nanotube from catalytic chemical vapor deposition technique forenergy storage device: A review. Ionics, 2013, 19(11), 1455-1476.
[http://dx.doi.org/10.1007/s11581-013-0979-x]
[50]
Mathur, R.B.; Chatterjee, S.; Singh, B.P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol., 2008, 68(7-8), 1608-1615.
[http://dx.doi.org/10.1016/j.compscitech.2008.02.020]
[51]
Wang, Y.; Wei, F.; Luo, G.; Yu, H.; Gu, G. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett., 2002, 364(5-6), 568-572.
[http://dx.doi.org/10.1016/S0009-2614(02)01384-2]
[52]
Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584), 678.
[http://dx.doi.org/10.1038/381678a0]
[53]
Eric, W. Young’s modulus of single-walled nanotubes. Phys. Review B., 1997, 277(5334), 1971-1975.
[54]
Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young’s modulus of single-walled nanotubes. Phys. Rev. B., 1998, 58(20), 14013.
[http://dx.doi.org/10.1103/PhysRevB.58.14013]
[55]
Yu, M-F.; Bradley, S.F.; Sivaram, A.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett., 2000, 84(24), 5552.
[http://dx.doi.org/10.1103/PhysRevLett.84.5552] [PMID: 10990992]
[56]
Xie, X-L.; Mai, Y-W.; Zhou, X-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep., 2005, 49(4), 89-112.
[http://dx.doi.org/10.1016/j.mser.2005.04.002]
[57]
Berber, S.; Kwon, Y-K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84(20), 4613-4616.
[http://dx.doi.org/10.1103/PhysRevLett.84.4613] [PMID: 10990753]
[58]
Che, J.; Cagin, T.; Goddard, W.A., III Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11(2), 65.
[http://dx.doi.org/10.1088/0957-4484/11/2/305]
[59]
Osman, M.A.; Srivastava, D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology, 2001, 12(1), 21.
[http://dx.doi.org/10.1088/0957-4484/12/1/305]
[60]
Kwon, Y.K.; Kim, P. Unusually High Thermal Conductivity in Carbon Nanotubes. In: High Thermal Conductivity Materials; Shindé, S.L.; Goela, J.S., Eds.; Springer: New York, 2006; pp. 227-265.
[http://dx.doi.org/10.1007/0-387-25100-6_8]
[61]
Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S.J. Carbon nanotube electronics. Proc. IEEE, 2003, 91(11), 1772-1784.
[http://dx.doi.org/10.1109/JPROC.2003.818338]
[62]
Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., 2001, 79(8), 1172-1174.
[http://dx.doi.org/10.1063/1.1396632]
[63]
Dürkop, T.; Kim, B.M.; Fuhrer, M.S. Properties and applications of high-mobility semiconducting nanotubes. J. Phys. Condens. Matter, 2004, 16(18), R553.
[http://dx.doi.org/10.1088/0953-8984/16/18/R01]
[64]
Tang, Z.K.; Zhang, L.; Wang, N.; Zhang, X.X.; Wen, G.H.; Li, G.D.; Wang, J.N.; Chan, C.T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science, 2001, 292(5526), 2462-2465.
[http://dx.doi.org/10.1126/science.1060470] [PMID: 11431560]
[65]
Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev., 2014, 43(15), 5288-5301.
[http://dx.doi.org/10.1039/c4cs00060a] [PMID: 24789533]
[66]
Guldi, D.M.; Rahman, G.M.; Zerbetto, F.; Prato, M. Carbon nanotubes in electron donor- acceptor nanocomposites. Acc. Chem. Res., 2005, 38(11), 871-878.
[http://dx.doi.org/10.1021/ar040238i] [PMID: 16285709]
[67]
Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.032] [PMID: 24210872]
[68]
Zhang, X.; Hou, L.; Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun., 2016, 7, 11118.
[http://dx.doi.org/10.1038/ncomms11118] [PMID: 27067387]
[69]
Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc., 2013, 8(12), 2392-2403.
[http://dx.doi.org/10.1038/nprot.2013.146] [PMID: 24202553]
[70]
Bandaru, P.R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol., 2007, 7(4-5), 1239-1267.
