General Review Article

口腔药物输送中的生物聚合物基质:现状和未来趋势

卷 27, 期 10, 2020

页: [1661 - 1669] 页: 9

弟呕挨: 10.2174/0929867325666181001114750

价格: $65

Open Access Journals Promotions 2
摘要

背景:本文对基于生物聚合物的底物,尤其是纤维素衍生物,在颊药物递送中的应用进行了综述。药物输送到颊粘膜具有肌肉不活动,丰富的血管形成和快速恢复的优点,但是由于分子大分子引起的生物利用度低,因此并非所有的药物都可以通过颊粘膜给药(例如大分子药物)。这种短缺激发了药物复合技术的迅速发展以及生物聚合物基质的相应使用。 方法:纤维素衍生物已被广泛开发用于药物制造以促进其递送。我们从事基于纤维素的药物复合技术的结构化研究。我们总结了特征性纤维素衍生物,这些衍生物已被用作颊递送系统中的生物相容性底物。在本文中,关于快速发展的纳米纤维素(NC)潜在用途的讨论也很值得注意。 结果:本观点论文中引用了78篇论文,其中大多数(65篇)发表于2010年晚些时候。47篇论文定义了颊药物递送系统及其基质。十五篇论文概述了纤维素衍生物的性质和应用。引入纳米纤维素作为纳米材料的前沿,有16篇论文强调了其在口腔给药药物复合中的适应性。 结论:该前瞻性论文的研究结果提出了纤维素衍生物(一种典型的生物聚合物)在颊药物输送系统中的潜在用途,以促进大分子药物的生物利用度。尤其提出了纳米纤维素(NC)作为一种创新的生物粘合剂/载体,用于在颊系统中控制药物的释放。

关键词: 颊部药物递送,生物聚合物,药物复合技术,纤维素衍生物,纳米纤维素(NC)。

[1]
Davies, E.W.; Llewellyn, S.; Beaudet, A.; Kosmas, C.E.; Gin-Sing, W.; Doll, H.A. Elicitation of health state utilities associated with the mode of administration of drugs acting on the prostacyclin pathway in pulmonary arterial hypertension. Patient Prefer. Adherence, 2018, 12, 1079-1088.
[http://dx.doi.org/10.2147/PPA.S160662] [PMID: 29950821]
[2]
Thwala, L.N.; Préat, V.; Csaba, N.S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin. Drug Deliv., 2017, 14(1), 23-36.
[http://dx.doi.org/10.1080/17425247.2016.1206074] [PMID: 27351299]
[3]
Kaestli, L.Z.; Wasilewski-Rasca, A.F.; Bonnabry, P.; Vogt-Ferrier, N. Use of transdermal drug formulations in the elderly. Drugs Aging, 2008, 25(4), 269-280.
[http://dx.doi.org/10.2165/00002512-200825040-00001] [PMID: 18361538]
[4]
Boateng, J. Drug delivery innovations to address global health challenges for pediatric and geriatric populations (through improvements in patient compliance). J. Pharm. Sci., 2017, 106(11), 3188-3198.
[http://dx.doi.org/10.1016/j.xphs.2017.07.009] [PMID: 28734784]
[5]
Berlin, J.; May-McCarver, D.; Notterman, D.; Ward, R.; Weismann, D.; Wilson, G.; Wilson, J.; Bennett, D.; Hoskins, I.; Kaufman, P. American Academy of Pediatrics. Committee on Drugs. Alternative routes of drug administration--advantages and disadvantages (subject review). Pediatrics, 1997, 100(1), 143-152.
[http://dx.doi.org/10.1542/peds.100.1.143] [PMID: 9229706]
[6]
Zetner, D.; Andersen, L.P.; Rosenberg, J. Pharmacokinetics of alternative administration routes of melatonin: a systematic review. Drug Res. (Stuttg.), 2016, 66(4), 169-173.
[http://dx.doi.org/10.1055/s-0035-1565083] [PMID: 26514093]
[7]
Shah, V.; Bellantone, R.A.; Taft, D.R. Evaluating the potential for delivery of irinotecan via the buccal route: physicochemical characterization and in vitro permeation assessment across porcine buccal mucosa. AAPS PharmSciTech, 2017, 18(3), 867-874.
[http://dx.doi.org/10.1208/s12249-016-0578-z] [PMID: 27363416]
[8]
Zeng, N.; Seguin, J.; Destruel, P.L.; Dumortier, G.; Maury, M.; Dhotel, H.; Bessodes, M.; Scherman, D.; Mignet, N.; Boudy, V. Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery. Int. J. Pharm., 2017, 534(1-2), 128-135.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.073] [PMID: 28982548]
[9]
Xu, J.; Strandman, S.; Zhu, J.X.; Barralet, J.; Cerruti, M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 2015, 37, 395-404.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.024] [PMID: 25453967]
[10]
Gilhotra, R.M.; Ikram, M.; Srivastava, S.; Gilhotra, N. A clinical perspective on mucoadhesive buccal drug delivery systems. J. Biomed. Res., 2014, 28(2), 81-97.
[PMID: 24683406]
[11]
Bhowmik, D.; Kumar, K.S.; Deb, L. Buccal drug delivery system-a novel drug delivery system. Research Journal of Science and Technology, 2016, 8(2), 90.
[http://dx.doi.org/10.5958/2349-2988.2016.00012.7]
[12]
Roque, L.; Castro, P.; Molpeceres, J.; Viana, A.S.; Roberto, A.; Reis, C.; Rijo, P.; Tho, I.; Sarmento, B.; Reis, C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur. Polym. J., 2018, 104, 19-31.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.032]
[13]
Shrivastava, G.; Singh, P.K.; Rizvi, R.F.; Singh, S.K. A novel approach for buccal drug delivery system-fast dissolving film. World J. Pharm. Pharm. Sci., 2015, 4(10), 1744-1760.
[14]
Laffleur, F. Mucoadhesive polymers for buccal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(5), 591-598.
[http://dx.doi.org/10.3109/03639045.2014.892959] [PMID: 24576266]
[15]
Wang, Z.; Chow, M.S. Overview and appraisal of the current concept and technologies for improvement of sublingual drug delivery. Ther. Deliv., 2014, 5(7), 807-816.
[http://dx.doi.org/10.4155/tde.14.50] [PMID: 25287387]
[16]
Harrop, E.; Jamieson, L.; Choy, T.H.; Ho, W.H.P.; Wong, I.C.K. Barriers to the use of buccal and intranasal fentanyl for breakthrough pain in paediatric palliative care: an exploratory survey. BMJ Support. Palliat. Care, 2018, 8(3), 355-356.
[http://dx.doi.org/10.1136/bmjspcare-2017-001413] [PMID: 28801316]
[17]
James, R.; Manoukian, O.S.; Kumbar, S.G. Poly(lactic acid) for delivery of bioactive macromolecules. Adv. Drug Deliv. Rev., 2016, 107, 277-288.
[http://dx.doi.org/10.1016/j.addr.2016.06.009] [PMID: 27349593]
[18]
Morales, J.O.; McConville, J.T. Novel strategies for the buccal delivery of macromolecules. Drug Dev. Ind. Pharm., 2014, 40(5), 579-590.
[http://dx.doi.org/10.3109/03639045.2014.892960] [PMID: 24611816]
[19]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys. Chem., 2018, 240, 63-69.
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[20]
de Ávila, M.B.; de Azevedo, W.F., Jr Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem. Biol. Drug Des., 2018, 92(2), 1468-1474.
[http://dx.doi.org/10.1111/cbdd.13312] [PMID: 29676519]
[21]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F., Jr Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[22]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. De Azevedo.Jr., W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[23]
Russo, S.; De Azevedo, W.F. Jr. Advances in the understanding of the cannabinoid receptor 1-focusing on the inverse agonists interactions. Curr. Med. Chem., 2019, 26(10), 1908-1919.
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[24]
Das, S.; Bhaumik, A. Protein & peptide drug delivery: A fundamental novel approach and future perspective. World J. Pharm. Pharm. Sci., 2016, 5(9), 763-776.
[25]
Babu, V.R.; Patel, P.; Mundargi, R.C.; Rangaswamy, V.; Aminabhavi, T.M. Developments in polymeric devices for oral insulin delivery. Expert Opin. Drug Deliv., 2008, 5(4), 403-415.
[http://dx.doi.org/10.1517/17425247.5.4.403] [PMID: 18426382]
[26]
Çelik, B. Risperidone mucoadhesive buccal tablets: formulation design, optimization and evaluation. Drug Des. Devel. Ther., 2017, 11, 3355-3365.
[http://dx.doi.org/10.2147/DDDT.S150774] [PMID: 29225461]
[27]
das Neves, J.; Sarmento, B. Technological strategies to overcome the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev., 2018, 124, 1-2.
[http://dx.doi.org/10.1016/j.addr.2018.01.014] [PMID: 29429608]
[28]
Liang, A.C.; Chen, L.L.H. Fast-dissolving intraoral drug delivery systems. Expert Opin. Ther. Pat., 2001, 11(6), 981-986.
[http://dx.doi.org/10.1517/13543776.11.6.981]
[29]
Nguyen, T.H.; Hanley, T.; Porter, C.J.; Boyd, B.J. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J. Control. Release, 2011, 153(2), 180-186.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.033] [PMID: 21497623]
[30]
Dekina, S.; Romanovska, I.; Ovsepyan, A.; Tkach, V.; Muratov, E. Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydr. Polym., 2016, 147, 208-215.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.006] [PMID: 27178926]
[31]
Boateng, J.; Okeke, O.; Khan, S. Polysaccharide based formulations for mucosal drug delivery: A review. Curr. Pharm. Des., 2015, 21(33), 4798-4821.
[http://dx.doi.org/10.2174/1381612821666150820100653] [PMID: 26290211]
[32]
Ayensu, I.; Mitchell, J.C.; Boateng, J.S. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf. B Biointerfaces, 2012, 91, 258-265.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.004] [PMID: 22130527]
[33]
Kianfar, F.; Antonijevic, M.; Chowdhry, B.; Boateng, J.S. Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs. Colloids Surf. B Biointerfaces, 2013, 103, 99-106.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.006] [PMID: 23201725]
[34]
Ayensu, I.; Mitchell, J.C.; Boateng, J.S. In vitro characterisation of chitosan based xerogels for potential buccal delivery of proteins. Carbohydr. Polym., 2012, 89(3), 935-941.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.039] [PMID: 24750883]
[35]
Kianfar, F.; Ayensu, I.; Boateng, J.S. Development and physico-mechanical characterization of carrageenan and poloxamer-based lyophilized matrix as a potential buccal drug delivery system. Drug Dev. Ind. Pharm., 2014, 40(3), 361-369.
[http://dx.doi.org/10.3109/03639045.2012.762655] [PMID: 23600651]
[36]
Wu, Z.; Joo, H.; Lee, T.G.; Lee, K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J. Control. Release, 2005, 104(3), 497-505.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.023] [PMID: 15911049]
[37]
Fox, C.B.; Kim, J.; Le, L.V.; Nemeth, C.L.; Chirra, H.D.; Desai, T.A. Micro/nanofabricated platforms for oral drug delivery. J. Control. Release, 2015, 219, 431-444.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.033] [PMID: 26244713]
[38]
Zhang, H.; Zhu, Y.; Shen, Y. Microfluidics for cancer nanomedicine: from fabrication to evaluation. Small, 2018, 14(28), e1800360
[http://dx.doi.org/10.1002/smll.201800360] [PMID: 29806174]
[39]
Barata, D.; van Blitterswijk, C.; Habibovic, P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater., 2016, 34, 1-20.
[http://dx.doi.org/10.1016/j.actbio.2015.09.009] [PMID: 26361719]
[40]
de Azevedo, W.F. Jr Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): A new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2-2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[41]
Vianna, C.P.; de Azevedo, W.F., Jr Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J. Mol. Model., 2012, 18(2), 755-764.
[http://dx.doi.org/10.1007/s00894-011-1113-5] [PMID: 21594693]
[42]
Heberlé, G.; de Azevedo, W.F., Jr Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352.
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[43]
Bobade, N.N.; Atram, S.C.; Wankhade, V.P.; Pande, D.S.; Tapar, D.K. A review on buccal drug delivery system. Int. J. Pharm. Pharm. Sci., 2013, 3(1), 35-40.
[44]
Fonseca-Santos, B.; Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C, 2018, 86, 129-143.
[http://dx.doi.org/10.1016/j.msec.2017.12.022] [PMID: 29525088]
[45]
Verma, S.; Kaul, M.; Rawat, A.; Saini, S. An overview on buccal drug delivery system. Int. J. Pharm. Sci. Res., 2011, 2(6), 1303.
[46]
Shojaei, A.H. Buccal mucosa as a route for systemic drug delivery: a review. J. Pharm. Pharm. Sci., 1998, 1(1), 15-30.
[PMID: 10942969]
[47]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[48]
Deng, H.; Wang, C.; Xiao, H.; Khan, A. Preparation and chemical characterization of banana/orange composite wine. J. Bioresour. Bioprod., 2016, 1(2)
[http://dx.doi.org/10.21967/jbb.v1i2.45]
[49]
Kulasinski, K.; Keten, S.; Churakov, S.V.; Derome, D.; Carmeliet, J. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose, 2014, 21(3), 1103-1116.
[http://dx.doi.org/10.1007/s10570-014-0213-7]
[50]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev., 2009, 38(7), 2046-2064.
[http://dx.doi.org/10.1039/b808639g] [PMID: 19551181]
[51]
Dumanli, A.G. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem., 2017, 24(5), 512-528.
[http://dx.doi.org/10.2174/0929867323666161014124008] [PMID: 27758719]
[52]
de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym., 2016, 153, 406-420.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.059] [PMID: 27561512]
[53]
Rajwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol., 2015, 99(6), 2491-2511.
[http://dx.doi.org/10.1007/s00253-015-6426-3] [PMID: 25666681]
[54]
An, S.J.; Lee, S.H.; Huh, J.B.; Jeong, S.I.; Park, J.S.; Gwon, H.J.; Kang, E.S.; Jeong, C.M.; Lim, Y.M. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int. J. Mol. Sci., 2017, 18(11), 2236.
[http://dx.doi.org/10.3390/ijms18112236] [PMID: 29068426]
[55]
Lee, S.H.; An, S.J.; Lim, Y.M.; Huh, J.B. The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials (Basel), 2017, 10(9), 1018.
[http://dx.doi.org/10.3390/ma10091018] [PMID: 28862689]
[56]
Vuoti, S.; Laatikainen, E.; Heikkinen, H.; Johansson, L.S.; Saharinen, E.; Retulainen, E. Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydr. Polym., 2013, 96(2), 549-559.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.053] [PMID: 23768600]
[57]
Mezdour, S.; Lepine, A.; Erazo-Majewicz, P.; Ducept, F.; Michon, C. Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: Contribution to emulsion stability. Colloids Surf. A Physicochem. Eng. Asp., 2008, 331(1-2), 76-83.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.023]
[58]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem., 2017, 24, 1-17.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[59]
Anlar, S.; Capan, Y.; Güven, O.; Göğüş, A.; Dalkara, T.; Hincal, A.A. Formulation and in vitro-in vivo evaluation of buccoadhesive morphine sulfate tablets. Pharm. Res., 1994, 11(2), 231-236.
[http://dx.doi.org/10.1023/A:1018951323522] [PMID: 8165181]
[60]
Yildir, E.; Sjöholm, E.; Preis, M.; Trivedi, P.; Trygg, J.; Fardim, P.; Sandler, N. Investigation of dissolved cellulose in development of buccal discs for oromucosal drug delivery. Pharm. Dev. Technol., 2018, 23(5), 520-529.
[http://dx.doi.org/10.1080/10837450.2017.1397163] [PMID: 29067849]
[61]
Chiellini, F.; Piras, A.M.; Errico, C.; Chiellini, E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine (Lond.), 2008, 3(3), 367-393.
[http://dx.doi.org/10.2217/17435889.3.3.367] [PMID: 18510431]
[62]
Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine (Lond.), 2008, 4(4), 273-282.
[http://dx.doi.org/10.1016/j.nano.2008.06.002] [PMID: 18640076]
[63]
Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose, 2016, 23(1), 439-450.
[http://dx.doi.org/10.1007/s10570-015-0803-z]
[64]
Sun, B.; Wang, W.; Zhang, M.; Sain, M. Biomass-based edible film with enhanced mass barrier capacity and gas permeable selectivity. Cellulose, 2018, 25(10), 5919-5937.
[http://dx.doi.org/10.1007/s10570-018-1976-z]
[65]
Sun, B.; Wang, W.; He, Z.; Zhang, M.; Kong, F.; Sain, M.; Ni, Y. Improvement of stability of tea polyphenols: a review. Curr. Pharm. Des., 2018, 24(29), 3410-3423.
[http://dx.doi.org/10.2174/1381612824666180810160321] [PMID: 30101698]
[66]
Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J. Mater. Sci., 2014, 49(5), 2035-2044.
[http://dx.doi.org/10.1007/s10853-013-7892-6]
[67]
Dai, L.; Chen, J.; Yang, B.; Su, Y.; Chen, L.; Long, Z.; Ni, Y. TEMPO-oxidized waste cellulose as reinforcement for recycled fiber networks. Ind. Eng. Chem. Res., 2017, 56(51), 15065-15071.
[http://dx.doi.org/10.1021/acs.iecr.7b04135]
[68]
Sun, B.; Zhang, M.; Ni, Y. Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols. Cellulose, 2018, 25(9), 5157-5173.
[http://dx.doi.org/10.1007/s10570-018-1918-9]
[69]
Sun, B.; Zhang, M.; He, Z.; Zheng, L.; Shen, J.; Ni, Y. Towards greener and more sustainable cellulose-based hand sanitizer products. J. Bioresour. Bioprod., 2017, 2(2), 56-60.
[70]
Sun, B.; Hou, Q.; Liu, Z.; He, Z.; Ni, Y. Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose, 2014, 21(4), 2879-2887.
[http://dx.doi.org/10.1007/s10570-014-0283-6]
[71]
Sun, B.; He, Z.; Hou, Q.; Liu, Z.; Cha, R.; Ni, Y. Interaction of a spirooxazine dye with latex and its photochromic efficiency on cellulosic paper. Carbohydr. Polym., 2013, 95(1), 598-605.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.032] [PMID: 23618311]
[72]
Tang, C.; Wang, Y.; Long, Y.; An, X.; Shen, J.; Ni, Y. Anchoring 20 (R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustain. Chem.& Eng., 2017, 5(9), 7507-7513.
[http://dx.doi.org/10.1021/acssuschemeng.6b02996]
[73]
Zhu, X.; Wen, Y.; Cheng, D.; Li, C.; An, X.; Ni, Y. Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption. Carbohydr. Polym., 2015, 132, 598-605.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.063] [PMID: 26256387]
[74]
Zhu, X.; Wen, Y.; Wang, L.; Li, C.; Cheng, D.; Zhang, H.; Ni, Y. Binding of sodium cholate in vitro by cationic microfibrillated cellulose. Ind. Eng. Chem. Res., 2014, 53(48), 18508-18513.
[http://dx.doi.org/10.1021/ie503909g]
[75]
Sun, B.; Hou, Q.; He, Z.; Liu, Z.; Ni, Y. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr. Polym., 2014, 111, 419-424.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.051] [PMID: 25037370]
[76]
Fardioui, M.; Mekhzoum, M.E.M.; Qaiss, A.K.; Bouhfid, R. Bionanocomposite materials based on chitosan reinforced with nanocrystalline cellulose and organo-modified montmorillonite, in:Nanoclay reinforced polymer composites: nanocomposites and bionanocomposites; Jawaid, M.; Qaiss, A.E.K.; Bouhfid, R., Eds.; Springer Singapore: Singapore, 2016, pp. 167-194.
[http://dx.doi.org/10.1007/978-981-10-1953-1_7]
[77]
Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Bioresour. Bioprod., 2017, 2(1), 10-15.
[http://dx.doi.org/10.21967/jbb.v2i1.68]
[78]
Sun, B.; Hou, Q.; Liu, Z.; Ni, Y. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose, 2015, 22(2), 1135-1146.
[http://dx.doi.org/10.1007/s10570-015-0575-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy