Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care

Author(s): Ladislav Kokoska*, Pavel Kloucek , Olga Leuner and Pavel Novy

Volume 26, Issue 29, 2019

Page: [5501 - 5541] Pages: 41

DOI: 10.2174/0929867325666180831144344

Price: $65

Open Access Journals Promotions 2
Abstract

A number of papers reporting antimicrobial properties of extracts, essential oils, resins and various classes of compounds isolated from higher plants have been published in recent years; however, a comprehensive analysis of plant-derived antimicrobial agents currently applied in practice for the improvement of human health is still lacking. This review summarizes data on clinical efficacy, antimicrobial effects and the chemistry of commercially available antibacterial and antifungal agents of plant origin currently used in the prevention and treatment of gastrointestinal, oral, respiratory, skin, and urinary infections. As a result of an analysis of the literature, more than 40 plant-derived over-the-counter pharmaceuticals, dietary supplements, cosmetics, herbal medicines, and functional foods containing complex mixtures (e.g. Glycyrrhiza glabra extract, Melaleuca alternifolia essential oil, and Pistacia lentiscus resin), pure compounds (e.g. benzoic acid, berberine, eucalyptol, salicylic acid and thymol) as well as their derivatives and complexes (e.g. bismuth subsalicylate and zinc pyrithione) have been identified. The effectiveness of many of these products is illustrated by results of clinical trials and supported by data on there in vitro antimicrobial activity. A broad spectrum of various commercial products currently available on the market and their welldocumented clinical efficacy suggests that plants are prospective sources for the identification of new types of antimicrobial agents in future. Innovative approaches and methodologies for effective proof-of-concept research and the development of new types of plant-derived products effective against recently emerging problems related to human microbial diseases (e.g. antimicrobial resistance) are also proposed in this review.

Keywords: Plant, extract, essential oil, compound, antibacterial, antifungal, commercial products.

[1]
Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol., 2006, 24(12), 1504-1507.
[http://dx.doi.org/10.1038/nbt1206-1504] [PMID: 17160050]
[2]
Hart, B.L. The evolution of herbal medicine: behavioural perspectives. Anim. Behav., 2005, 70(5), 975-989.
[http://dx.doi.org/10.1016/j.anbehav.2005.03.005]
[3]
Gurib-Fakim, A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[4]
White, N.J. Qinghaosu (artemisinin): the price of success. Science, 2008, 320(5874), 330-334.
[http://dx.doi.org/10.1126/science.1155165] [PMID: 18420924]
[5]
Wang, G-W.; Hu, W-T.; Huang, B-K.; Qin, L-P. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol., 2011, 136(1), 10-20.
[http://dx.doi.org/10.1016/j.jep.2011.04.051] [PMID: 21549817]
[6]
The Nobel Prize in Physiology or Medicine. Nobelprize. org.: Nobel Media AB 2014. Available at: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/ Accessed: December 4, 2017].
[7]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[8]
Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem., 2003, 10(10), 813-829.
[http://dx.doi.org/10.2174/0929867033457719] [PMID: 12678685]
[9]
Khafagi, I.; Dewedar, A.; Amein, M. Opportunities of finding novel anti-infective agents from plant cell cultures. Curr. Med. Chem. Antiinfect. Agents, 2003, 2(3), 191-211.
[10]
Lai, P.K.; Roy, J. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem., 2004, 11(11), 1451-1460.
[http://dx.doi.org/10.2174/0929867043365107] [PMID: 15180577]
[11]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[12]
Mahady, G.B. Medicinal plants for the prevention and treatment of bacterial infections. Curr. Pharm. Des., 2005, 11(19), 2405-2427.
[http://dx.doi.org/10.2174/1381612054367481] [PMID: 16026296]
[13]
Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 2005, 100(1-2), 80-84.
[http://dx.doi.org/10.1016/j.jep.2005.04.025] [PMID: 15964727]
[14]
Silva, N.C.C.; Fernandes, A. Junior Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Trop. Dis., 2010, 16(3), 402-413.
[http://dx.doi.org/10.1590/S1678-91992010000300006]
[15]
Termentzi, A.; Fokialakis, N.; Skaltsounis, A.L. Natural resins and bioactive natural products thereof as potential antimicrobial agents. Curr. Pharm. Des., 2011, 17(13), 1267-1290.
[http://dx.doi.org/10.2174/138161211795703807] [PMID: 21470116]
[16]
Abreu, A.C.; McBain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep., 2012, 29(9), 1007-1021.
[http://dx.doi.org/10.1039/c2np20035j] [PMID: 22786554]
[17]
Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid. Based Complement. Alternat. Med., 2016, 20163012462
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[18]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[19]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003] [PMID: 16698208]
[20]
Gibbons, S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med., 2008, 74(6), 594-602.
[http://dx.doi.org/10.1055/s-2008-1074518] [PMID: 18446673]
[21]
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
[22]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[23]
World Health Organization. Available at: http://www.who.int/en/ [Accessed: May 23, 2017]
[24]
Casburn-Jones, A.C.; Farthing, M.J.G. Management of infectious diarrhoea. Gut, 2004, 53(2), 296-305.
[http://dx.doi.org/10.1136/gut.2003.022103] [PMID: 14724167]
[25]
López-Góngora, S.; Puig, I.; Calvet, X.; Villoria, A.; Baylina, M.; Muñoz, N.; Sanchez-Delgado, J.; Suarez, D.; García-Hernando, V.; Gisbert, J.P. Systematic review and meta-analysis: susceptibility-guided versus empirical antibiotic treatment for Helicobacter pylori infection. J. Antimicrob. Chemother., 2015, 70(9), 2447-2455.
[http://dx.doi.org/10.1093/jac/dkv155] [PMID: 26078393]
[26]
Malfertheiner, P.; Megraud, F. OMorain, C.A.; Atherton, J.; Axon, A.T.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; El-Omar, E.M.; Kuipers, E.J. Management of Helicobacter pylori infection-the Maastricht IV/Florence Consensus Report. Gut, 2012, 61(5), 646-664.
[http://dx.doi.org/10.1136/gutjnl-2012-302084] [PMID: 22491499]
[27]
Bruneton, J. Pharmacognosy: Phytochemistry, Medicinal Plants, 2nd ed; Intercept: Andover, 1999.
[28]
Chauhan, R.K.S.; Jain, A.M.; Bhandari, B. Berberine in the treatment of childhood diarrhoea. Indian J. Pediatr., 1970, 37(274), 577-579.
[http://dx.doi.org/10.1007/BF02803833] [PMID: 5518228]
[29]
Chauhan, R.K.S.; Jain, A.M.; Dube, M.K.; Bhandari, B. A combination of sulfadimidine, neomycin and berberine in the treatment of infectious diarrhoea. Indian J. Pediatr., 1969, 36(258), 242-244.
[http://dx.doi.org/10.1007/BF02749333] [PMID: 5355320]
[30]
Sharda, D.C. Berberine in the treatment of diarrhoea of infancy and childhood. J. Indian Med. Assoc., 1970, 54(1), 22-24.
[PMID: 4905644]
[31]
Sharma, R.; Joshi, C.K.; Goyal, R.K. Berberine tannate in acute diarrhoea. Indian Pediatr., 1970, 7(9), 496-501.
[PMID: 5532321]
[32]
Desai, A.B.; Shah, K.M.; Shah, D.M. Berberine in treatment of diarrhoea. Indian Pediatr., 1971, 8(9), 462-465.