[http://dx.doi.org/10.1166/jnn.2007.307] [PMID: 17450889]
[71]
Choi, T.; Kim, S.H.; Chang, W.L.; Kim, H.; Choi, S-K. Kim, S.H.; Kim, E.; Park, J.; Kim, H. Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens. Bioelectron., 2015, 63, 325-330.
[http://dx.doi.org/10.1016/j.bios.2014.07.059] [PMID: 25113051]
[72]
Favvasa, E.P.; Nitodas, S.F.; Stefopoulos, A.A.; Papageorgiou, S.K.; Stefanopoulos, K.L.; Mitropoulos, A.C. High puritymulti-walled carbon nanotubes: Preparation, characterization and performance as filler materialsin co-polyimide hollow fiber membranes. Separ. Purif. Tech., 2014, 122, 262-269.
[http://dx.doi.org/10.1016/j.seppur.2013.11.015]
[73]
Madani, S.Y.; Tan, A.; Dwek, M.; Seifalian, A.M. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int. J. Nanomedicine, 2012, 7, 905-914.
[http://dx.doi.org/10.2147/IJN.S25035] [PMID: 22412297]
[74]
Coccini, T.; Roda, E.; Sarigiannis, D.A.; Mustarelli, P.; Quartarone, E.; Profumo, A.; Manzo, L. Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology, 2010, 269(1), 41-53.
[http://dx.doi.org/10.1016/j.tox.2010.01.005] [PMID: 20079395]
[75]
Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Saeedi, M.S. Efficient epoxidation of alkenes with sodium periodatecatalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes. Appl. Catal. A Gen., 2010, 381(1-2), 233-241.
[http://dx.doi.org/10.1016/j.apcata.2010.04.013]
[76]
Rahimpour, A.; Jahanshahi, M.; Khalili, S.; Mollahosseini, A.; Zirepour, A.; Rajaeian, B. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (pes) membrane. Desalination, 2012, 286, 99-107.
[http://dx.doi.org/10.1016/j.desal.2011.10.039]
[77]
Amiri, A.; Maghrebi, M.; Baniadam, M.; Zeinali Heris, S. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl. Surf. Sci., 2011, 257(23), 10261-10266.
[http://dx.doi.org/10.1016/j.apsusc.2011.07.039]
[78]
Functionalization of carbon nanotubes for applicationsin materials science and nanomedicine. Pure Appl. Chem., 2010, 82(4), 853-861.
[http://dx.doi.org/10.1351/PAC-CON-09-10-40]
[79]
Mulvey, J.J.; Feinberg, E.N.; Alidori, S.; McDevitt, M.R.; Heller, D.A.; Scheinberg, D.A. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int. J. Nanomedicine, 2014, 9, 4245.
[80]
Zardini, H.Z.; Amiri, A.; Shanbedi, M.; Maghrebi, M.; Baniadam, M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbonnanotubes by a simple method. Colloids Surf. B Biointerfaces, 2012, 92, 196-202.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.045]
[81]
Polo-Luque, M.L.; Simonet, B.M.; Valcárcel, M. Functionalization and dispersion of carbon nanotubes in ionic liquids. Trends Analyt. Chem., 2013, 47, 99-110.
[http://dx.doi.org/10.1016/j.trac.2013.03.007]
[82]
Hilder, T.A.; Hill, J.M. Modeling the loading and unloading of drugs into nanotubes. Small, 2009, 5(3), 300-308.
[http://dx.doi.org/10.1002/smll.200800321] [PMID: 19058282]
[83]
Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; Wong, S.S.; Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 2008, 130(49), 16778-16785.
[http://dx.doi.org/10.1021/ja805570f] [PMID: 19554734]
[84]
Steinmetz, N.F.; Hong, V.; Spoerke, E.D.; Lu, P.; Breitenkamp, K.; Finn, M.G.; Manchester, M. Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc., 2009, 131(47), 17093-17095.
[http://dx.doi.org/10.1021/ja902293w] [PMID: 19904938]
[85]
Ganji, M.D.; Mirzaei, S.; Dalirandeh, Z. Molecular origin of drug release by water boiling inside carbon nanotubes from reactive molecular dynamics simulation and DFT perspectives. Sci. Rep., 2017, 7(1), 4669.
[http://dx.doi.org/10.1038/s41598-017-04981-2] [PMID: 28680131]
[86]
Nishiyama, N. Nanomedicine: Nanocarriers shape up for long life. Nat. Nanotechnol., 2007, 2(4), 203-204.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[87]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[88]
Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-based drug delivery systems. Adv. Mater., 2018, 30(22)e1706245
[http://dx.doi.org/10.1002/adma.201706245] [PMID: 29577477]
[89]
Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C.R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8218-8222.
[http://dx.doi.org/10.1073/pnas.0700567104] [PMID: 17485677]
[90]
Comparetti, E.J.; Pedrosa, V.A.; Kaneno, R. Carbon nanotube as a tool for fighting cancer. Bioconjug. Chem., 2018, 29(3), 709-718.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00563]
[91]
Sahoo, A.K.; Kanchi, S.; Mandal, T.; Dasgupta, C.; Maiti, P.K. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl. Mater. Interfaces, 2007, 10(7), 6168-6179.
[92]
Zhang, Y.; Yu, J.; Bomba, H.N.; Zhu, Y.; Gu, Z. Zhu, N.Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev., 2016, 116(19), 12536-12563.
[http://dx.doi.org/10.1021/acs.chemrev.6b00369] [PMID: 27680291]
[93]
Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; Liu, Z. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics, 2016, 6(11), 1833-1843.
[http://dx.doi.org/10.7150/thno.16047] [PMID: 27570554]
[94]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[95]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[96]
Xia, Y.; Naomi, J. Halas. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull., 2005, 30(5), 338-348.
[http://dx.doi.org/10.1557/mrs2005.96]
[97]
Liu, Q.; Zhan, C.; Kohane, D.S. Phototriggered drug delivery using inorganic nanomaterials. Bioconjug. Chem., 2017, 28(1), 98-104.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00448] [PMID: 27661196]
[98]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[99]
Sun, W.; Fan, J.; Wang, S.; Kang, Y.; Du, J.; Peng, X. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors. ACS Appl. Mater. Interfaces, 2018, 10(9), 7832-7840.
[http://dx.doi.org/10.1021/acsami.7b19281] [PMID: 29411602]
[100]
Zhao, Q.; Lin, Y.; Han, N.; Li, X.; Geng, H.; Wang, X.; Cui, Y.; Wang, S. Mesoporous carbon nanomaterials in drug delivery and biomedical application.Drug Deliv.,, 2017, 24(sup1), 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300] [PMID: 29124979]
[101]
Weaver, C.L.; LaRosa, J.M.; Luo, X.; Cui, X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 2014, 8(2), 1834-1843.
[http://dx.doi.org/10.1021/nn406223e] [PMID: 24428340]
[102]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[103]
Ji, S.; Liu, C.; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.; Ni, Q.; Yu, X. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta, 2010, 1806(1), 29-35.
[104]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[105]
López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J.M.; Blanco, M.D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: In vitro bioactivity evaluation. J. Microencapsul., 2011, 28(5), 417-429.
[http://dx.doi.org/10.3109/02652048.2011.576785] [PMID: 21736526]
[106]
Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett., 2011, 6(1), 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[107]
Kang, B.; Yu, D.; Dai, Y.; Chang, S.; Chen, D.; Ding, Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, 2009, 5(11), 1292-1301.
[http://dx.doi.org/10.1002/smll.200801820] [PMID: 19274646]
[108]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[109]
Nadine, W.S.K.; Liu, Z.; Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem., 2006, 118(4), 591-595.
[http://dx.doi.org/10.1002/ange.200503389]
[110]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra:a potential cancer diagnostic marker. Nano Lett., 2007, 7(6), 1591-1597.
[http://dx.doi.org/10.1021/nl070472c] [PMID: 17474783]
[111]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[112]
Some, S.; Gwon, A.R.; Hwang, E.; Bahn, G.H.; Yoon, Y.; Kim, Y.; Kim, S.H.; Bak, S.; Yang, J.; Jo, D.G.; Lee, H. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep., 2014, 4, 6314.
[http://dx.doi.org/10.1038/srep06314] [PMID: 25204358]
[113]
Zhang, Z.; Wang, J.; Chen, C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater., 2013, 25(28), 3869-3880.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[114]
Kam, N.W.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancercell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[115]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[116]
Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotubemolecular transporters: internalization of carbon nanotube- protein conjugates into mammaliancells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[117]
Cherukuri, P.; Bachilo, S.M.; Litovsky, S.H.; Weisman, R.B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc., 2004, 126(48), 15638-15639.
[http://dx.doi.org/10.1021/ja0466311] [PMID: 15571374]
[118]
Zhang, M.; Wang, W.; Cui, Y.; Zhou, N.; Shen, J. Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modaltargeted imaging in chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng., 2018, 4(1), 151-162.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00531]
[119]
Farrera, C.; Torres Andón, F.; Feliu, N. Carbon nanotubes as optical sensors in biomedicine. ACS Nano, 2017, 11(11), 10637-10643.
[http://dx.doi.org/10.1021/acsnano.7b06701] [PMID: 29087693]
[120]
Chan, M.S.; Liu, L.S.; Leung, H.M.; Lo, P.K. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl. Mater. Interfaces, 2017, 9(13), 11780-11789.
[121]
Dai, Q.; Bertleff-Zieschang, N.; Braunger, J.A.; Björnmalm, M.; Cortez-Jugo, C.; Caruso, F. Particle targeting in complex biological media. Adv. Healthc. Mater., 2018, 7(1)1700575
[http://dx.doi.org/10.1002/adhm.201700575] [PMID: 28809092]
[122]
Zhou, F.; Wu, S.; Wu, B.; Chen, W.R.; Xing, D. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small, 2011, 7(19), 2727-2735.
[http://dx.doi.org/10.1002/smll.201100669] [PMID: 21861293]
[123]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[http://dx.doi.org/10.1021/nn1007176] [PMID: 20481456]
[124]
Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3(2), 362-382.
[http://dx.doi.org/10.1039/C0NR00647E] [PMID: 21157592]
[125]
Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S-T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011, 5(1), 516-522.
[http://dx.doi.org/10.1021/nn1024303] [PMID: 21162527]
[126]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[127]
Fisher, C.; Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, I.; Ostrikov, K. Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J. Nanomater., 2012, 2012, 1.
[http://dx.doi.org/10.1155/2012/315185]
[128]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S-T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[129]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[130]
Ryman-Rasmussen, J.P.; Cesta, M.F.; Brody, A.R.; Shipley-Phillips, J.K.; Everitt, J.I.; Tewksbury, E.W.; Moss, O.R.; Wong, B.A.; Dodd, D.E.; Andersen, M.E.; Bonner, J.C. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol., 2009, 4(11), 747-751.
[http://dx.doi.org/10.1038/nnano.2009.305] [PMID: 19893520]
[131]
Liu, Z.; Yang, K.; Lee, S.T. Single-walled carbon nanotubes in biomedical imaging. J. Mater. Chem., 2011, 21(3), 586-598.
[http://dx.doi.org/10.1039/C0JM02020F]
[132]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (>1 μm) imaging andphotothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[133]
Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett., 2008, 8(2), 586-590.
[http://dx.doi.org/10.1021/nl072949q] [PMID: 18197719]
[134]
Welsher, K.; Liu, Z.; Sarah, P. Sherlock, Robinson, J.T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infraredimaging in mice. Nat. Nanotechnol., 2009, 4(11), 773.
[http://dx.doi.org/10.1038/nnano.2009.294] [PMID: 19893526]
[135]
Ley, C.; Bordas, S.P.A. What makes data science different? A discussion involving statistics 2.0 and computational sciences. Int. J. Data Sci. Anal., •••, 6(3), 167-175.
[136]
DiStasio, R.A., Jr; von Lilienfeld, O.A.; Tkatchenko, A. Collective many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14791-14795.
[http://dx.doi.org/10.1073/pnas.1208121109] [PMID: 22923693]
[137]
Tkatchenko, A.; DiStasio, R.A., Jr; Car, R.; Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett., 2012, 108(23)236402
[http://dx.doi.org/10.1103/PhysRevLett.108.236402] [PMID: 23003978]
[138]
Peng, Q.; Crean, J.; Dearden, A.K.; Huang, C.; Wen, X.; Bordas, S.; De, S. Defectengineering of 2D monatomic-layer materials. Mod. Phys. Lett. B, 2013, 27(23)1330017
[http://dx.doi.org/10.1142/S0217984913300172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy