Review Article

NADPH生产酶是南美锥虫病的有希望的药物靶标

卷 26, 期 36, 2019

页: [6564 - 6571] 页: 8

弟呕挨: 10.2174/0929867325666181009152844

价格: $65

Open Access Journals Promotions 2
摘要

还原的烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH)是用于不同合成代谢反应(例如脂质和核酸合成)和氧化应激防御的辅助因子。 NADPH对于寄生虫的生长和生存能力至关重要。 在锥虫的寄生虫中,NADPH由磷酸戊糖途径的氧化分支和与柠檬酸循环有关的酶提供。 本文将回顾最近的成就,这些成就表明葡萄糖-6-磷酸脱氢酶和苹果酸酶的胞质同工型是发现针对克氏锥虫和布鲁氏锥虫的新药的有希望的药物靶标。 还将涉及涉及加快克氏锥虫药物靶标验证的替代策略和药物靶标分类概念的主题。

关键词: 苹果酸酶,6-磷酸葡萄糖脱氢酶,成药性,被忽视的疾病,NADPH,氧化应激防御,寄生虫生长。

[1]
Peng, D.; Kurup, S.P.; Yao, P.Y.; Minning, T.A.; Tarleton, R.L. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio, 2014, 6(1), e02097-e14.
[http://dx.doi.org/10.1128/mBio.02097-14] [PMID: 25550322]
[2]
Lander, N.; Li, Z.H.; Niyogi, S.; Docampo, R. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in trypanosoma cruzi reveals their role in flagellar attachment. MBio, 2015, 6(4)e01012
[http://dx.doi.org/10.1128/mBio.01012-15] [PMID: 26199333]
[3]
Soares Medeiros, L.C.; South, L.; Peng, D.; Bustamante, J.M.; Wang, W.; Bunkofske, M.; Perumal, N.; Sanchez-Valdez, F.; Tarleton, R.L. Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins. MBio, 2017, 8(6)e01788
[http://dx.doi.org/10.1128/mBio.01788-17] [PMID: 29114029]
[4]
Romagnoli, B.A.A.; Picchi, G.F.A.; Hiraiwa, P.M.; Borges, B.S.; Alves, L.R.; Goldenberg, S. Improvements in the CRISPR/Cas9 system for high efficiency gene disruption in Trypanosoma cruzi. Acta Trop., 2018, 178, 190-195.
[http://dx.doi.org/10.1016/j.actatropica.2017.11.013] [PMID: 29174293]
[5]
Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.; Myburgh, E.; Gao, M.Y.; Gillespie, J.R.; Liu, X.; Tan, J.L.; Stinson, M.; Rivera, I.C.; Ballard, J.; Yeh, V.; Groessl, T.; Federe, G.; Koh, H.X.; Venable, J.D.; Bursulaya, B.; Shapiro, M.; Mishra, P.K.; Spraggon, G.; Brock, A.; Mottram, J.C.; Buckner, F.S.; Rao, S.P.; Wen, B.G.; Walker, J.R.; Tuntland, T.; Molteni, V.; Glynne, R.J.; Supek, F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537(7619), 229-233.
[http://dx.doi.org/10.1038/nature19339] [PMID: 27501246]
[6]
Salas-Sarduy, E.; Landaburu, L.U.; Karpiak, J.; Madauss, K.P.; Cazzulo, J.J.; Agüero, F.; Alvarez, V.E. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci. Rep., 2017, 7(1), 12073-12.
[http://dx.doi.org/10.1038/s41598-017-12170-4] [PMID: 28935948]
[7]
Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci. Rep., 2015, 5, 8771.
[http://dx.doi.org/10.1038/srep08771] [PMID: 25740547]
[8]
Urbina, J.A. Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J. Eukaryot. Microbiol., 2015, 62(1), 149-156.
[http://dx.doi.org/10.1111/jeu.12184] [PMID: 25284065]
[9]
Hol, W.G. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future. Acta Crystallogr. F Struct. Biol. Commun., 2015, 71(Pt 5), 485-499.
[http://dx.doi.org/10.1107/S2053230X15004987] [PMID: 25945701]
[10]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[11]
Bermudez, J.; Davies, C.; Simonazzi, A.; Real, J.P.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop., 2016, 156, 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2015.12.017] [PMID: 26747009]
[12]
Francisco, A.F.; Jayawardhana, S.; Lewis, M.D.; Taylor, M.C.; Kelly, J.M. Biological factors that impinge on Chagas disease drug development. Parasitology, 2017, 144(14), 1871-1880.
[http://dx.doi.org/10.1017/S0031182017001469] [PMID: 28831944]
[13]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[14]
Wilkinson, S.R.; Bot, C.; Kelly, J.M.; Hall, B.S. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr. Top. Med. Chem., 2011, 11(16), 2072-2084.
[http://dx.doi.org/10.2174/156802611796575894] [PMID: 21619510]
[15]
Molina, I.; Salvador, F.; Sánchez-Montalvá, A. The use of posaconazole against Chagas disease. Curr. Opin. Infect. Dis., 2015, 28(5), 397-407.
[http://dx.doi.org/10.1097/QCO.0000000000000192] [PMID: 26203852]
[16]
Mercaldi, G.F.; Ranzani, A.T.; Cordeiro, A.T. Discovery of new uncompetitive inhibitors of glucose-6-phosphate dehydrogenase. J. Biomol. Screen., 2014, 19(10), 1362-1371.
[http://dx.doi.org/10.1177/1087057114546896] [PMID: 25121555]
[17]
Ranzani, A.T.; Nowicki, C.; Wilkinson, S.R.; Cordeiro, A.T. Identification of specific inhibitors of trypanosoma cruzi malic enzyme isoforms by target-based HTS. SLAS Discov., 2017.
[http://dx.doi.org/10.1177/2472555217706649] [PMID: 28459632]
[18]
Dardonville, C.; Rinaldi, E.; Barrett, M.P.; Brun, R.; Gilbert, I.H.; Hanau, S. Selective inhibition of Trypanosoma brucei 6-phosphogluconate dehydrogenase by high-energy intermediate and transition-state analogues. J. Med. Chem., 2004, 47(13), 3427-3437.
[http://dx.doi.org/10.1021/jm031066i] [PMID: 15189039]
[19]
Kovářová, J.; Barrett, M.P. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol., 2016, 32(8), 622-634.
[http://dx.doi.org/10.1016/j.pt.2016.04.010] [PMID: 27174163]
[20]
Cordeiro, A.T.; Thiemann, O.H.; Michels, P.A. Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites. Bioorg. Med. Chem., 2009, 17(6), 2483-2489.
[http://dx.doi.org/10.1016/j.bmc.2009.01.068] [PMID: 19231202]
[21]
Kerkhoven, E.J.; Achcar, F.; Alibu, V.P.; Burchmore, R.J.; Gilbert, I.H.; Trybiło, M.; Driessen, N.N.; Gilbert, D.; Breitling, R.; Bakker, B.M.; Barrett, M.P. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei. PLOS Comput. Biol., 2013, 9(12)e1003371
[http://dx.doi.org/10.1371/journal.pcbi.1003371] [PMID: 24339766]
[22]
Gupta, S.; Cordeiro, A.T.; Michels, P.A. Glucose-6-phosphate dehydrogenase is the target for the trypanocidal action of human steroids. Mol. Biochem. Parasitol., 2011, 176(2), 112-115.
[http://dx.doi.org/10.1016/j.molbiopara.2010.12.006] [PMID: 21185333]
[23]
Ruda, G.F.; Campbell, G.; Alibu, V.P.; Barrett, M.P.; Brenk, R.; Gilbert, I.H. Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorg. Med. Chem., 2010, 18(14), 5056-5062.
[http://dx.doi.org/10.1016/j.bmc.2010.05.077] [PMID: 20598892]
[24]
Igoillo-Esteve, M.; Cazzulo, J.J. The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: its role in the defense of the parasite against oxidative stress. Mol. Biochem. Parasitol., 2006, 149(2), 170-181.
[http://dx.doi.org/10.1016/j.molbiopara.2006.05.009] [PMID: 16828178]
[25]
Esteve, M.I.; Cazzulo, J.J. The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: the absence of two inter-subunit salt bridges as a reason for enzyme instability. Mol. Biochem. Parasitol., 2004, 133(2), 197-207.
[http://dx.doi.org/10.1016/j.molbiopara.2003.10.007] [PMID: 14698432]
[26]
Leroux, A.E.; Maugeri, D.A.; Cazzulo, J.J.; Nowicki, C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol. Biochem. Parasitol., 2011, 177(1), 61-64.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.010] [PMID: 21291916]
[27]
Leroux, A.E.; Maugeri, D.A.; Opperdoes, F.R.; Cazzulo, J.J.; Nowicki, C. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei. FEMS Microbiol. Lett., 2011, 314(1), 25-33.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02142.x] [PMID: 21105905]
[28]
Walter, R.D.; Ebert, F. Evidence for NADH- and NADPH-linked glutamate dehydrogenases in Trypanosoma cruzi epimastigotes. J. Protozool., 1979, 26(4), 653-656.
[http://dx.doi.org/10.1111/j.1550-7408.1979.tb04214.x] [PMID: 44525]
[29]
Barderi, P.; Campetella, O.; Frasch, A.C.; Santomé, J.A.; Hellman, U.; Pettersson, U.; Cazzulo, J.J. The NADP+-linked glutamate dehydrogenase from Trypanosoma cruzi: sequence, genomic organization and expression. Biochem. J., 1998, 330(Pt 2), 951-958.
[http://dx.doi.org/10.1042/bj3300951] [PMID: 9480915]
[30]
Allmann, S.; Morand, P.; Ebikeme, C.; Gales, L.; Biran, M.; Hubert, J.; Brennand, A.; Mazet, M.; Franconi, J.M.; Michels, P.A.; Portais, J.C.; Boshart, M.; Bringaud, F. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. J. Biol. Chem., 2013, 288(25), 18494-18505.
[http://dx.doi.org/10.1074/jbc.M113.462978] [PMID: 23665470]
[31]
Mottram, J.C.; McCready, B.P.; Brown, K.G.; Grant, K.M. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana. Mol. Microbiol., 1996, 22(3), 573-583.
[http://dx.doi.org/10.1046/j.1365-2958.1996.00136.x] [PMID: 8939439]
[32]
Ingram, A.K.; Horn, D. Histone deacetylases in Trypanosoma brucei: two are essential and another is required for normal cell cycle progression. Mol. Microbiol., 2002, 45(1), 89-97.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03018.x] [PMID: 12100550]
[33]
Silber, A.M.; Tonelli, R.R.; Lopes, C.G.; Cunha-e-Silva, N.; Torrecilhas, A.C.; Schumacher, R.I.; Colli, W.; Alves, M.J. Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol. Biochem. Parasitol., 2009, 168(1), 102-108.
[http://dx.doi.org/10.1016/j.molbiopara.2009.07.006] [PMID: 19631694]
[34]
Gironès, N.; Carbajosa, S.; Guerrero, N.A.; Poveda, C.; Chillón-Marinas, C.; Fresno, M. Global metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection. PLoS Negl. Trop. Dis., 2014, 8(11)e3337
[http://dx.doi.org/10.1371/journal.pntd.0003337] [PMID: 25412247]
[35]
Shah-Simpson, S.; Lentini, G.; Dumoulin, P.C.; Burleigh, B.A. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog., 2017, 13(11)e1006747
[http://dx.doi.org/10.1371/journal.ppat.1006747] [PMID: 29176805]
[36]
Kelly, J.M.; Ward, H.M.; Miles, M.A.; Kendall, G. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res., 1992, 20(15), 3963-3969.
[http://dx.doi.org/10.1093/nar/20.15.3963] [PMID: 1324472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy