Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

NADPH Producing Enzymes as Promising Drug Targets for Chagas Disease

Author(s): Artur T. Cordeiro*

Volume 26, Issue 36, 2019

Page: [6564 - 6571] Pages: 8

DOI: 10.2174/0929867325666181009152844

Price: $65

Open Access Journals Promotions 2
Abstract

Reduced Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is a cofactor used in different anabolic reactions, such as lipid and nucleic acid synthesis, and for oxidative stress defense. NADPH is essential for parasite growth and viability. In trypanosomatid parasites, NADPH is supplied by the oxidative branch of the pentose phosphate pathway and by enzymes associated with the citric acid cycle. The present article will review recent achievements that suggest glucose-6-phosphate dehydrogenase and the cytosolic isoform of the malic enzyme as promising drug targets for the discovery of new drugs against Trypanosoma cruzi and T. brucei. Topics involving an alternative strategy in accelerating T. cruzi drug-target validation and the concept of drug-target classification will also be revisited.

Keywords: Malic enzyme, glucose-6-phosphate dehydrogenase, druggability, neglected diseases, NADPH, oxidative stress defense, parasite growth.

[1]
Peng, D.; Kurup, S.P.; Yao, P.Y.; Minning, T.A.; Tarleton, R.L. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio, 2014, 6(1), e02097-e14.
[http://dx.doi.org/10.1128/mBio.02097-14] [PMID: 25550322]
[2]
Lander, N.; Li, Z.H.; Niyogi, S.; Docampo, R. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in trypanosoma cruzi reveals their role in flagellar attachment. MBio, 2015, 6(4)e01012
[http://dx.doi.org/10.1128/mBio.01012-15] [PMID: 26199333]
[3]
Soares Medeiros, L.C.; South, L.; Peng, D.; Bustamante, J.M.; Wang, W.; Bunkofske, M.; Perumal, N.; Sanchez-Valdez, F.; Tarleton, R.L. Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins. MBio, 2017, 8(6)e01788
[http://dx.doi.org/10.1128/mBio.01788-17] [PMID: 29114029]
[4]
Romagnoli, B.A.A.; Picchi, G.F.A.; Hiraiwa, P.M.; Borges, B.S.; Alves, L.R.; Goldenberg, S. Improvements in the CRISPR/Cas9 system for high efficiency gene disruption in Trypanosoma cruzi. Acta Trop., 2018, 178, 190-195.
[http://dx.doi.org/10.1016/j.actatropica.2017.11.013] [PMID: 29174293]
[5]
Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.; Myburgh, E.; Gao, M.Y.; Gillespie, J.R.; Liu, X.; Tan, J.L.; Stinson, M.; Rivera, I.C.; Ballard, J.; Yeh, V.; Groessl, T.; Federe, G.; Koh, H.X.; Venable, J.D.; Bursulaya, B.; Shapiro, M.; Mishra, P.K.; Spraggon, G.; Brock, A.; Mottram, J.C.; Buckner, F.S.; Rao, S.P.; Wen, B.G.; Walker, J.R.; Tuntland, T.; Molteni, V.; Glynne, R.J.; Supek, F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537(7619), 229-233.
[http://dx.doi.org/10.1038/nature19339] [PMID: 27501246]
[6]
Salas-Sarduy, E.; Landaburu, L.U.; Karpiak, J.; Madauss, K.P.; Cazzulo, J.J.; Agüero, F.; Alvarez, V.E. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci. Rep., 2017, 7(1), 12073-12.
[http://dx.doi.org/10.1038/s41598-017-12170-4] [PMID: 28935948]
[7]
Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci. Rep., 2015, 5, 8771.
[http://dx.doi.org/10.1038/srep08771] [PMID: 25740547]
[8]
Urbina, J.A. Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J. Eukaryot. Microbiol., 2015, 62(1), 149-156.
[http://dx.doi.org/10.1111/jeu.12184] [PMID: 25284065]
[9]
Hol, W.G. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future. Acta Crystallogr. F Struct. Biol. Commun., 2015, 71(Pt 5), 485-499.
[http://dx.doi.org/10.1107/S2053230X15004987] [PMID: 25945701]
[10]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[11]
Bermudez, J.; Davies, C.; Simonazzi, A.; Real, J.P.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop., 2016, 156, 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2015.12.017] [PMID: 26747009]
[12]
Francisco, A.F.; Jayawardhana, S.; Lewis, M.D.; Taylor, M.C.; Kelly, J.M. Biological factors that impinge on Chagas disease drug development. Parasitology, 2017, 144(14), 1871-1880.
[http://dx.doi.org/10.1017/S0031182017001469] [PMID: 28831944]
[13]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[14]
Wilkinson, S.R.; Bot, C.; Kelly, J.M.; Hall, B.S. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr. Top. Med. Chem., 2011, 11(16), 2072-2084.
[http://dx.doi.org/10.2174/156802611796575894] [PMID: 21619510]
[15]
Molina, I.; Salvador, F.; Sánchez-Montalvá, A. The use of posaconazole against Chagas disease. Curr. Opin. Infect. Dis., 2015, 28(5), 397-407.
[http://dx.doi.org/10.1097/QCO.0000000000000192] [PMID: 26203852]
[16]
Mercaldi, G.F.; Ranzani, A.T.; Cordeiro, A.T. Discovery of new uncompetitive inhibitors of glucose-6-phosphate dehydrogenase. J. Biomol. Screen., 2014, 19(10), 1362-1371.
[http://dx.doi.org/10.1177/1087057114546896] [PMID: 25121555]
[17]
Ranzani, A.T.; Nowicki, C.; Wilkinson, S.R.; Cordeiro, A.T. Identification of specific inhibitors of trypanosoma cruzi malic enzyme isoforms by target-based HTS. SLAS Discov., 2017.
[http://dx.doi.org/10.1177/2472555217706649] [PMID: 28459632]
[18]
Dardonville, C.; Rinaldi, E.; Barrett, M.P.; Brun, R.; Gilbert, I.H.; Hanau, S. Selective inhibition of Trypanosoma brucei 6-phosphogluconate dehydrogenase by high-energy intermediate and transition-state analogues. J. Med. Chem., 2004, 47(13), 3427-3437.
[http://dx.doi.org/10.1021/jm031066i] [PMID: 15189039]
[19]
Kovářová, J.; Barrett, M.P. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol., 2016, 32(8), 622-634.
[http://dx.doi.org/10.1016/j.pt.2016.04.010] [PMID: 27174163]
[20]
Cordeiro, A.T.; Thiemann, O.H.; Michels, P.A. Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites. Bioorg. Med. Chem., 2009, 17(6), 2483-2489.
[http://dx.doi.org/10.1016/j.bmc.2009.01.068] [PMID: 19231202]
[21]
Kerkhoven, E.J.; Achcar, F.; Alibu, V.P.; Burchmore, R.J.; Gilbert, I.H.; Trybiło, M.; Driessen, N.N.; Gilbert, D.; Breitling, R.; Bakker, B.M.; Barrett, M.P. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei. PLOS Comput. Biol., 2013, 9(12)e1003371
[http://dx.doi.org/10.1371/journal.pcbi.1003371] [PMID: 24339766]
[22]
Gupta, S.; Cordeiro, A.T.; Michels, P.A. Glucose-6-phosphate dehydrogenase is the target for the trypanocidal action of human steroids. Mol. Biochem. Parasitol., 2011, 176(2), 112-115.
[http://dx.doi.org/10.1016/j.molbiopara.2010.12.006] [PMID: 21185333]
[23]
Ruda, G.F.; Campbell, G.; Alibu, V.P.; Barrett, M.P.; Brenk, R.; Gilbert, I.H. Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorg. Med. Chem., 2010, 18(14), 5056-5062.
[http://dx.doi.org/10.1016/j.bmc.2010.05.077] [PMID: 20598892]
[24]
Igoillo-Esteve, M.; Cazzulo, J.J. The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: its role in the defense of the parasite against oxidative stress. Mol. Biochem. Parasitol., 2006, 149(2), 170-181.
[http://dx.doi.org/10.1016/j.molbiopara.2006.05.009] [PMID: 16828178]
[25]
Esteve, M.I.; Cazzulo, J.J. The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: the absence of two inter-subunit salt bridges as a reason for enzyme instability. Mol. Biochem. Parasitol., 2004, 133(2), 197-207.
[http://dx.doi.org/10.1016/j.molbiopara.2003.10.007] [PMID: 14698432]
[26]
Leroux, A.E.; Maugeri, D.A.; Cazzulo, J.J.; Nowicki, C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol. Biochem. Parasitol., 2011, 177(1), 61-64.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.010] [PMID: 21291916]
[27]
Leroux, A.E.; Maugeri, D.A.; Opperdoes, F.R.; Cazzulo, J.J.; Nowicki, C. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei. FEMS Microbiol. Lett., 2011, 314(1), 25-33.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02142.x] [PMID: 21105905]
[28]
Walter, R.D.; Ebert, F. Evidence for NADH- and NADPH-linked glutamate dehydrogenases in Trypanosoma cruzi epimastigotes. J. Protozool., 1979, 26(4), 653-656.
[http://dx.doi.org/10.1111/j.1550-7408.1979.tb04214.x] [PMID: 44525]
[29]
Barderi, P.; Campetella, O.; Frasch, A.C.; Santomé, J.A.; Hellman, U.; Pettersson, U.; Cazzulo, J.J. The NADP+-linked glutamate dehydrogenase from Trypanosoma cruzi: sequence, genomic organization and expression. Biochem. J., 1998, 330(Pt 2), 951-958.
[http://dx.doi.org/10.1042/bj3300951] [PMID: 9480915]
[30]
Allmann, S.; Morand, P.; Ebikeme, C.; Gales, L.; Biran, M.; Hubert, J.; Brennand, A.; Mazet, M.; Franconi, J.M.; Michels, P.A.; Portais, J.C.; Boshart, M.; Bringaud, F. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. J. Biol. Chem., 2013, 288(25), 18494-18505.
[http://dx.doi.org/10.1074/jbc.M113.462978] [PMID: 23665470]
[31]
Mottram, J.C.; McCready, B.P.; Brown, K.G.; Grant, K.M. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana. Mol. Microbiol., 1996, 22(3), 573-583.
[http://dx.doi.org/10.1046/j.1365-2958.1996.00136.x] [PMID: 8939439]
[32]
Ingram, A.K.; Horn, D. Histone deacetylases in Trypanosoma brucei: two are essential and another is required for normal cell cycle progression. Mol. Microbiol., 2002, 45(1), 89-97.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03018.x] [PMID: 12100550]
[33]
Silber, A.M.; Tonelli, R.R.; Lopes, C.G.; Cunha-e-Silva, N.; Torrecilhas, A.C.; Schumacher, R.I.; Colli, W.; Alves, M.J. Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol. Biochem. Parasitol., 2009, 168(1), 102-108.
[http://dx.doi.org/10.1016/j.molbiopara.2009.07.006] [PMID: 19631694]
[34]
Gironès, N.; Carbajosa, S.; Guerrero, N.A.; Poveda, C.; Chillón-Marinas, C.; Fresno, M. Global metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection. PLoS Negl. Trop. Dis., 2014, 8(11)e3337
[http://dx.doi.org/10.1371/journal.pntd.0003337] [PMID: 25412247]
[35]
Shah-Simpson, S.; Lentini, G.; Dumoulin, P.C.; Burleigh, B.A. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog., 2017, 13(11)e1006747
[http://dx.doi.org/10.1371/journal.ppat.1006747] [PMID: 29176805]
[36]
Kelly, J.M.; Ward, H.M.; Miles, M.A.; Kendall, G. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res., 1992, 20(15), 3963-3969.
[http://dx.doi.org/10.1093/nar/20.15.3963] [PMID: 1324472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy