Review Article

石墨烯和氧化石墨烯在SERS传感和成像中的应用

卷 26, 期 38, 2019

页: [6878 - 6895] 页: 18

弟呕挨: 10.2174/0929867325666181004152247

价格: $65

conference banner
摘要

表面增强拉曼光谱(SERS)作为超灵敏平台,用于检测从小的芳香族分子到复杂的生物系统(例如循环的肿瘤细胞)的生物物种,具有悠久的历史。 由于石墨烯的独特性能,SERS应用范围已大大扩展。 石墨烯是有效的荧光猝灭剂,可提高拉曼光谱的质量。 它也通过化学机制为SERS增强因子做出了贡献。 反过来,还原型氧化石墨烯(RGO)的化学柔韧性可实现SERS活性表面上分子或细胞的可调吸附。 具有SERS活性纳米粒子的氧化石墨烯复合材料也已用于细胞的拉曼成像。 这篇综述对使用石墨烯或RGO的SERS分析进行了调查,强调了石墨烯或RGO带来的SERS增强作用的改善。 还将讨论石墨烯和RGO的结构和物理性质。

关键词: SERS平台,生物传感器,治疗学,诊断,石墨烯,癌细胞,氧化石墨烯还原

[1]
Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26(2), 163-166.
[http://dx.doi.org/10.1016/0009-2614(74)85388-1]
[2]
Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1), 1-20.
[http://dx.doi.org/10.1016/S0022-0728(77)80224-6]
[3]
Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 1977, 99(15), 5215-5217.
[http://dx.doi.org/10.1021/ja00457a071]
[4]
Zrimsek, A.B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A-I.; Schatz, G.C.; Van Duyne, R.P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev., 2017, 117(11), 7583-7613.
[http://dx.doi.org/10.1021/acs.chemrev.6b00552] [PMID: 28610424]
[5]
Porter, M.D.; Lipert, R.J.; Siperko, L.M.; Wang, G.; Narayanan, R. SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev., 2008, 37(5), 1001-1011.
[http://dx.doi.org/10.1039/b708461g] [PMID: 18443685]
[6]
Ravanshad, R.; Karimi Zadeh, A.; Amani, A.M.; Mousavi, S.M.; Hashemi, S.A.; Savar Dashtaki, A.; Mirzaei, E.; Zare, B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev Exp, 2017, 9(1)1373551
[http://dx.doi.org/10.1080/20022727.2017.1373551] [PMID: 30410710]
[7]
Lane, L.A.; Qian, X.; Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev., 2015, 115(19), 10489-10529.
[http://dx.doi.org/10.1021/acs.chemrev.5b00265] [PMID: 26313254]
[8]
Zhang, D.; Liang, P.; Yu, Z.; Huang, J.; Ni, D.; Shu, H.; Dong, Q. The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sens. Actuators B Chem., 2018, 256, 721-728.
[http://dx.doi.org/10.1016/j.snb.2017.09.209]
[9]
Makam, P.; Shilpa, R.; Kandjani, A.E.; Periasamy, S.R.; Sabri, Y.M.; Madhu, C.; Bhargava, S.K.; Govindaraju, T. SERS and fluorescence-based ultrasensitive detection of mercury in water. Biosens. Bioelectron., 2018, 100, 556-564.
[http://dx.doi.org/10.1016/j.bios.2017.09.051] [PMID: 29020666]
[10]
Li, A.; Tang, L.; Song, D.; Song, S.; Ma, W.; Xu, L.; Kuang, H.; Wu, X.; Liu, L.; Chen, X.; Xu, C. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 2016, 8(4), 1873-1878.
[http://dx.doi.org/10.1039/C5NR08372A] [PMID: 26732202]
[11]
Pearson, B.; Mills, A.; Tucker, M.; Gao, S.; McLandsborough, L.; He, L. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiol., 2018, 72, 89-97.
[http://dx.doi.org/10.1016/j.fm.2017.11.007] [PMID: 29407409]
[12]
Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys., 1978, 69(9), 4159-4161.
[http://dx.doi.org/10.1063/1.437095]
[13]
Schatz, G.C.; Van Duyne, R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd, 2006.
[http://dx.doi.org/10.1002/0470027320.s0601]
[14]
Jensen, L.; Aikens, C.M.; Schatz, G.C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev., 2008, 37(5), 1061-1073.
[http://dx.doi.org/10.1039/b706023h] [PMID: 18443690]
[15]
Otto, A. The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering. J. Raman Spectrosc., 2005, 36(6‐7), 497-509.
[http://dx.doi.org/10.1002/jrs.1355]
[16]
Lombardi, J.R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss., 2017, 205(0), 105-120.
[http://dx.doi.org/10.1039/C7FD00138J] [PMID: 28885632]
[17]
Fu, H-Y.; Lang, X-Y.; Hou, C.; Wen, Z.; Zhu, Y-F.; Zhao, M.; Li, J-C.; Zheng, W-T.; Liu, Y-B.; Jiang, Q. Nanoporous Au/SnO/Ag Heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(35), 7216.
[http://dx.doi.org/10.1039/C4TC00603H]
[18]
Dumont, E.; De Bleye, C.; Sacré, P-Y.; Netchacovitch, L.; Hubert, P.; Ziemons, E. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis, 2016, 8(10), 1077-1103.
[http://dx.doi.org/10.4155/bio-2015-0030] [PMID: 27079546]
[19]
Shiohara, A.; Wang, Y.; Liz-Marzán, L.M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol.C Photochem. Rev., 2014, 21, 2-25.
[http://dx.doi.org/10.1016/j.jphotochemrev.2014.09.001]
[20]
Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta, 2011, 693(1-2), 7-25.
[http://dx.doi.org/10.1016/j.aca.2011.03.002] [PMID: 21504806]
[21]
Brown, R.J.C.; Milton, M.J.T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc., 2008, 39(10), 1313-1326.
[http://dx.doi.org/10.1002/jrs.2030]
[22]
Ma, D.; Huang, C.; Zheng, J.; Tang, J.; Li, J.; Yang, J.; Yang, R. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron., 2018, 101, 167-173.
[http://dx.doi.org/10.1016/j.bios.2017.08.062] [PMID: 29073517]
[23]
Guo, X.; Guo, Z.; Jin, Y.; Liu, Z.; Zhang, W.; Huang, D. Silver-gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells. Mikrochim. Acta, 2012, 178(1-2), 229-236.
[http://dx.doi.org/10.1007/s00604-012-0829-y]
[24]
Köker, T.; Tang, N.; Tian, C.; Zhang, W.; Wang, X.; Martel, R.; Pinaud, F. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun., 2018, 9(1), 607.
[http://dx.doi.org/10.1038/s41467-018-03046-w] [PMID: 29426856]
[25]
Espina Palanco, M.; Mogensen, K.B.; Kneipp, K. Raman spectroscopic probing of plant material using SERS: SERS probing of plant material. J. Raman Spectrosc., 2016, 47(2), 156-161.
[http://dx.doi.org/10.1002/jrs.4768]
[26]
Sinha, S.S.; Jones, S. PRamanik, A.; Ray, P.C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc. Chem. Res., 2016, 49(12), 2725-2735.
[http://dx.doi.org/10.1021/acs.accounts.6b00384] [PMID: 27993003]
[27]
Kang, L.; Han, X.; Chu, J.; Xiong, J.; He, X.; Wang, H-L.; Xu, P. In situ surface-enhanced Raman spectroscopy study of plasmon-driven catalytic reactions of 4-nitrothiophenol under a controlled atmosphere. ChemCatChem, 2015, 7(6), 1004-1010.
[http://dx.doi.org/10.1002/cctc.201403032]
[28]
Kang, L.; Chu, J.; Zhao, H.; Xu, P.; Sun, M. Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J. Mater. Chem. C , 2015, 3(35), 9024-9037.
[http://dx.doi.org/10.1039/C5TC01759A]
[29]
Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; Ren, B.; Wang, Z.L.; Tian, Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464(7287), 392-395.
[http://dx.doi.org/10.1038/nature08907] [PMID: 20237566]
[30]
Ji, X.; Yang, W. High-purity gold nanocrystal dimers: scalable synthesis and size-dependent plasmonic and Raman enhancement. Chem. Sci. (Camb.), 2014, 5(1), 311-323.
[http://dx.doi.org/10.1039/C3SC52135D]
[31]
Zhang, N.; Tong, L.; Zhang, J. Graphene-based enhanced Raman scattering toward analytical applications. Chem. Mater., 2016, 28(18), 6426-6435.
[http://dx.doi.org/10.1021/acs.chemmater.6b02925]
[32]
Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18)187401
[http://dx.doi.org/10.1103/PhysRevLett.97.187401] [PMID: 17155573]
[33]
Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep., 2009, 473(5), 51-87.
[http://dx.doi.org/10.1016/j.physrep.2009.02.003]
[34]
Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. The J. of Phys. Chem. C, 2015, 119(18), 10123-10129.
[http://dx.doi.org/10.1021/acs.jpcc.5b01590]
[35]
Beams, R.; Gustavo Cançado, L.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter, 2015, 27(8)083002
[http://dx.doi.org/10.1088/0953-8984/27/8/083002] [PMID: 25634863]
[36]
Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 2013, 8(4), 235-246.
[http://dx.doi.org/10.1038/nnano.2013.46] [PMID: 23552117]
[37]
Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev., 2014, 43(1), 291-312.
[http://dx.doi.org/10.1039/C3CS60303B] [PMID: 24121318]
[38]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23), 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[39]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[40]
Zhu, S.; Cen, Y.; Yang, M.; Guo, J.; Chen, C.; Wang, J.; Fan, W. Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Appl. Catal. B, 2017, 211, 89-97.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.035]
[41]
Begliarbekov, M.; Sul, O.; Santanello, J.; Ai, N.; Zhang, X.; Yang, E-H.; Strauf, S. Localized states and resultant band bending in graphene antidot superlattices. Nano Lett., 2011, 11(3), 1254-1258.
[http://dx.doi.org/10.1021/nl1042648] [PMID: 21322601]
[42]
Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and its electrochemistry - an update. Chem. Soc. Rev., 2016, 45(9), 2458-2493.
[http://dx.doi.org/10.1039/C6CS00136J] [PMID: 27052352]
[43]
Jorio, A.; Souza Filho, A.G.; Dresselhaus, G.; Dresselhaus, M.S.; Swan, A.K.; Ünlü, M.S.; Goldberg, B.B.; Pimenta, M.A.; Hafner, J.H.; Lieber, C.M. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2002, 65(15)155412
[http://dx.doi.org/10.1103/PhysRevB.65.155412]
[44]
Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett., 2000, 85(24), 5214-5217.
[http://dx.doi.org/10.1103/PhysRevLett.85.5214] [PMID: 11102224]
[45]
Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys., 1970, 53(3), 1126-1130.
[http://dx.doi.org/10.1063/1.1674108]
[46]
Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett., 2008, 8(1), 36-41.
[http://dx.doi.org/10.1021/nl071822y] [PMID: 18154315]
[47]
Berbeć, S.; Żołądek, S.; Jabłońska, A.; Pałys, B. Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2. Sens. Actuators B Chem., 2018, 258, 745-756.
[http://dx.doi.org/10.1016/j.snb.2017.11.163]
[48]
Vollebregt, S.; Ishihara, R.; Tichelaar, F.D.; Hou, Y.; Beenakker, C.I.M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon, 2012, 50(10), 3542-3554.
[http://dx.doi.org/10.1016/j.carbon.2012.03.026]
[49]
Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 2005, 43(8), 1731-1742.
[http://dx.doi.org/10.1016/j.carbon.2005.02.018]
[50]
Xu, W.; Mao, N.; Zhang, J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small, 2013, 9(8), 1206-1224.
[http://dx.doi.org/10.1002/smll.201203097] [PMID: 23529788]
[51]
Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V.G.; Geim, A.K.; Grigorenko, A.N.; Novoselov, K.S.; Ferrari, A.C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano, 2010, 4(10), 5617-5626.
[http://dx.doi.org/10.1021/nn1010842] [PMID: 20857921]
[52]
Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9281-9286.
[http://dx.doi.org/10.1073/pnas.1205478109] [PMID: 22623525]
[53]
Jalani, G.; Cerruti, M. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes. Nanoscale, 2015, 7(22), 9990-9997.
[http://dx.doi.org/10.1039/C4NR07473D] [PMID: 25981393]
[54]
Tran, L-H.; Lee, C.; Kang, T.J.; Jang, S-H. Graphene oxide-mediated fluorescence quenching of green fluorescent protein for biomedical applications: graphene oxide-mediated quenching of GFP fluorescence. Bull. Korean Chem. Soc., 2016, 37(8), 1265-1269.
[http://dx.doi.org/10.1002/bkcs.10850]
[55]
Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can graphene be used as a substrate for Raman enhancement? Nano Lett., 2010, 10(2), 553-561.
[http://dx.doi.org/10.1021/nl903414x] [PMID: 20039694]
[56]
Sil, S.; Kuhar, N.; Acharya, S.; Umapathy, S. Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching? Sci. Rep., 2013, 3, 3336.
[http://dx.doi.org/10.1038/srep03336] [PMID: 24275718]
[57]
Liu, R.; Li, S.; Liu, J-F. Self-assembly of plasmonic nanostructures into superlattices for surface-enhanced Raman scattering applications. TrAC Trends Analyt. Chem., 2017, 97, 188-200.
[http://dx.doi.org/10.1016/j.trac.2017.09.003]
[58]
Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. (Camb.), 2011, 2(9), 1817-1821.
[http://dx.doi.org/10.1039/c1sc00254f]
[59]
Hernández-Sánchez, D.; Villabona-Leal, G.; Saucedo-Orozco, I.; Bracamonte, V.; Pérez, E.; Bittencourt, C.; Quintana, M. Stable graphene oxide-gold nanoparticle platforms for biosensing applications. Phys. Chem. Chem. Phys., 2018, 20(3), 1685-1692.
[http://dx.doi.org/10.1039/C7CP04817C] [PMID: 29264594]
[60]
Wang, R-C.; Kung, E-C.; Chen, Y-H. Ultrahigh sensitive metal-free SERS platforms by functional-groups. Sens. Actuators B Chem., 2018, 263, 258-265.
[http://dx.doi.org/10.1016/j.snb.2018.02.127]
[61]
Umadevi, D.; Panigrahi, S.; Sastry, G.N. Noncovalent interaction of carbon nanostructures. Acc. Chem. Res., 2014, 47(8), 2574-2581.
[http://dx.doi.org/10.1021/ar500168b] [PMID: 25032482]
[62]
Dolgov, L.; Pidhirnyi, D.; Dovbeshko, G.; Lebedieva, T.; Kiisk, V.; Heinsalu, S.; Lange, S.; Jaaniso, R.; Sildos, I. Graphene-enhanced Raman scattering from the adenine molecules. Nanoscale Res. Lett., 2016, 11(1), 197.
[http://dx.doi.org/10.1186/s11671-016-1418-5] [PMID: 27075339]
[63]
Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A.F.; Schroeder, T.; Liu, H.; Xie, Y-H. Label-Free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem., 2015, 87(20), 10255-10261.
[http://dx.doi.org/10.1021/acs.analchem.5b01560] [PMID: 26382549]
[64]
Zhao, Y.; Xie, Y.; Bao, Z.; Tsang, Y.H.; Xie, L.; Chai, Y. Enhanced SERS stability of R6G molecules with monolayer graphene. J. Phys. Chem. C, 2014, 118(22), 11827-11832.
[http://dx.doi.org/10.1021/jp503487a]
[65]
Du, Y.; Zhao, Y.; Qu, Y.; Chen, C-H.; Chen, C-M.; Chuang, C-H.; Zhu, Y. Enhanced light–matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(23), 4683-4691.
[http://dx.doi.org/10.1039/C4TC00353E]
[66]
Wang, X.; Wang, N.; Gong, T.; Zhu, Y.; Zhang, J. Preparation of graphene-Ag nanoparticles hybrids and their SERS activities. Appl. Surf. Sci., 2016, 387, 707-719.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.161]
[67]
Guo, Y.; Wang, H.; Ma, X.; Jin, J.; Ji, W.; Wang, X.; Song, W.; Zhao, B.; He, C. Fabrication of Ag-Cu2O/Reduced graphene oxide nanocomposites as surface-enhanced Raman scattering substrates for in situ monitoring of peroxidase-like catalytic reaction and biosensing. ACS Appl. Mater. Interfaces, 2017, 9(22), 19074-19081.
[http://dx.doi.org/10.1021/acsami.7b02149] [PMID: 28508627]
[68]
Wang, Y.; Polavarapu, L.; Liz-Marzán, L.M. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 21798-21805.
[http://dx.doi.org/10.1021/am501382y] [PMID: 24827538]
[69]
Zheng, Y.; Wang, A.; Wang, Z.; Fu, L.; Peng, F. Facial synthesis of carrageenan/reduced graphene oxide/ag composite as efficient SERS platform. Mater. Res., 2016, 20(1), 15-20.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0287]
[70]
Murphy, S.; Huang, L.; Kamat, P.V. Reduced graphene oxide-silver nanoparticle composite as an active SERS material. J. Phys. Chem. C, 2013, 117(9), 4740-4747.
[http://dx.doi.org/10.1021/jp3108528]
[71]
Shanta, P.V.; Cheng, Q. Graphene oxide nanoprisms for sensitive detection of environmentally important aromatic compounds with SERS. ACS Sens., 2017, 2(6), 817-827.
[http://dx.doi.org/10.1021/acssensors.7b00182] [PMID: 28723120]
[72]
Zheng, H.; Ni, D.; Yu, Z.; Liang, P. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine. Food Chem., 2017, 217, 511-516.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.010] [PMID: 27664666]
[73]
Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem.& Eng., 2013, 1(7), 713-723.
[http://dx.doi.org/10.1021/sc400019a]
[74]
Zhang, L.; Peng, D.; Liang, R-P.; Qiu, J-D. Graphene-based optical nanosensors for detection of heavy metal ions. TrAC Trends Analyt. Chem., 2018, 102, 280-289.
[http://dx.doi.org/10.1016/j.trac.2018.02.010]
[75]
Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc., 2006, 128(7), 2172-2173.
[http://dx.doi.org/10.1021/ja056354d] [PMID: 16478145]
[76]
Kumar, P.; Kim, K-H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J. Ind. Eng. Chem., 2017, 54, 30-43.
[http://dx.doi.org/10.1016/j.jiec.2017.06.010]
[77]
Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces, 2013, 5(15), 7072-7078.
[http://dx.doi.org/10.1021/am401373e] [PMID: 23855919]
[78]
Zhao, L.; Gu, W.; Zhang, C.; Shi, X.; Xian, Y. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J. Colloid Interface Sci., 2016, 465, 279-285.
[http://dx.doi.org/10.1016/j.jcis.2015.11.073] [PMID: 26688120]
[79]
Breuer, P.L.; Jeffrey, M.I. Thiosulfate leaching kinetics of gold in the presence of copper and ammonia. Miner. Eng., 2000, 13(10-11), 1071-1081.
[http://dx.doi.org/10.1016/S0892-6875(00)00091-1]
[80]
Zhang, X.; Dai, Z. Shuyao, S.; Xiaolei, Z.; Wei, W.; Hongbing, D.; Fubing, W.; Xiangheng, X.; Changzhong, J. Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions. Small, 2016, 13(9)1603347
[http://dx.doi.org/10.1002/smll.201603347]
[81]
Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron., 2013, 39(1), 82-87.
[http://dx.doi.org/10.1016/j.bios.2012.06.050] [PMID: 22840330]
[82]
Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd 2+). Chem. Mater., 2011, 23(21), 4756-4764.
[http://dx.doi.org/10.1021/cm201791r]
[83]
Shi, X.; Gu, W.; Zhang, C.; Zhao, L.; Li, L.; Peng, W.; Xian, Y. Construction of a graphene/au-nanoparticles/cucurbit[7]uril-based sensor for Pb(2+) sensing. Chemistry, 2016, 22(16), 5643-5648.
[http://dx.doi.org/10.1002/chem.201505034] [PMID: 26948157]
[84]
Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586), 1536-1540.
[http://dx.doi.org/10.1126/science.297.5586.1536] [PMID: 12202825]
[85]
Braun, G.; Lee, S.J.; Dante, M.; Nguyen, T-Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc., 2007, 129(20), 6378-6379.
[http://dx.doi.org/10.1021/ja070514z] [PMID: 17469825]
[86]
Gao, F.; Lei, J.; Ju, H. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal. Chem., 2013, 85(24), 11788-11793.
[http://dx.doi.org/10.1021/ac4032109] [PMID: 24171654]
[87]
Qian, Y.; Fan, T.; Yao, Y.; Shi, X.; Liao, X.; Zhou, F.; Gao, F. Label-free and Raman dyes-free surface-enhanced Raman spectroscopy for detection of DNA. Sens. Actuators B Chem., 2018, 254, 483-489.
[http://dx.doi.org/10.1016/j.snb.2017.07.112]
[88]
Sharma, B.; Frontiera, R.R.; Henry, A-I.; Ringe, E.; Van Duyne, R.P. SERS: materials, applications, and the future. Mater. Today, 2012, 15(1-2), 16-25.
[http://dx.doi.org/10.1016/S1369-7021(12)70017-2]
[89]
Hwang, D.W.; Hong, B.H.; Lee, D.S. Multifunctional graphene oxide for bioimaging: emphasis on biological research. Eur. J. Nanomed., 2017, 9(2), 47-57.
[http://dx.doi.org/10.1515/ejnm-2016-0036]
[90]
Fan, Z.; Kanchanapally, R.; Ray, P.C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett., 2013, 4(21), 3813-3818.
[http://dx.doi.org/10.1021/jz4020597]
[91]
Lin, T-W.; Wu, H-Y.; Tasi, T-T.; Lai, Y-H.; Shen, H-H. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites. Phys. Chem. Chem. Phys., 2015, 17(28), 18443-18448.
[http://dx.doi.org/10.1039/C5CP02805A] [PMID: 26106968]
[92]
He, S.; Liu, K-K.; Su, S.; Yan, J.; Mao, X.; Wang, D.; He, Y.; Li, L-J.; Song, S.; Fan, C. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem., 2012, 84(10), 4622-4627.
[http://dx.doi.org/10.1021/ac300577d] [PMID: 22497579]
[93]
Duan, B.; Zhou, J.; Fang, Z.; Wang, C.; Wang, X.; Hemond, H.F.; Chan-Park, M.B.; Duan, H. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Nanoscale, 2015, 7(29), 12606-12613.
[http://dx.doi.org/10.1039/C5NR02164B] [PMID: 26147399]
[94]
Prinz, J.; Matković, A.; Pešić, J.; Gajić, R.; Bald, I. Hybrid structures for surface-enhanced Raman scattering: DNA origami/gold nanoparticle dimer/graphene. Small, 2016, 12(39), 5458-5467.
[http://dx.doi.org/10.1002/smll.201601908] [PMID: 27594092]
[95]
Botti, S.; Rufoloni, A.; Laurenzi, S.; Gay, S.; Rindzevicius, T.; Schmidt, M.S.; Santonicola, M.G. DNA Self-assembly on graphene surface studied by SERS mapping. Carbon, 2016, 109, 363-372.
[http://dx.doi.org/10.1016/j.carbon.2016.07.069]
[96]
Ouyang, L.; Hu, Y.; Zhu, L.; Cheng, G.J.; Irudayaraj, J. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron., 2017, 92, 755-762.
[http://dx.doi.org/10.1016/j.bios.2016.09.072] [PMID: 27825882]
[97]
Ilkhani, H.; Hughes, T.; Li, J.; Zhong, C.J.; Hepel, M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron., 2016, 80, 257-264.
[http://dx.doi.org/10.1016/j.bios.2016.01.068] [PMID: 26851584]
[98]
Sidorov, A.N.; Orlando, T.M. Monolayer graphene platform for the study of DNA damage by low-energy electron irradiation. J. Phys. Chem. Lett., 2013, 4(14), 2328-2333.
[http://dx.doi.org/10.1021/jz4010416] [PMID: 27286464]
[99]
Zhao, H.; Cao, X.; Wang, M.; Tao, L.; Pan, X.; Yuan, C.; Qian, W. CD44 antibody-conjugated gold nanostars as SERS probes for distinguishing cancer cells (A549 Cells, H1229 Cells) from normal cells (ATII Cells). Nano, 2015, 10(03)1550034
[http://dx.doi.org/10.1142/S1793292015500344]
[100]
Mukhopadhyay, P.; Chakraborty, S.; Ponnusamy, M.P.; Lakshmanan, I.; Jain, M.; Batra, S.K. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta, 2011, 1815(2), 224-240.
[http://dx.doi.org/10.1016/j.bbcan.2011.01.001] [PMID: 21277939]
[101]
Wu, P.; Gao, Y.; Zhang, H.; Cai, C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal. Chem., 2012, 84(18), 7692-7699.
[http://dx.doi.org/10.1021/ac3015164] [PMID: 22925013]
[102]
Leamon, C.P.; Low, P.S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5572-5576.
[http://dx.doi.org/10.1073/pnas.88.13.5572] [PMID: 2062838]
[103]
Wu, X.; Luo, L.; Yang, S.; Ma, X.; Li, Y.; Dong, C.; Tian, Y.; Zhang, L.; Shen, Z.; Wu, A. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl. Mater. Interfaces, 2015, 7(18), 9965-9971.
[http://dx.doi.org/10.1021/acsami.5b02276] [PMID: 25875511]
[104]
Oseledchyk, A.; Andreou, C.; Wall, M.A.; Kircher, M.F. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano, 2017, 11(2), 1488-1497.
[http://dx.doi.org/10.1021/acsnano.6b06796] [PMID: 27992724]
[105]
Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys., 2013, 15(8), 2961-2966.
[http://dx.doi.org/10.1039/c2cp43715e] [PMID: 23340832]
[106]
Zhang, Z.; Wang, M.; Gao, D.; Luo, D.; Liu, Q.; Yang, J.; Li, Y. Targeted Raman imaging of cells using graphene oxide-based hybrids. Langmuir, 2016, 32(40), 10253-10258.
[http://dx.doi.org/10.1021/acs.langmuir.6b02248] [PMID: 27646513]
[107]
Kim, Y-K.; Kim, S.; Cho, S-P.; Jang, H.; Huh, H.; Hong, B.H.; Min, D-H. Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. J. Mater. Chem. C , 2017, 5(38), 10016-10022.
[http://dx.doi.org/10.1039/C7TC03379F]
[108]
Wirtz, D.; Konstantopoulos, K.; Searson, P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer, 2011, 11(7), 512-522.
[http://dx.doi.org/10.1038/nrc3080] [PMID: 21701513]
[109]
Ashworth, T.R. A case of cancer in which cells similar to those in the tumors were seen in the blood after dead. Aust. Med. J., 1869, 14, 146-147.
[110]
Gu, Y.; Ju, C.; Li, Y.; Shang, Z.; Wu, Y.; Jia, Y.; Niu, Y. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens. Bioelectron., 2015, 66, 24-31.
[http://dx.doi.org/10.1016/j.bios.2014.10.070] [PMID: 25460877]
[111]
Wang, X.; Qian, X.; Beitler, J.J.; Chen, Z.G.; Khuri, F.R.; Lewis, M.M.; Shin, H.J.C.; Nie, S.; Shin, D.M. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res., 2011, 71(5), 1526-1532.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3069] [PMID: 21212408]
[112]
Li, J.; Wang, C.; Kang, H.; Shao, L.; Hu, L.; Xiao, R.; Wang, S.; Gu, B. Label-free identification carbapenem-resistant Escherichia coli Based on surface-enhanced resonance Raman Scattering. RSC Advances, 2018, 8(9), 4761-4765.
[http://dx.doi.org/10.1039/C7RA13063E]
[113]
Sivanesan, A.; Witkowska, E.; Adamkiewicz, W.; Dziewit, Ł.; Kamińska, A.; Waluk, J. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst (Lond.), 2014, 139(5), 1037-1043.
[http://dx.doi.org/10.1039/c3an01924a] [PMID: 24419003]
[114]
Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem., 2014, 86(3), 1525-1533.
[http://dx.doi.org/10.1021/ac402935p] [PMID: 24387044]
[115]
Li, Y.; Yang, J.; Zhong, T.; Zhao, N.; Liu, Q.; Shi, H.; Xu, H. Fast and green synthesis of silver nanoparticles/reduced graphene oxide composite as efficient surface-enhanced Raman scattering substrate for bacteria detection. Monatshefte Für Chemie Chem. Mon., 2017, 148(7), 1155-1163.
[http://dx.doi.org/10.1007/s00706-017-1990-0]
[116]
Fan, Z.; Yust, B.; Nellore, B.P.V.; Sinha, S.S.; Kanchanapally, R.; Crouch, R.A. PRamanik, A.; Chavva, S.R.; Sardar, D.; Ray, P.C. Accurate identification and selective removal of rotavirus using a plasmonic-magnetic 3d graphene oxide architecture. J. Phys. Chem. Lett., 2014, 5(18), 3216-3221.
[http://dx.doi.org/10.1021/jz501402b] [PMID: 26276335]
[117]
Qiu, X.; You, X.; Chen, X.; Chen, H.; Dhinakar, A.; Liu, S.; Guo, Z.; Wu, J.; Liu, Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int. J. Nanomedicine, 2017, 12, 4349-4360.
[http://dx.doi.org/10.2147/IJN.S130648] [PMID: 28652737]
[118]
Chen, H.; Liu, Z.; Li, S.; Su, C.; Qiu, X.; Zhong, H.; Guo, Z. Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics, 2016, 6(8), 1096-1104.
[http://dx.doi.org/10.7150/thno.14361] [PMID: 27279904]
[119]
Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K.W.; Zhao, Y. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(47), 6495.
[http://dx.doi.org/10.1039/c3tb21385d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy