Review Article

治疗性大分子铁螯合剂

卷 26, 期 2, 2019

页: [323 - 334] 页: 12

弟呕挨: 10.2174/0929867325666180904104318

价格: $65

conference banner
摘要

铁是每个生命过程的关键元素。从根本上讲,靶向铁是治疗铁过载引起的疾病的一种有价值的方法。利用铁螯合剂作为治疗剂在螯合治疗中得到了广泛的考虑。经批准的低分子量(mw)铁螯合剂治疗铁过载可能会经历短暂的半衰期和毒性,导致中度高的副作用。近年来,聚合物/高分子铁螯合剂作为治疗药物受到了广泛关注。聚合铁螯合剂具有独特的药用性能,与传统的小分子螯合剂不同。这些聚合铁螯合剂具有更长的血浆半衰期和更低的毒性,因此显示了目前使用低分子量铁螯合剂治疗的重要补充。在本文中,我们简要地讨论了聚合物铁螯合剂和设计有临床价值的铁螯合剂时应考虑的因素。我们还讨论了聚合铁螯合剂在输血性含铁血黄素沉着症、神经退行性疾病、疟疾和癌症引起的铁过载疾病中的应用。在此基础上,还介绍了新型聚合铁螯合剂的研究成果。

关键词: 聚合铁螯合剂,铁螯合剂,去铁胺,去铁酮,去铁氧化物。

[1]
Crichton, R.R.; Boelaert, J.R. Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences; John Wiley & Sons, 2001, pp. 190-197.
[2]
Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 2001, 33(10), 940-959.
[3]
Koppenol, W.H. The Haber-Weiss cycle--70 years later. Redox Rep., 2001, 6(4), 229-234.
[4]
Crisponi, G.; Remelli, M. Iron chelating agents for the treatment of iron overload. Coord. Chem. Rev., 2008, 252(10), 1225-1240.
[5]
Chaston, T.B.; Richardson, D.R. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am. J. Hematol., 2003, 73(3), 200-210.
[6]
Hamilton, J.L.J. Innovative polymeric iron chelators with iron binding affinity and biocompatibility for the treatment of transfusional iron overlo. Doctoral disseration, University of British Columbia: Vancouver, April, 2015.
[7]
Golenser, J.; Domb, A.; Teomim, D.; Tsafack, A.; Nisim, O.; Ponka, P.; Eling, W.; Cabantchik, Z.I. The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. J. Pharmacol. Exp. Ther., 1997, 281(3), 1127-1135.
[8]
Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc., 1963, 85(22), 3533-3539.
[9]
Richardson, D.; Bernhardt, P.V.; Becker, E.M. Iron chelators and uses thereof., US Patent 698939-7B1, 2006.
[10]
Hershko, C.; Graham, G.; Bates, G.W.; Rachmilewitz, E.A. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br. J. Haematol., 1978, 40(2), 255-263.
[11]
Hoffbrand, A.V.; Taher, A.; Cappellini, M.D. How I treat transfusional iron overload. Blood, 2012, 120(18), 3657-3669.
[12]
Manning, T.; Kean, G.; Thomas, J.; Thomas, K.; Corbitt, M.; Gosnell, D.; Ware, R.; Fulp, S.; Jarrard, J.; Phillips, D. Iron chelators in medicinal applications - chemical equilibrium considerations in pharmaceutical activity. Curr. Med. Chem., 2009, 16(19), 2416-2429.
[13]
Morehouse, L.A.; Thomas, C.E.; Aust, S.D. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Arch. Biochem. Biophys., 1984, 232(1), 366-377.
[14]
Porter, J.B.; Garbowski, M. The pathophysiology of transfusional iron overload. Hematol. Oncol. Clin. North Am., 2014, 28(4), 683-701. [vi.].
[15]
Brittenham, G.M. Iron-chelating therapy for transfusional iron overload. N. Engl. J. Med., 2011, 364(2), 146-156.
[16]
Borgna-Pignatti, C.; Rugolotto, S.; De Stefano, P.; Zhao, H.; Cappellini, M.D.; Del Vecchio, G.C.; Romeo, M.A.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; Piga, A.; Cnaan, A. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica, 2004, 89(10), 1187-1193.
[17]
Liu, Z.D.; Hider, R.C. Design of iron chelators with therapeutic application. Coord. Chem. Rev., 2002, 232(1), 151-171.
[18]
Hershko, C.; Link, G.; Konijn, A.M.; Cabantchik, Z.I. Objectives and mechanism of iron chelation therapy. Ann. N. Y. Acad. Sci., 2005, 1054(1), 124-135.
[19]
Modell, B.; Khan, M.; Darlison, M. Survival in β-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet, 2000, 355(9220), 2051-2052.
[20]
Lee, P.; Mohammed, N.; Marshall, L.; Abeysinghe, R.D.; Hider, R.C.; Porter, J.B.; Singh, S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab. Dispos., 1993, 21(4), 640-644.
[21]
Porter, J.B.; Faherty, A.; Stallibrass, L.; Brookman, L.; Hassan, I.; Howes, C. A trial to investigate the relationship between DFO pharmacokinetics and metabolism and DFO-related toxicity. Ann. N. Y. Acad. Sci., 1998, 850(1), 483-487.
[22]
Levine, J.E.; Cohen, A.; MacQueen, M.; Martin, M.; Giardina, P.J. Sensorimotor neurotoxicity associated with high-dose deferoxamine treatment. J. Pediatr. Hematol. Oncol., 1997, 19(2), 139-141.
[23]
Kontoghiorghes, G.J.; Eracleous, E.; Economides, C.; Kolnagou, A. Advances in iron overload therapies. prospects for effective use of deferiprone (L1), deferoxamine, the new experimental chelators ICL670, GT56-252, L1NA11 and their combinations. Curr. Med. Chem., 2005, 12(23), 2663-2681.
[24]
Kontoghiorghes, G.J.; Aldouri, M.A.; Hoffbrand, A.V.; Barr, J.; Wonke, B.; Kourouclaris, T.; Sheppard, L. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Br. Med. J. (Clin. Res. Ed.), 1987, 295(6612), 1509-1512.
[25]
Hoffbrand, A.V.; Cohen, A.; Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood, 2003, 102(1), 17-24.
[26]
Hoffbrand, A.V. AL-Refaie, F.; Davis, B.; Siritanakatkul, N.; Jackson, B.F.; Cochrane, J.; Prescott, E.; Wonke, B. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood, 1998, 91(1), 295-300.
[27]
Galanello, R. Deferiprone in the treatment of transfusion-dependent thalassemia: a review and perspective. Ther. Clin. Risk Manag., 2007, 3(5), 795-805.
[28]
Nisbet-Brown, E.; Olivieri, N.F.; Giardina, P.J.; Grady, R.W.; Neufeld, E.J.; Séchaud, R.; Krebs-Brown, A.J.; Anderson, J.R.; Alberti, D.; Sizer, K.C.; Nathan, D.G. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet, 2003, 361(9369), 1597-1602.
[29]
Cappellini, M.D. Iron-chelating therapy with the new oral agent ICL670 (Exjade). Best Pract. Res. Clin. Haematol., 2005, 18(2), 289-298.
[30]
Nick, H.; Allegrini, P.R.; Fozard, L.; Junker, U.; Rojkjaer, L.; Salie, R.; Niederkofler, V.; O’Reilly, T. Deferasirox reduces iron overload in a murine model of juvenile hemochromatosis. Exp. Biol. Med. (Maywood), 2009, 234(5), 492-503.
[31]
Galanello, R.; Piga, A.; Alberti, D.; Rouan, M.C.; Bigler, H.; Séchaud, R. Safety, tolerability, and pharmacokinetics of ICL670, a new orally active iron-chelating agent in patients with transfusion-dependent iron overload due to β-thalassemia. J. Clin. Pharmacol., 2003, 43(6), 565-572.
[32]
Sánchez-González, P.D.; López-Hernandez, F.J.; Morales, A.I.; Macías-Nuñez, J.F.; López-Novoa, J.M. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol. Lett., 2011, 203(2), 154-161.
[33]
Galanello, R.; Campus, S.; Origa, R. Deferasirox: pharmacokinetics and clinical experience. Expert Opin. Drug Metab. Toxicol., 2012, 8(1), 123-134.
[34]
Kontoghiorghes, G.J. A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin. Drug Saf., 2013, 12(5), 605-609.
[35]
Riva, A. A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin. Drug Saf., 2013, 12(5), 793-794.
[36]
Zhou, T.; Kong, X.L.; Liu, Z.D.; Liu, D.Y.; Hider, R.C. Synthesis and iron(III)-chelating properties of novel 3-hydroxypyridin-4-one hexadentate ligand-containing copolymers. Biomacromolecules, 2008, 9(5), 1372-1380.
[37]
Zhou, T.; Winkelmann, G.; Dai, Z.Y.; Hider, R.C. Design of clinically useful macromolecular iron chelators. J. Pharm. Pharmacol., 2011, 63(7), 893-903.
[38]
Mahoney, J.R., Jr; Hallaway, P.E.; Hedlund, B.E.; Eaton, J.W. Acute iron poisoning. Rescue with macromolecular chelators. J. Clin. Invest., 1989, 84(4), 1362-1366.
[39]
Feng, M.H.; van der Does, L.; Bantjes, A. Iron (III)-chelating resins. 3. Synthesis, iron (III)-chelating properties, and in vitro antibacterial activity of compounds containing 3-hydroxy-2-methyl-4(1H)-pyridinone ligands. J. Med. Chem., 1993, 36(19), 2822-2827.
[40]
Horowitz, D.; Margel, S.; Shimoni, T. Iron detoxification by haemoperfusion through deferoxamine-conjugated agarose-polyacrolein microsphere beads. Biomaterials, 1985, 6(1), 9-16.
[41]
Rossi, N.A.; Mustafa, I.; Jackson, J.K.; Burt, H.M.; Horte, S.A.; Scott, M.D.; Kizhakkedathu, J.N. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials, 2009, 30(4), 638-648.
[42]
Imran ul-haq, M. Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo. ACS Nano, 2013, 7(12), 10704-10716.
[43]
Hauser, C.; Renfrow, W. Benzohydroxamic acid. Org. Synth., 1939, 1(2), 15-15.
[44]
Nishino, N.; Powers, J.C. Peptide hydroxamic acids as inhibitors of thermolysin. Biochemistry, 1978, 17(14), 2846-2850.
[45]
Kurzak, B.; Kozłowski, H.; Farkas, E. Hydroxamic and aminohydroxamic acids and their complexes with metal ions. Coord. Chem. Rev., 1992, 114(2), 169-200.
[46]
Huang, L.; Pardee, A.B. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol. Med., 2000, 6(10), 849-866.
[47]
Holmes, M.A.; Matthews, B.W. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. Biochemistry, 1981, 20(24), 6912-6920.
[48]
Parvathy, S.; Hussain, I.; Karran, E.H.; Turner, A.J.; Hooper, N.M. Alzheimer’s amyloid precursor protein α-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry, 1998, 37(6), 1680-1685.
[49]
Polomoscanik, S.C.; Cannon, C.P.; Neenan, T.X.; Holmes-Farley, S.R.; Mandeville, W.H.; Dhal, P.K. Hydroxamic acid-containing hydrogels for nonabsorbed iron chelation therapy: synthesis, characterization, and biological evaluation. Biomacromolecules, 2005, 6(6), 2946-2953.
[50]
Halliwell, B. Lipid peroxidation: A radical chain reaction. ‎. Free Radic. Biol. Med., 1989, 112-137.
[51]
Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med., 1999, 341(26), 1986-1995.
[52]
Brittenham, G. Disorders of iron metabolism: iron deficiency and overload. ematology: basic principles and practice,, 2000. 115-146.
[53]
Liu, Z.; Wang, Y.; Purro, M.; Xiong, M.P. Oxidation-induced degradable nanogels for iron chelation. Sci. Rep., 2016, 6, 20923.
[54]
Qian, J. Nonabsorbable iron binding polymers prevent dietary iron absorption for the treatment of iron overload. ACS Macro Lett., 2017, 6(4), 350-353.
[55]
Tyagi, P.; Kumar, A.; Gupta, D.; Singh, H. Decorporation of iron metal using dialdehyde cellulose-deferoxamine microcarrier. AAPS PharmSciTech, 2017, 18(1), 156-165.
[56]
Wang, N.; Jin, X.; Guo, D.; Tong, G.; Zhu, X. Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromolecules, 2017, 18(2), 461-474.
[57]
Liu, G.; Men, P.; Kudo, W.; Perry, G.; Smith, M.A. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci. Lett., 2009, 455(3), 187-190.
[58]
Başar, I.; Ayhan, A.; Bircan, K.; Ergen, A.; Taşar, C. Transferrin receptor activity as a marker in transitional cell carcinoma of the bladder. Br. J. Urol., 1991, 67(2), 165-168.
[59]
Keer, H.N.; Kozlowski, J.M.; Tsai, Y.C.; Lee, C.; McEwan, R.N.; Grayhack, J.T. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol., 1990, 143(2), 381-385.
[60]
Faulk, W.P.; Hsi, B-L.; Stevens, P.J. Transferrin and transferrin receptors in carcinoma of the breast. Lancet, 1980, 2(8191), 390-392.
[61]
Buss, J.L.; Greene, B.T.; Turner, J.; Torti, F.M.; Torti, S.V. Iron chelators in cancer chemotherapy. Curr. Top. Med. Chem., 2004, 4(15), 1623-1635.
[62]
Theerasilp, M. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Advances, 2017, 7(18), 11158-11169.
[63]
Hallaway, P.E.; Eaton, J.W.; Panter, S.S.; Hedlund, B.E. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 10108-10112.
[64]
Harmatz, P.; Grady, R.W.; Dragsten, P.; Vichinsky, E.; Giardina, P.; Madden, J.; Jeng, M.; Miller, B.; Hanson, G.; Hedlund, B. Phase Ib clinical trial of starch-conjugated deferoxamine (40SD02): a novel long-acting iron chelator. Br. J. Haematol., 2007, 138(3), 374-381.
[65]
Hamilton, J.L.; Imran Ul-Haq, M.; Abbina, S.; Kalathottukaren, M.T.; Lai, B.F.; Hatef, A.; Unniappan, S.; Kizhakkedathu, J.N. In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials, 2016, 102, 58-71.
[66]
Li, J. Macromolecular iron-chelators via RAFT-polymerization for the inhibition of methicillin-resistant Staphylococcus aureus growth. Polymer (Guildf.), 2016, 87, 64-72.
[67]
Power Coombs, M.R.; Grant, T.; Greenshields, A.L.; Arsenault, D.J.; Holbein, B.E.; Hoskin, D.W. Inhibitory effect of iron withdrawal by chelation on the growth of human and murine mammary carcinoma and fibrosarcoma cells. Exp. Mol. Pathol., 2015, 99(2), 262-270.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy