[1]
Menyhart, O.; Santarpia, L.; Gyorffy, B. A comprehensive outline of trastuzumab resistance biomarkers in HER2 overexpressing breast cancer. Curr. Cancer Drug Targets, 2015, 15(8), 665-683.
[2]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[3]
Shrestha, G.; St., Clair; L.L., Lichens A promising source of antibiotic and anticancer drugs. Phytochem. Rev., 2013, 12(1), 229-244.
[4]
Ranković, B.; Kosanić, M.; Manojlović, N.; Rančić, A.; Stanojković, T. Chemical composition of hypogymnia physodes lichen and biological activities of some its major metabolites. Med. Chem. Res., 2014, 23(1), 408-416.
[5]
Ristić, S.; Ranković, B.; Kosanić, M.; Stanojković, T.; Stamenković, S.; Vasiljević, P.; Manojlović, I.; Manojlović, N. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J. Food Sci. Technol., 2016, 53(6), 2804-2816.
[6]
Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical potential of two ramalina lichens and their metabolites. Curr. Pharm. Biotechnol., 2016, 17(7), 651-658.
[7]
Stanojkovi, T. Investigations of lichen secondary metabolites with potential anticancer activity. In: Lichen Secondary Metabolites:
Bioactive Properties and Pharmaceutical Potential;; Branislav
Ranković; Springer: Switzerland,. , 2015; pp. 127-146.
[8]
Koçer, S.; Uruş, S.; Çakır, A.; Güllüce, M.; Dığrak, M.; Alan, Y.; Aslan, A.; Tümer, M.; Karaday, M.; Kazaz, C.; Dal, H. The synthesis, characterization, antimicrobial and antimutagenic activities of hydroxyphenylimino ligands and their metal complexes of usnic acid isolated from Usnea longissima. Dalton Trans., 2014, 43(16), 6148-6164.
[9]
Zugic, A.; Jeremic, I.; Isakovic, A.; Arsic, I.; Savic, S.; Tadic, V. Evaluation of anticancer and antioxidant activity of a commercially available CO2 supercritical extract of old man’s beard (Usnea Barbata). PLoS One, 2016, 11(1)e0146342
[10]
Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172.
[11]
Zakharenko, A.; Luzina, O.; Koval, O.; Nilov, D.; Gushchina, I.; Dyrkheeva, N.; Švedas, V.; Salakhutdinov, N.; Lavrik, O. Tyrosyl-DNA phosphodiesterase 1 inhibitors: Usnic acid enamines enhance the cytotoxic effect of camptothecin. J. Nat. Prod., 2016, 79(11), 2961-2967.
[12]
Nguyen, T.T.; Yoon, S.; Yang, Y.; Lee, H.B.; Oh, S.; Jeong, M.H.; Kim, J.J.; Yee, S.T.; Crişan, F.; Moon, C.; Lee, K.Y. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS One, 2014, 9(10)111575
[13]
Dinçsoy, A.B.; Duman, C.D. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk. J. Biol., 2017, 41(3), 484-493.
[14]
Eryilmaz, I.E.; Eskiler, G.G.; Egeli, U.; Yurdacan, B.; Çeçener, G.; Tunca, B. In vitro cytotoxic and antiproliferative effects of usnic acid on hormone-dependent breast and prostate cancer cells. Biochem. Mol. Toxicol, 2018, 32(10)e22208
[15]
Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15, 421-432.
[16]
Kim, K.K.; Hur, J.S. Anticancer Activity of Lichen Metabolites and Their Mechanisms at the Molecular Level. In: Recent Advances
in Lichenology: Modern Methods and Approaches in Lichen Systematics
and Culture Techniques, Volume 2;; Upreti, D.K.; Divakar,
P.K.; Shukla, V.; Bajpai, R.; Springer: Switzerland,. , 2015; pp. 201-208.
[17]
Iorio, M.V.; Croce, C.M. microRNA involvement in human cancer. Carcinogenesis, 2012, 33(6), 1126-1133.
[18]
Pinweha, P.; Rattanapornsompong, K.; Charoensawan, V.; Jitrapakdee, S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput. Struct. Biotechnol. J., 2016, 14, 223-233.
[19]
Shivapurkar, N.; Vietsch, E.E.; Carney, E.; Isaacs, C.; Wellstein, A. Circulating microRNAs in patients with hormone receptor-positive, metastatic breast cancer treated with dovitinib. Clin. Transl. Med., 2017, 6(1), 37.
[20]
Boo, L.; Ho, W.Y.; Mohd Ali, N.; Yeap, S.K.; Ky, H.; Chan, K.G.; Yin, W.F.; Satharasinghe, D.A.; Liew, W.C.; Tan, S.W.; Cheong, S.K. Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset. PeerJ, 2017, 5e3551
[21]
Simon, R.; Lam, A.; Li, M.; Ngan, M.; Menenzes, S.; Zhao, Y. Analysis of gene expression data using BRB-ArrayTools. Canc. Info, 2007, 3, 11-17.
[22]
Lopez-Romero, P.; Gonzalez, M.A.; Callejas, S.; Dopazo, A.; Irizarry, R.A. Processing of agilent microRNA array data. BMC Res. Notes, 2010, 3, 18.
[24]
Vlachos, I.S.; Kostoulas, N.; Vergoulis, T.; Georgakilas, G.; Reczko, M.; Maragkakis, M.; Paraskevopoulou, M.D.; Prionidis, K.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA miRPath v.2.0: Investigating the Combinatorial Effect of microRNAs in Pathways. Nucleic Acids Res., 2012, 40, 498-504.
[25]
Galanty, A.; Koczurkiewicz, P.; Wnuk, D.; Paw, M.; Karnas, E.; Podolak, I.; Węgrzyn, M.; Borusiewicz, M.; Madeja, Z.; Czyż, J. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. Vitr., 2017, 40, 161-169.
[26]
Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol., 2012, 50(6), 778-798.
[27]
Einarsdóttir, E.; Groeneweg, J.; Björnsdóttir, G.G.; Haroardottir, G.; Omarsdóttir, S.; Ingólfsdóttir, K.; Ögmundsdóttir, H.M. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med., 2010, 76(10), 969-974.
[28]
Bačkorová, M.; Bačkor, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. Vitr., 2011, 25(1), 37-44.
[29]
Bačkorová, M.; Jendželovský, R.; Kello, M.; Bačkor, M.; Mikeš, J.; Fedoročko, P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. Vitr., 2012, 26(3), 462-468.
[30]
Song, Z.; Yue, W.; Wei, B.; Wang, N.; Li, T.; Guan, L.; Shi, S.; Zeng, Q.; Pei, X.; Chen, L. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One, 2011, 6(3)e17687
[31]
Jiang, J.; Hui, C. Hedgehog signaling in development and cancer. Dev. Cell, 2008, 15(6), 801-812.
[32]
Hadden, M.K. Hedgehog pathway inhibitors: A patent review (2009--Present). Expert Opin. Ther. Pat., 2013, 23(3), 345-361.
[33]
Li, W.; Sun, Q.; Song, L.; Gao, C.; Liu, F.; Chen, Y.; Jiang, Y. Discovery of 1-(3-Aryl-4-Chlorophenyl)-3-(P-Aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and hedgehog signalings. Eur. J. Med. Chem., 2017, 141, 721-733.
[34]
Kern, D.; Regl, G.; Hofbauer, S.W.; Altenhofer, P.; Achatz, G.; Dlugosz, A.; Schnidar, H.; Greil, R.; Hartmann, T.N.; Aberger, F. Hedgehog/GLI and PI3K Signaling in the Initiation and Maintenance of Chronic Lymphocytic Leukemia. Oncogene, 2015, 34(42), 5341-5351.
[35]
Arnold, K.M.; Pohlig, R.T.; Sims-Mourtada, J. Co-Activation of hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer. Oncol. Lett., 2017, 14(5), 5285-5292.
[37]
Wen, Y.; Han, J.; Chen, J.; Dong, J.; Xia, Y.; Liu, J.; Jiang, Y.; Dai, J.; Lu, J.; Jin, G. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int. J. Cancer, 2015, 137(7), 1679-1690.
[38]
Wang, B.; Li, J.; Sun, M.; Sun, L.; Zhang, X. miRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life, 2014, 66(5), 371-377.
[39]
Petrozza, V.; Carbone, A.; Bellissimo, T.; Porta, N.; Palleschi, G.; Pastore, A.L.; Di Carlo, A.; Della Rocca, C.; Fazi, F. Oncogenic microRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci., 2015, 16(12), 29219-29225.
[40]
Pei, K.; Zhu, J.J.; Wang, C.E.; Xie, Q.L.; Guo, J.Y. MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4697-4704.
[41]
Tang, H.; Liu, P.; Yang, L.; Xie, X.; Ye, F.; Wu, M.; Liu, X.; Chen, B.; Zhang, L.; Xie, X. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol. Cancer Ther., 2014, 13(12), 3185-3197.
[42]
Li, S.; Ma, Y.; Hou, X.; Liu, Y.; Li, K.; Xu, S.; Wang, J. miR-185 acts as a tumor suppressor by targeting AKT1 in non-small cell lung cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11854-11862.