[PMID: 5131809]
[33]
Naruka, B.S.; Sharma, U.; Saxena, S.; Sharma, M.L. Berberine in the treatment of infective diarrhea of infancy and childhood. Arch. Child Health, 1979, 21(4), 88-98.
[34]
Lahiri, S.C.; Dutta, N.K. Berberine and chloramphenicol in the treatment of cholera and severe diarrhoea. J. Indian Med. Assoc., 1967, 48(1), 1-11.
[PMID: 6040104]
[35]
Singh, D.; Hussain, R. Clinical trials with berberine hydrochloride in the control of acute diarrhoeas. Indian Pract., 1974, 27(2), 93-100.
[36]
Khin-Maung-U.. Myo-Khin; Nyunt-Nyunt-Wai; Aye-Kyaw; Tin-U, Clinical trial of berberine in acute watery diarrhoea. Br. Med. J. (Clin. Res. Ed.), 1985, 291(6509), 1601-1605.
[http://dx.doi.org/10.1136/bmj.291.6509.1601] [PMID: 3935203]
[37]
Chen, C.; Tao, C.; Liu, Z.; Lu, M.; Pan, Q.; Zheng, L.; Li, Q.; Song, Z.; Fichna, J. A randomized clinical trial of berberine hydrochloride in patients with diarrhea-predominant irritable bowel syndrome. Phytother. Res., 2015, 29(11), 1822-1827.
[http://dx.doi.org/10.1002/ptr.5475] [PMID: 26400188]
[38]
Rabbani, G.H.; Butler, T.; Knight, J.; Sanyal, S.C.; Alam, K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J. Infect. Dis., 1987, 155(5), 979-984.
[http://dx.doi.org/10.1093/infdis/155.5.979] [PMID: 3549923]
[39]
Zhou, F.F.; Wu, S.; Klena, J.D.; Huang, H.H. Clinical characteristics of Clostridium difficile infection in hospitalized patients with antibiotic-associated diarrhea in a university hospital in China. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(10), 1773-1779.
[http://dx.doi.org/10.1007/s10096-014-2132-9] [PMID: 24820293]
[40]
Sun, D.; Abraham, S.N.; Beachey, E.H. Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli. Antimicrob. Agents Chemother., 1988, 32(8), 1274-1277.
[http://dx.doi.org/10.1128/AAC.32.8.1274] [PMID: 2903716]
[41]
Sack, R.B.; Froehlich, J.L. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect. Immun., 1982, 35(2), 471-475.
[PMID: 7035365]
[42]
Yamamoto, K.; Takase, H.; Abe, K.; Saito, Y.; Suzuki, A. Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba Nippon Yakurigaku Zasshi, 1993, 101(3), 169-175.
[http://dx.doi.org/10.1254/fpj.101.3_169] [PMID: 8486321]
[43]
Tsai, C.S.; Ochillo, R.F. Pharmacological effects of berberine on the longitudinal muscle of the guinea-pig isolated ileum. Arch. Int. Pharmacodyn. Ther., 1991, 310, 116-131.
[PMID: 1772324]
[44]
Zhang, Y.; Wang, X.; Sha, S.; Liang, S.; Zhao, L.; Liu, L.; Chai, N.; Wang, H.; Wu, K. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia, 2012, 83(6), 1014-1022.
[http://dx.doi.org/10.1016/j.fitote.2012.05.015] [PMID: 22668974]
[45]
Amin, A.H.; Subbaiah, T.V.; Abbasi, K.M. Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Can. J. Microbiol., 1969, 15(9), 1067-1076.
[http://dx.doi.org/10.1139/m69-190] [PMID: 4906191]
[46]
Cernáková, M.; Kostálová, D. Antimicrobial activity of berberine--a constituent of Mahonia aquifolium. Folia Microbiol. (Praha), 2002, 47(4), 375-378.
[http://dx.doi.org/10.1007/BF02818693] [PMID: 12422513]
[47]
Allegrini, A.; Costantini, M. Gelatine tannate for the treatment of acute diarrhoea in adults. J. Gastrointest. Dig. Syst., 2012, 2(3), 110.
[http://dx.doi.org/10.4172/2161-069X.1000110]
[48]
Compendium of Food Additive Apecifications. Addendum 1. Joint FAO/WHO Expert Committee on Food Additives. FAO Food Nutr. Pap, 1992. 52(1-141), 118-121.
[49]
Salama-Muller, A.; Muller, B.; Dume, U. Treatment of acute diarrhea with Tannacomp - Results of a post marketing surveillance study in an outpatient setting. Med. Welt, 2010, 6(1), 186-190.
[50]
Schlicker, G.; Lerbs, W. Therapy of acute diarrhea in childhood. Intermediate evaluation of an observation study with Tannalbin capsules. TW Padiatrie, 1997, 10(9), 499-502.
[51]
Hoppe, K. Treatment of unspecific diarrhea with broad pharmacological drug combinations. Therapiewoche, 1995, 45(20), 1178-1181.
[52]
Raedsch, R.; Walter-Sack, I.; Galle, P.R.; Kommerell, B. Prophylaxis of traveler’s diarrhea in Egypt: results of a double blind controlled study. Klin. Wochenschr., 1991, 69(19), 863-866.
[http://dx.doi.org/10.1007/BF01649558] [PMID: 1812314]
[53]
Michałek, D.; Kołodziej, M.; Konarska, Z.; Szajewska, H. Efficacy and safety of gelatine tannate for the treatment of acute gastroenteritis in children: protocol of a randomised controlled trial. BMJ Open, 2016, 6(2)e010530
[http://dx.doi.org/10.1136/bmjopen-2015-010530] [PMID: 26895988]
[54]
Esteban Carretero, J.; Durban Reguera, F.; Lopez-Argueta Alvarez, S.; Lopez Montes, J. A comparative analysis of response to ORS (oral rehydration solution) vs. ORS + gelatin tannate in two cohorts of pediatric patients with acute diarrhea. Rev. Esp. Enferm. Dig., 2009, 101(1), 41-48.
[http://dx.doi.org/10.4321/S1130-01082009000100005] [PMID: 19335032]
[55]
Scalbert, A. Antimicrobial properties of tannins. Phytochemistry, 1991, 30(12), 3875-3883.
[http://dx.doi.org/10.1016/0031-9422(91)83426-L]
[56]
Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: a review. Crit. Rev. Food Sci. Nutr., 1998, 38(6), 421-464.
[http://dx.doi.org/10.1080/10408699891274273] [PMID: 9759559]
[57]
Chung, K.T.; Stevens, S.E., Jr; Lin, W.F.; Wei, C.I. Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds. Lett. Appl. Microbiol., 1993, 17(1), 29-32.
[http://dx.doi.org/10.1111/j.1472-765X.1993.tb01428.x]
[58]
Kim, T.J.; Silva, J.L.; Kim, M.K.; Jung, Y.S. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem., 2010, 118(3), 740-746.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.060]
[59]
Pierpoint, W.S. Can aspirin help identify leaf proteins active in defence responses? Ann. Appl. Biol., 2002, 140(3), 233-239.
[http://dx.doi.org/10.1111/j.1744-7348.2002.tb00176.x]
[60]
Bierer, D.W. Bismuth subsalicylate: history, chemistry, and safety. Rev. Infect. Dis., 1990, 12(Suppl. 1), S3-S8.
[http://dx.doi.org/10.1093/clinids/12.Supplement_1.S3] [PMID: 2406853]
[61]
Damman, C.J. Salicylates and the microbiota: A new mechanistic understanding of an ancient drug’s role in dermatological and gastrointestinal disease. Drug Dev. Res., 2013, 74(6), 344-352.
[http://dx.doi.org/10.1002/ddr.21086]
[62]
Steffen, R.; Mathewson, J.J.; Ericsson, C.D.; DuPont, H.L.; Helminger, A.; Balm, T.K.; Wolff, K.; Witassek, F. Travelers’ diarrhea in West Africa and Mexico: fecal transport systems and liquid bismuth subsalicylate for self-therapy. J. Infect. Dis., 1988, 157(5), 1008-1013.
[http://dx.doi.org/10.1093/infdis/157.5.1008] [PMID: 2896219]
[63]
DuPont, H.L.; Flores Sanchez, J.; Ericsson, C.D.; Mendiola Gomez, J.; DuPont, M.W.; Cruz Luna, A.; Mathewson, J.J. Comparative efficacy of loperamide hydrochloride and bismuth subsalicylate in the management of acute diarrhea. Am. J. Med., 1990, 88(6A), 15S-19S.
[http://dx.doi.org/10.1016/0002-9343(90)90270-N] [PMID: 2192553]
[64]
Soriano-Brücher, H.; Avendaño, P.; O’Ryan, M.; Braun, S.D.; Manhart, M.D.; Balm, T.K.; Soriano, H.A. Bismuth subsalicylate in the treatment of acute diarrhea in children: a clinical study. Pediatrics, 1991, 87(1), 18-27.
[PMID: 1984613]
[65]
Figueroa-Quintanilla, D.; Salazar-Lindo, E.; Sack, R.B.; León-Barúa, R.; Sarabia-Arce, S.; Campos-Sánchez, M.; Eyzaguirre-Maccan, E. A controlled trial of bismuth subsalicylate in infants with acute watery diarrheal disease. N. Engl. J. Med., 1993, 328(23), 1653-1658.
[http://dx.doi.org/10.1056/NEJM199306103282301] [PMID: 8487823]
[66]
Chowdhury, H.R.; Yunus, M.; Zaman, K.; Rahman, A.; Faruque, S.M.; Lescano, A.G.; Sack, R.B. The efficacy of bismuth subsalicylate in the treatment of acute diarrhoea and the prevention of persistent diarrhoea. Acta Paediatr., 2001, 90(6), 605-610.
[http://dx.doi.org/10.1080/080352501750258630] [PMID: 11440090]
[67]
Westblom, T.U.; Madan, E.; Subik, M.A.; Duriex, D.E.; Midkiff, B.R. Double-blind randomized trial of bismuth subsalicylate and clindamycin for treatment of Helicobacter pylori infection. Scand. J. Gastroenterol., 1992, 27(3), 249-252.
[http://dx.doi.org/10.3109/00365529208999958] [PMID: 1502490]
[68]
Marshall, B.J.; Valenzuela, J.E.; McCallum, R.W.; Dooley, C.P.; Guerrant, R.L.; Cohen, H.; Frierson, H.F., Jr; Field, L.G.; Jerdack, G.R.; Mitra, S. Bismuth subsalicylate suppression of Helicobacter pylori in nonulcer dyspepsia: a double-blind placebo-controlled trial. Dig. Dis. Sci., 1993, 38(9), 1674-1680.
[http://dx.doi.org/10.1007/BF01303177] [PMID: 8359080]
[69]
Pitz, A.M.; Park, G.W.; Lee, D.; Boissy, Y.L.; Vinjé, J. Antimicrobial activity of bismuth subsalicylate on Clostridium difficile, Escherichia coli O157:H7, norovirus, and other common enteric pathogens. Gut Microbes, 2015, 6(2), 93-100.
[http://dx.doi.org/10.1080/19490976.2015.1008336] [PMID: 25901890]
[70]
Yakoob, J.; Abbas, Z.; Usman, M.W.; Awan, S.; Naz, S.; Jafri, F.; Hamid, S.; Jafri, W. Comparison of antimicrobial activity of zinc chloride and bismuth subsalicylate against clinical isolates of Helicobacter pylori. Microb. Drug Resist., 2014, 20(4), 305-309.
[http://dx.doi.org/10.1089/mdr.2013.0086] [PMID: 23844851]
[71]
Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens, 2014, 3(2), 473-498.
[http://dx.doi.org/10.3390/pathogens3020473] [PMID: 25437810]
[72]
Shirin, H.; Moss, S.F.; Kancherla, S.; Kancherla, K.; Holt, P.R.; Weinstein, I.B.; Sordillo, E.M. Non-steroidal anti-inflammatory drugs have bacteriostatic and bactericidal activity against Helicobacter pylori. J. Gastroenterol. Hepatol., 2006, 21(9), 1388-1393.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04194.x] [PMID: 16911681]
[73]
Al-Habbal, M.J.; Al-Habbal, Z.; Huwez, F.U. A double-blind controlled clinical trial of mastic and placebo in the treatment of duodenal ulcer. Clin. Exp. Pharmacol. Physiol., 1984, 11(5), 541-544.
[http://dx.doi.org/10.1111/j.1440-1681.1984.tb00864.x] [PMID: 6395994]
[74]
Huwez, F.U.; Al-Habbal, M.J. Mastic in treatment of benign gastric ulcers. Gastroenterol. Jpn., 1986, 21(3), 273-274.
[http://dx.doi.org/10.1007/BF02774571] [PMID: 3732760]
[75]
Dabos, K.J.; Sfika, E.; Vlatta, L.J.; Giannikopoulos, G. The effect of mastic gum on Helicobacter pylori: a randomized pilot study. Phytomedicine, 2010, 17(3-4), 296-299.
[http://dx.doi.org/10.1016/j.phymed.2009.09.010] [PMID: 19879118]
[76]
Bebb, J.R.; Bailey-Flitter, N.; Ala’Aldeen, D.; Atherton, J.C. Mastic gum has no effect on Helicobacter pylori load in vivo. J. Antimicrob. Chemother., 2003, 52(3), 522-523.
[http://dx.doi.org/10.1093/jac/dkg366] [PMID: 12888582]
[77]
Kottakis, F.; Kouzi-Koliakou, K.; Pendas, S.; Kountouras, J.; Choli-Papadopoulou, T. Effects of mastic gum Pistacia lentiscus var. Chia on innate cellular immune effectors. Eur. J. Gastroenterol. Hepatol., 2009, 21(2), 143-149.
[http://dx.doi.org/10.1097/MEG.0b013e32831c50c9] [PMID: 19212203]
[78]
Huwez, F.U.; Thirlwell, D.; Cockayne, A. Ala’Aldeen, D.A. Mastic gum kills Helicobacter pylori. N. Engl. J. Med., 1998, 339(26), 1946.
[http://dx.doi.org/10.1056/NEJM199812243392618] [PMID: 9874617]
[79]
Marone, P.; Bono, L.; Leone, E.; Bona, S.; Carretto, E.; Perversi, L. Bactericidal activity of Pistacia lentiscus mastic gum against Helicobacter pylori. J. Chemother., 2001, 13(6), 611-614.
[http://dx.doi.org/10.1179/joc.2001.13.6.611] [PMID: 11806621]
[80]
Bona, S.G.; Bono, L.; Daghetta, L.; Marone, P. Bactericidal activity of Pistacia lentiscus gum mastic against Helicobacter pylori. Am. J. Gastroenterol., 2001, 96, S49.
[http://dx.doi.org/10.1016/S0002-9270(01)02891-X]
[81]
Loughlin, M.F.; Ala’Aldeen, D.A.; Jenks, P.J. Monotherapy with mastic does not eradicate Helicobacter pylori infection from mice. J. Antimicrob. Chemother., 2003, 51(2), 367-371.
[http://dx.doi.org/10.1093/jac/dkg057] [PMID: 12562704]
[82]
Paraschos, S.; Magiatis, P.; Mitakou, S.; Petraki, K.; Kalliaropoulos, A.; Maragkoudakis, P.; Mentis, A.; Sgouras, D.; Skaltsounis, A-L. In vitro and in vivo activities of Chios mastic gum extracts and constituents against Helicobacter pylori. Antimicrob. Agents Chemother., 2007, 51(2), 551-559.
[http://dx.doi.org/10.1128/AAC.00642-06] [PMID: 17116667]
[83]
van den Berg, J.K.; van der Horst, J.; Boon, J.J.; Sudmeijer, O.O. Cis-1,4-poly-β-myreene; the structure of the polymeric fraction of mastic resin (Pistacia lentiscus L.) elucidated. Tetrahedron Lett., 1998, 39(17), 2645-2648.
[http://dx.doi.org/10.1016/S0040-4039(98)00228-7]
[84]
Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia. Biomed. Chromatogr., 2005, 19(4), 285-311.
[http://dx.doi.org/10.1002/bmc.454] [PMID: 15651084]
[85]
Papageorgiou, V.P.; Bakola-Christianopoulou, M.N.; Apazidou, K.K.; Psarros, E.E. Gas chromatographic-mass spectroscopic analysis of the acidic triterpenic fraction of mastic gum. J. Chromatogr. A, 1997, 769(2), 263-273.
[http://dx.doi.org/10.1016/S0021-9673(96)01032-1]
[86]
Loizou, S.; Paraschos, S.; Mitakou, S.; Chrousos, G.P.; Lekakis, I.; Moutsatsou, P. Chios mastic gum extract and isolated phytosterol tirucallol exhibit anti-inflammatory activity in human aortic endothelial cells. Exp. Biol. Med. (Maywood), 2009, 234(5), 553-561.
[http://dx.doi.org/10.3181/0811-RM-338] [PMID: 19234052]
[87]
Kaliora, A.C.; Mylona, A.; Chiou, A.; Petsios, D.G.; Andrikopoulos, N.K. Detection and identification of simple phenolics in Pistacia lentiscus resin. J. Liq. Chromatogr. Relat. Technol., 2004, 27(2), 289-300.
[http://dx.doi.org/10.1081/JLC-120027100]
[88]
Papageorgiou, V.; Mellidis, A.; Argyriadou, N. The chemical composition of the essential oil of mastic gum. J. Essent. Oil Res., 1991, 3(2), 107-110.
[http://dx.doi.org/10.1080/10412905.1991.9697918]
[89]
Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med., 1999, 65(8), 749-752.
[http://dx.doi.org/10.1055/s-2006-960856] [PMID: 10630120]
[90]
Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J. Agric. Food Chem., 2005, 53(20), 7681-7685.
[http://dx.doi.org/10.1021/jf050639s] [PMID: 16190616]
[91]
Miyamoto, T.; Okimoto, T.; Kuwano, M. Chemical composition of the essential oil of mastic gum and their antibacterial activity against drug-resistant Helicobacter pylori. Nat. Prod. Bioprospect., 2014, 4(4), 227-231.
[http://dx.doi.org/10.1007/s13659-014-0033-3] [PMID: 25089241]
[92]
Kottakis, F.; Lamari, F.; Matragkou, Ch.; Zachariadis, G.; Karamanos, N.; Choli-Papadopoulou, T. Arabino-galactan proteins from Pistacia lentiscus var. chia: isolation, characterization and biological function. Amino Acids, 2008, 34(3), 413-420.
[http://dx.doi.org/10.1007/s00726-007-0554-8] [PMID: 17514491]
[93]
Puram, S.; Suh, H.C.; Kim, S.U.; Bethapudi, B.; Joseph, J.A.; Agarwal, A.; Kudiganti, V. Effect of GutGard in the management of Helicobacter pylori: a randomized double blind placebo controlled study. Evid. Based Complement. Alternat. Med., 2013, 2013263805
[http://dx.doi.org/10.1155/2013/263805] [PMID: 23606875]
[94]
Chandrasekaran, C.V.; Deepak, H.B.; Thiyagarajan, P.; Kathiresan, S.; Sangli, G.K.; Deepak, M.; Agarwal, A. Dual inhibitory effect of Glycyrrhiza glabra (GutGard™) on COX and LOX products. Phytomedicine, 2011, 18(4), 278-284.
[http://dx.doi.org/10.1016/j.phymed.2010.08.001] [PMID: 20864324]
[95]
Turpie, A.G.; Runcie, J.; Thomson, T.J. Clinical trial of deglycyrrhizinized liquorice in gastric ulcer. Gut, 1969, 10(4), 299-302.
[http://dx.doi.org/10.1136/gut.10.4.299] [PMID: 4889526]
[96]
Tewari, S.N.; Trembalowicz, F.C. Some experience with deglycyrrhizinated liquorice in the treatment of gastric and duodenal ulcers with special reference to its spasmolytic effect. Gut, 1968, 9(1), 48-51.
[http://dx.doi.org/10.1136/gut.9.1.48] [PMID: 5640926]
[97]
Feldman, H.; Gilat, T. A trial of deglycyrrhizinated liquorice in the treatment of duodenal ulcer. Gut, 1971, 12(6), 449-451.
[http://dx.doi.org/10.1136/gut.12.6.449] [PMID: 4933135]
[98]
Larkworthy, W.; Holgate, P.F.L. Deglycyrrhizinized liquorice in the treatment of chronic duodenal ulcer. A retrospective endoscopic survey of 32 patients. Practitioner, 1975, 215(1290), 787-792.
[PMID: 772652]
[99]
Bardhan, K.D.; Cumberland, D.C.; Dixon, R.A.; Holdsworth, C.D. Clinical trial of deglycyrrhizinised liquorice in gastric ulcer. Gut, 1978, 19(9), 779-782.
[http://dx.doi.org/10.1136/gut.19.9.779] [PMID: 361512]
[100]
Hollanders, D.; Green, G.; Woolf, I.L.; Boyes, B.E.; Wilson, R.Y.; Cowley, D.J.; Dymock, I.W. Prophylaxis with deglycyrrhizinised liquorice in patients with healed gastric ulcer. BMJ, 1978, 1(6106), 148-148.
[http://dx.doi.org/10.1136/bmj.1.6106.148] [PMID: 339997]
[101]
Larkworthy, W.; Holgate, P.F.; McIllmurray, M.B.; Langman, M.J. Deglycyrrhizinised liquorice in duodenal ulcer. BMJ, 1977, 2(6095), 1123.
[http://dx.doi.org/10.1136/bmj.2.6095.1123] [PMID: 589019]
[102]
D’Imperio, N.; Giuliani Piccari, G.; Sarti, F.; Soffritti, M.; Spongano, P.; Benvenuti, C.; Dal Monte, P.R. Double-blind trial in duodenal and gastric ulcers. Cimetidine and deglycyrrhizinized liquorice. Acta Gastroenterol. Belg., 1978, 41(7-8), 427-434.
[PMID: 373361]
[103]
Morgan, A.G.; McAdam, W.A.; Pacsoo, C.; Darnborough, A. Comparison between cimetidine and Caved-S in the treatment of gastric ulceration, and subsequent maintenance therapy. Gut, 1982, 23(6), 545-551.
[http://dx.doi.org/10.1136/gut.23.6.545] [PMID: 7042486]
[104]
Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci., 2002, 71(12), 1449-1463.
[http://dx.doi.org/10.1016/S0024-3205(02)01864-7] [PMID: 12127165]
[105]
Asha, M.K.; Debraj, D.; Prashanth, D.; Edwin, J.R.; Srikanth, H.S.; Muruganantham, N.; Dethe, S.M.; Anirban, B.; Jaya, B.; Deepak, M.; Agarwal, A. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action. J. Ethnopharmacol., 2013, 145(2), 581-586.
[http://dx.doi.org/10.1016/j.jep.2012.11.033] [PMID: 23220194]
[106]
Asha, M.K.; Debraj, D.; Dethe, S.; Bhaskar, A.; Muruganantham, N.; Deepak, M. Effect of flavonoid-rich extract of Glycyrrhiza glabra on gut-friendly microorganisms, commercial probiotic preparations, and digestive enzymes. J. Diet. Suppl., 2017, 14(3), 323-333.
[http://dx.doi.org/10.1080/19390211.2016.1223257] [PMID: 27588327]
[107]
Wittschier, N.; Faller, G.; Hensel, A. Aqueous extracts and polysaccharides from liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J. Ethnopharmacol., 2009, 125(2), 218-223.
[http://dx.doi.org/10.1016/j.jep.2009.07.009] [PMID: 19607905]
[108]
Lamont, R.J.; Burne, R.A.; Lantz, M.S.; LeBlanc, J.D. Oral Microbiol. Immunol; American Society for Microbiology: Washington, 2006.
[109]
Stingu, C.S.; Jentsch, H.; Eick, S.; Schaumann, R.; Knöfler, G.; Rodloff, A. Microbial profile of patients with periodontitis compared with healthy subjects. Quintessence Int., 2012, 43(2), e23-e31.
[PMID: 22257880]
[110]
DeStefano, F.; Anda, R.F.; Kahn, H.S.; Williamson, D.F.; Russell, C.M. Dental disease and risk of coronary heart disease and mortality. BMJ, 1993, 306(6879), 688-691.
[http://dx.doi.org/10.1136/bmj.306.6879.688] [PMID: 8471920]
[111]
Gendron, R.; Grenier, D.; Maheu-Robert, L. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect., 2000, 2(8), 897-906.
[http://dx.doi.org/10.1016/S1286-4579(00)00391-9] [PMID: 10962273]
[112]
Mattila, K.J.; Nieminen, M.S.; Valtonen, V.V.; Rasi, V.P.; Kesäniemi, Y.A.; Syrjälä, S.L.; Jungell, P.S.; Isoluoma, M.; Hietaniemi, K.; Jokinen, M.J. Association between dental health and acute myocardial infarction. BMJ, 1989, 298(6676), 779-781.
[http://dx.doi.org/10.1136/bmj.298.6676.779] [PMID: 2496855]
[113]
Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005, 43(11), 5721-5732.
[http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005] [PMID: 16272510]
[114]
Colombo, A.V.; Silva, C.M.; Haffajee, A.; Colombo, A.P. Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions. J. Med. Microbiol., 2006, 55(Pt 5), 609-615.
[http://dx.doi.org/10.1099/jmm.0.46417-0] [PMID: 16585650]
[115]
Dorn, B.R.; Leung, K.L.; Progulske-Fox, A. Invasion of human oral epithelial cells by Prevotella intermedia. Infect. Immun., 1998, 66(12), 6054-6057.
[PMID: 9826397]
[116]
Han, Y.W.; Shi, W.; Huang, G.T.; Kinder Haake, S.; Park, N.H.; Kuramitsu, H.; Genco, R.J. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun., 2000, 68(6), 3140-3146.
[http://dx.doi.org/10.1128/IAI.68.6.3140-3146.2000] [PMID: 10816455]
[117]
Peters, S.R.; Valdez, M.; Riviere, G.; Thomas, D.D. Adherence to and penetration through endothelial cells by oral treponemes. Oral Microbiol. Immunol., 1999, 14(6), 379-383.
[http://dx.doi.org/10.1034/j.1399-302X.1999.140609.x] [PMID: 10895695]
[118]
Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J., 2002, 78(922), 455-459.
[http://dx.doi.org/10.1136/pmj.78.922.455] [PMID: 12185216]
[119]
Addy, M. Oral hygiene products: potential for harm to oral and systemic health? Periodontol. 2000, 2008, 48(48), 54-65.
[http://dx.doi.org/10.1111/j.1600-0757.2008.00253.x] [PMID: 18715356]
[120]
Munro, C.L.; Grap, M.J. Oral health and care in the intensive care unit: state of the science. Am. J. Crit. Care, 2004, 13(1), 25-33.
[PMID: 14735645]
[121]
Forward, G.C.; James, A.H.; Barnett, P.; Jackson, R.J. Gum health product formulations: what is in them and why? Periodontol. 2000, 1997, 15(15), 32-39.
[http://dx.doi.org/10.1111/j.1600-0757.1997.tb00102.x] [PMID: 9643230]
[122]
Allaker, R.P.; Douglas, C.W. Novel anti-microbial therapies for dental plaque-related diseases. Int. J. Antimicrob. Agents, 2009, 33(1), 8-13.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.07.014] [PMID: 18804350]
[123]
Vlachojannis, C.; Magora, F.; Chrubasik, S. Rise and fall of oral health products with Canadian bloodroot extract. Phytother. Res., 2012, 26(10), 1423-1426.
[http://dx.doi.org/10.1002/ptr.4606] [PMID: 22318955]
[124]
Vlachojannis, C.; Winsauer, H.; Chrubasik, S. Effectiveness and safety of a mouthwash containing essential oil ingredients. Phytother. Res., 2013, 27(5), 685-691.
[http://dx.doi.org/10.1002/ptr.4762] [PMID: 22761009]
[125]
Guidelines for acceptance of chemotherapeutic products for the control of supragingival dental plaque and gingivitis. J. Am. Dent. Assoc., 1986, 112(4), 529-532.
[http://dx.doi.org/10.1016/S0002-8177(86)24021-0] [PMID: 3517110]
[126]
Acceptance Program Guidelines. Chemotherapeutic Prod-ucts for Control of Gingivitis; American Dental Association, 2008.
[127]
Sharma, N.C.; Charles, C.H.; Qaqish, J.G.; Galustians, H.J.; Zhao, Q.; Kumar, L.D. Comparative effectiveness of an essential oil mouthrinse and dental floss in controlling interproximal gingivitis and plaque. Am. J. Dent., 2002, 15(6), 351-355.
[PMID: 12691269]
[128]
Charles, C.H.; Mostler, K.M.; Bartels, L.L.; Mankodi, S.M. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J. Clin. Periodontol., 2004, 31(10), 878-884.
[http://dx.doi.org/10.1111/j.1600-051X.2004.00578.x] [PMID: 15367192]
[129]
Sharma, N.C.; Araujo, M.W.; Wu, M.M.; Qaqish, J.; Charles, C.H. Superiority of an essential oil mouthrinse when compared with a 0.05% cetylpyridinium chloride containing mouthrinse: a six-month study. Int. Dent. J., 2010, 60(3), 175-180.
[PMID: 20684443]
[130]
Cortelli, S.C.; Cortelli, J.R.; Wu, M.M.; Simmons, K.; Charles, C.A. Comparative antiplaque and antigingivitis efficacy of a multipurpose essential oil-containing mouthrinse and a cetylpyridinium chloride-containing mouthrinse: a 6-month randomized clinical trial. Quintessence Int., 2012, 43(7), e82-e94.
[PMID: 22670258]
[131]
Singh, A.; Daing, A.; Dixit, J. The effect of herbal, essential oil and chlorhexidine mouthrinse on de novo plaque formation. Int. J. Dent. Hyg., 2013, 11(1), 48-52.
[http://dx.doi.org/10.1111/j.1601-5037.2012.00556.x] [PMID: 22583681]
[132]
Gunsolley, J.C. A meta-analysis of six-month studies of antiplaque and antigingivitis agents. J. Am. Dent. Assoc., 2006, 137(12), 1649-1657.
[http://dx.doi.org/10.14219/jada.archive.2006.0110] [PMID: 17138709]
[133]
Stoeken, J.E.; Paraskevas, S.; van der Weijden, G.A. The long-term effect of a mouthrinse containing essential oils on dental plaque and gingivitis: a systematic review. J. Periodontol., 2007, 78(7), 1218-1228.
[http://dx.doi.org/10.1902/jop.2007.060269] [PMID: 17608576]
[134]
Van Leeuwen, M.P.; Slot, D.E.; Van der Weijden, G.A. Essential oils compared to chlorhexidine with respect to plaque and parameters of gingival inflammation: a systematic review. J. Periodontol., 2011, 82(2), 174-194.
[http://dx.doi.org/10.1902/jop.2010.100266] [PMID: 21043801]
[135]
Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother., 2009, 64(6), 1219-1225.
[http://dx.doi.org/10.1093/jac/dkp362] [PMID: 19837714]
[136]
Cha, J.D.; Jeong, M.R.; Jeong, S.I.; Moon, S.E.; Kim, J.Y.; Kil, B.S.; Song, Y.H. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med., 2005, 71(2), 186-190.
[http://dx.doi.org/10.1055/s-2005-837790] [PMID: 15729631]
[137]
Bernardes, W.A.; Lucarini, R.; Tozatti, M.G.; Flauzino, L.G.; Souza, M.G.; Turatti, I.C.; Andrade e Silva, M.L.; Martins, C.H.; da Silva Filho, A.A.; Cunha, W.R. Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Z. Natforsch. C J. Biosci., 2010, 65(9-10), 588-593.
[http://dx.doi.org/10.1515/znc-2010-9-1009] [PMID: 21138060]
[138]
Cha, J.D.; Jung, E.K.; Kil, B.S.; Lee, K.Y. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J. Microbiol. Biotechnol., 2007, 17(12), 2061-2065.
[PMID: 18167456]
[139]
Bhattacharya, S.; Virani, S.; Zavro, M.; Haas, G.J. Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents. Econ. Bot.,2003, 57(1), 118-125.
[http://dx.doi.org/10.1663/0013- 0001(2003)057[0118:IOSMAO]2.0.CO;2]
[140]
Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res., 2007, 40(3), 349-356.
[http://dx.doi.org/10.1590/S0100-879X2007000300010] [PMID: 17334532]
[141]
Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol., 2005, 20(4), 221-225.
[http://dx.doi.org/10.1111/j.1399-302X.2005.00216.x] [PMID: 15943766]
[142]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling, 2013, 29(1), 87-96.
[http://dx.doi.org/10.1080/08927014.2012.749398] [PMID: 23216018]
[143]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans. J. Microbiol. Biotechnol., 2014, 24(9), 1216-1225.
[http://dx.doi.org/10.4014/jmb.1402.02056] [PMID: 24851813]
[144]
Inouye, S.; Takahashi, M.; Abe, S. Inhibitory activity of hydrosols, herbal teas and related essential oils against filament formation and the growth of Candida albicans. Nippon Ishinkin Gakkai Zasshi, 2009, 50(4), 243-251.
[http://dx.doi.org/10.3314/jjmm.50.243] [PMID: 19942796]
[145]
Cavalheiro, M.; Teixeira, M.C. Candida biofilms: threats, challenges, and promising strategies. Front. Med. (Lausanne), 2018, 5, 28.
[http://dx.doi.org/10.3389/fmed.2018.00028] [PMID: 29487851]
[146]
Kato, T.; Iijima, H.; Ishihara, K.; Kaneko, T.; Hirai, K.; Naito, Y.; Okuda, K. Antibacterial effects of Listerine on oral bacteria. Bull. Tokyo Dent. Coll., 1990, 31(4), 301-307.
[PMID: 2133450]
[147]
Baca, P.; Muñoz, M.J.; Bravo, M.; Junco, P.; Baca, A.P. Effectiveness of chlorhexidine-thymol varnish for caries reduction in permanent first molars of 6-7-year-old children: 24-month clinical trial. Community Dent. Oral Epidemiol., 2002, 30(5), 363-368.
[http://dx.doi.org/10.1034/j.1600-0528.2002.00061.x] [PMID: 12236827]
[148]
Baca, P.; Junco, P.; Bravo, M.; Baca, A.P.; Muñoz, M.J. Caries incidence in permanent first molars after discontinuation of a school-based chlorhexidine-thymol varnish program. Community Dent. Oral Epidemiol., 2003, 31(3), 179-183.
[http://dx.doi.org/10.1034/j.1600-0528.2003.00034.x] [PMID: 12752543]
[149]
Araujo, A.M.; Naspitz, G.M.; Chelotti, A.; Cai, S. Effect of Cervitec on mutans streptococci in plaque and on caries formation on occlusal fissures of erupting permanent molars. Caries Res., 2002, 36(5), 373-376.
[http://dx.doi.org/10.1159/000065961] [PMID: 12399699]
[150]
Joharji, R.M.; Adenubi, J.O. Prevention of pit and fissure caries using an antimicrobial varnish: 9 month clinical evaluation. J. Dent., 2001, 29(4), 247-254.
[http://dx.doi.org/10.1016/S0300-5712(00)00060-9] [PMID: 11525226]
[151]
Twetman, S.; Petersson, L.G. Effect of different chlorhexidine varnish regimens on mutans streptococci levels in interdental plaque and saliva. Caries Res., 1997, 31(3), 189-193.
[http://dx.doi.org/10.1159/000262397] [PMID: 9165189]
[152]
Twetman, S.; Hallgren, A.; Petersson, L.G. Effect of an antibacterial varnish on mutans streptococci in plaque from enamel adjacent to orthodontic appliances. Caries Res., 1995, 29(3), 188-191.
[http://dx.doi.org/10.1159/000262067] [PMID: 7621493]
[153]
Baygin, O.; Tuzuner, T.; Ozel, M.B.; Bostanoglu, O. Comparison of combined application treatment with one-visit varnish treatments in an orthodontic population. Med. Oral Patol. Oral Cir. Bucal, 2013, 18(2), e362-e370.
[http://dx.doi.org/10.4317/medoral.18261] [PMID: 23385499]
[154]
Weiger, R.; Friedrich, C.; Netuschil, L.; Schlagenhauf, U. Effect of chlorhexidine-containing varnish (Cervitec) on microbial vitality and accumulation of supragingival dental plaque in humans. Caries Res., 1994, 28(4), 267-271.
[http://dx.doi.org/10.1159/000261984] [PMID: 8069883]
[155]
Brailsford, S.R.; Fiske, J.; Gilbert, S.; Clark, D.; Beighton, D. The effects of the combination of chlorhexidine/thymol- and fluoride-containing varnishes on the severity of root caries lesions in frail institutionalised elderly people. J. Dent., 2002, 30(7-8), 319-324.
[http://dx.doi.org/10.1016/S0300-5712(02)00045-3] [PMID: 12554113]
[156]
Baca, P.; Clavero, J.; Baca, A.P.; González-Rodríguez, M.P.; Bravo, M.; Valderrama, M.J. Effect of chlorhexidine-thymol varnish on root caries in a geriatric population: a randomized double-blind clinical trial. J. Dent., 2009, 37(9), 679-685.
[http://dx.doi.org/10.1016/j.jdent.2009.05.001] [PMID: 19497653]
[157]
Haukali, G.; Poulsen, S. Effect of a varnish containing chlorhexidine and thymol (Cervitec) on approximal caries in 13- to 16-year-old schoolchildren in a low caries area. Caries Res., 2003, 37(3), 185-189.
[http://dx.doi.org/10.1159/000070442] [PMID: 12740541]
[158]
James, P.; Parnell, C.; Whelton, H. The caries-preventive effect of chlorhexidine varnish in children and adolescents: a systematic review. Caries Res., 2010, 44(4), 333-340.
[http://dx.doi.org/10.1159/000315346] [PMID: 20606432]
[159]
Zhang, Q.; van Palenstein Helderman, W.H.; van’t Hof, M.A.; Truin, G.J. Chlorhexidine varnish for preventing dental caries in children, adolescents and young adults: a systematic review. Eur. J. Oral Sci., 2006, 114(6), 449-455.
[http://dx.doi.org/10.1111/j.1600-0722.2006.00392.x] [PMID: 17184224]
[160]
van Loveren, C.; Buijs, J.F.; Buijs, M.J.; ten Cate, J.M. Protection of bovine enamel and dentine by chlorhexidine and fluoride varnishes in a bacterial demineralization model. Caries Res., 1996, 30(1), 45-51.
[http://dx.doi.org/10.1159/000262136] [PMID: 8850583]
[161]
Takeuchi, Y.; Guggenheim, B.; Filieri, A.; Baehni, P. Effect of chlorhexidine/thymol and fluoride varnishes on dental biofilm formation in vitro. Eur. J. Oral Sci., 2007, 115(6), 468-472.
[http://dx.doi.org/10.1111/j.1600-0722.2007.00493.x] [PMID: 18028054]
[162]
Arias-Moliz, M.T.; Ferrer-Luque, C.M.; González-Rodríguez, M.P.; Navarro-Escobar, E.; de Freitas, M.F.A.; Baca, P. Antimicrobial activity and enterococcus faecalis biofilm formation on chlorhexidine varnishes. Med. Oral Patol. Oral Cir. Bucal, 2012, 17(4), e705-e709.
[http://dx.doi.org/10.4317/medoral.17680] [PMID: 22322495]
[163]
Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J. Antimicrob. Chemother., 2008, 62(5), 1031-1036.
[http://dx.doi.org/10.1093/jac/dkn325] [PMID: 18703525]
[164]
Arweiler, N.B.; Auschill, T.M.; Reich, E.; Netuschil, L. Substantivity of toothpaste slurries and their effect on reestablishment of the dental biofilm. J. Clin. Periodontol., 2002, 29(7), 615-621.
[http://dx.doi.org/10.1034/j.1600-051X.2002.290705.x] [PMID: 12354086]
[165]
Ozaki, F.; Pannuti, C.M.; Imbronito, A.V.; Pessotti, W.; Saraiva, L.; de Freitas, N.M.; Ferrari, G.; Cabral, V.N. Efficacy of a herbal toothpaste on patients with established gingivitis--a randomized controlled trial. Braz. Oral Res., 2006, 20(2), 172-177.
[http://dx.doi.org/10.1590/S1806-83242006000200015] [PMID: 16878213]
[166]
Badiee, P.; Nasirzadeh, A.R.; Motaffaf, M. Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species. J. Pharm. Technol. Drug Res., 2012, 1, 7.
[http://dx.doi.org/10.7243/2050-120X-1-7]
[167]
Sookto, T.; Srithavaj, T.; Thaweboon, S.; Thaweboon, B.; Shrestha, B.; Nakazawa, F. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac. J. Trop. Biomed., 2013, 3(5), 376-380.
[http://dx.doi.org/10.1016/S2221-1691(13)60080-5] [PMID: 23646301]
[168]
Kraivaphan, P.; Amornchat, C.; Maneepitsamai, Y. Bactericidal effects of three mint essential oils on Porphyromonas gingivalis in planktonic and biofilm cells. Res. J. Med. Plant, 2013, 7(2), 100-106.
[http://dx.doi.org/10.3923/rjmp.2013.100.106]
[169]
Renggli, H.H. The effect of Parodontax mouthwash and its constituents on the microorganisms of subgingival plaque. J. Clin. Dent., 1988, 1(Suppl. A), A30-A33.
[PMID: 3256328]
[170]
Adwan, G.; Salameh, Y.; Adwan, K.; Barakat, A. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans. Asian Pac. J. Trop. Biomed., 2012, 2(5), 375-379.
[http://dx.doi.org/10.1016/S2221-1691(12)60059-8] [PMID: 23569933]
[171]
Verkaik, M.J.; Busscher, H.J.; Jager, D.; Slomp, A.M.; Abbas, F.; van der Mei, H.C. Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J. Dent., 2011, 39(3), 218-224.
[http://dx.doi.org/10.1016/j.jdent.2010.12.007] [PMID: 21195122]
[172]
Babpour, E.; Angaji, S.A.; Angaji, S.M. Antimicrobial effects of four medicinal plants on dental plaque. J. Med. Plants Res., 2009, 3(3), 132-137.
[173]
Gursoy, U.K.; Gursoy, M.; Gursoy, O.V.; Cakmakci, L.; Könönen, E.; Uitto, V.J. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe, 2009, 15(4), 164-167.
[http://dx.doi.org/10.1016/j.anaerobe.2009.02.004] [PMID: 19285147]
[174]
Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res., 2011, 5(17), 4147-4156.
[175]
Namiranian, H.; Serino, G. The effect of a toothpaste containing aloe vera on established gingivitis. Swed. Dent. J., 2012, 36(4), 179-185.
[PMID: 23421308]
[176]
Bertolini, P.F.R.; Biondi Filho, O.; Pomilio, A.; Pinheiro, S.L.; Carvalho, M.S. Antimicrobial capacity of Aloe vera and propolis dentifrice against Streptococcus mutans strains in toothbrushes: an in vitro study. J. Appl. Oral Sci., 2012, 20(1), 32-37.
[http://dx.doi.org/10.1590/S1678-77572012000100007] [PMID: 22437675]
[177]
Pai, M.R.; Acharya, L.D.; Udupa, N. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel--a 6-week clinical study. J. Ethnopharmacol., 2004, 90(1), 99-103.
[http://dx.doi.org/10.1016/j.jep.2003.09.035] [PMID: 14698516]
[178]
Hussein, E.A.; Acar, A.; Dogan, A.A.; Kadir, T.; Caldemir, S.; Erverdi, N. Investigation of bacteremia after toothbrushing in orthodontic patients. Korean J. Orthod., 2009, 39(3), 177-184.
[http://dx.doi.org/10.4041/kjod.2009.39.3.177]
[179]
Goldstein, B.H.; Epstein, J.B. Unconventional dentistry: Part IV. Unconventional dental practices and products. J. Can. Dent. Assoc., 2000, 66(10), 564-568.
[PMID: 12584780]
[180]
Pilna, J.; Vlkova, E.; Krofta, K.; Nesvadba, V.; Rada, V.; Kokoska, L. In vitro growth-inhibitory effect of ethanol GRAS plant and supercritical CO2 hop extracts on planktonic cultures of oral pathogenic microorganisms. Fitoterapia, 2015, 105, 260-268.
[http://dx.doi.org/10.1016/j.fitote.2015.07.016] [PMID: 26232134]
[181]
Dasaraju, P.V.; Liu, C. Medical Microbiology, 4th ed; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, 1996.
[182]
Walsh, T.J.; Anaissie, E.J.; Denning, D.W.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Segal, B.H.; Steinbach, W.J.; Stevens, D.A.; van Burik, J.A.; Wingard, J.R.; Patterson, T.F. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis., 2008, 46(3), 327-360.
[http://dx.doi.org/10.1086/525258] [PMID: 18177225]
[183]
Guidelines, 4th ed; World Health Organization: Geneva, 2010.
[184]
Paparoupa, M.; Gillissen, A. Is Myrtol standardized a new alternative toward antibiotics? Pharmacogn. Rev., 2016, 10(20), 143-146.
[http://dx.doi.org/10.4103/0973-7847.194045] [PMID: 28082798]
[185]
Sengespeik, H.C.; Zimmermann, T.; Peiske, C.; de Mey, C. Myrtol standardized in the treatment of acute and chronic respiratory infections in children. A multicenter post-marketing surveillance study Arzneimittelforschung, 1998, 48(10), 990-994.
[PMID: 9825116]
[186]
Meister, R.; Wittig, T.; Beuscher, N.; de Mey, C. Efficacy and tolerability of myrtol standardized in long-term treatment of chronic bronchitis. A double-blind, placebo-controlled study. Arzneimittelforschung, 1999, 49(4), 351-358.
[PMID: 10337455]
[187]
Matthys, H.; de Mey, C.; Carls, C.; Ryś, A.; Geib, A.; Wittig, T. Efficacy and tolerability of myrtol standardized in acute bronchitis. A multi-centre, randomised, double-blind, placebo-controlled parallel group clinical trial vs. cefuroxime and ambroxol. Arzneimittelforschung, 2000, 50(8), 700-711.
[PMID: 10994153]
[188]
Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother., 2001, 47(5), 565-573.
[http://dx.doi.org/10.1093/jac/47.5.565] [PMID: 11328766]
[189]
Van Vuuren, S.F.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragrance J., 2007, 22(6), 540-544.
[http://dx.doi.org/10.1002/ffj.1843]
[190]
Kemmerich, B.; Eberhardt, R.; Stammer, H. Efficacy and tolerability of a fluid extract combination of thyme herb and ivy leaves and matched placebo in adults suffering from acute bronchitis with productive cough. A prospective, double-blind, placebo-controlled clinical trial. Arzneimittelforschung, 2006, 56(9), 652-660.
[PMID: 17063641]
[191]
Kemmerich, B. Evaluation of efficacy and tolerability of a fixed combination of dry extracts of thyme herb and primrose root in adults suffering from acute bronchitis with productive cough. A prospective, double-blind, placebo-controlled multicentre clinical trial. Arzneimittelforschung, 2007, 57(9), 607-615.
[PMID: 17966760]
[192]
Guiné, R.P.; Gonçalves, F.J. Bioactive compounds in some culinary aromatic herbs and their effects on human health. Mini Rev. Med. Chem., 2016, 16(11), 855-866.
[http://dx.doi.org/10.2174/1389557516666160211120540] [PMID: 26864553]
[193]
Mohsenipour, Z.; Hassanshahian, M. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria. Avicenna J. Phytomed., 2015, 5(4), 309-318.
[PMID: 26442753]
[194]
Lang, C.; Röttger-Lüer, P.; Staiger, C. valuable option for the treatment of respiratory diseases: review on the clinical evidence of the ivy leaves dry extract EA 575. Planta Med., 2015, 81(12-13), 968-974.
[http://dx.doi.org/10.1055/s-0035-1545879] [PMID: 25875509]
[195]
Cioacá, C.; Margineanu, C.; Cucu, V. The saponins of Hedera helix with antibacterial activity. Pharmazie, 1978, 33(9), 609-610.
[PMID: 733881]
[196]
Ieven, M.; Vanden Berghe, D.A.; Mertens, F.; Vlietinck, A.; Lammens, E. Screening of higher plants for biological activities. I. Antimicrobial activity. Planta Med., 1979, 36(4), 311-321.
[PMID: 493400]
[197]
Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11, 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[198]
Melzer, J.; Saller, R.; Schapowal, A.; Brignoli, R. Systematic review of clinical data with BNO-101 (Sinupret) in the treatment of sinusitis. Forsch. Komplement. Med., 2006, 13(2), 78-87.
[PMID: 16645287]
[199]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[200]
Bonn, G.; Stecher, G.; Popp, M.A.; Mayer, R. Hydrolysates made of plant extracts and antibacterial agent containing the same. U. S. Patent 0,147,502.,2014.
[201]
Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K.; Michaud, C.J.L.; Murray, C.; Naghavi, M. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol., 2014, 134(6), 1527-1534.
[http://dx.doi.org/10.1038/jid.2013.446] [PMID: 24166134]
[202]
Dawson, A.L.; Dellavalle, R.P.; Elston, D.M. Infectious skin diseases: a review and needs assessment. Dermatol. Clin., 2012, 30(1), 141-151. [ix-x].
[http://dx.doi.org//10.1016/j.det.2011.08.003] [PMID: 22117875]
[203]
Tognetti, L.; Martinelli, C.; Berti, S.; Hercogova, J.; Lotti, T.; Leoncini, F.; Moretti, S. Bacterial skin and soft tissue infections: review of the epidemiology, microbiology, aetiopathogenesis and treatment: a collaboration between dermatologists and infectivologists. J. Eur. Acad. Dermatol. Venereol., 2012, 26(8), 931-941.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04416.x] [PMID: 22214317]
[204]
Sartelli, M.; Malangoni, M.A.; May, A.K.; Viale, P.; Kao, L.S.; Catena, F.; Ansaloni, L.; Moore, E.E.; Moore, F.A.; Peitzman, A.B.; Coimbra, R.; Leppaniemi, A.; Kluger, Y.; Biffl, W.; Koike, K.; Girardis, M.; Ordonez, C.A.; Yuan, K.C. World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections. World J. Emerg. Surg., 2014, 9(57), 1-18.
[205]
Hart, R.; Bell-Syer, S.E.M.; Crawford, F.; Torgerson, D.J.; Young, P.; Russell, I.; Russell, I. Systematic review of topical treatments for fungal infections of the skin and nails of the feet. BMJ, 1999, 319(7202), 79-82.
[http://dx.doi.org/10.1136/bmj.319.7202.79] [PMID: 10398626]
[206]
Holti, G. A double-blind controlled trial of Whitfield’s ointment and Variotin in ringworm infections with a two year “follow-up”. Acta Derm. Venereol., 1970, 50(3), 229-231.
[PMID: 4193225]
[207]
Clayton, R.; Du Vivier, A.; Savage, M. Double-blind trial of 1% clotrimazole cream and Whitfield ointment in the treatment of pityriasis versicolor. Arch. Dermatol., 1977, 113(6), 849-850.
[http://dx.doi.org/10.1001/archderm.1977.01640060145029] [PMID: 326197]
[208]
Comaish, J.S. Double-blind comparison of clotrimazole with Whitfield’s and nystatin ointments. Postgrad. Med. J., 1974, 50(Suppl. 1), 73-75.
[PMID: 4619463]
[209]
Clayton, Y.M.; Connor, B.L. Comparison of clotrimazole cream, Whitfield’s ointment and Nystatin ointment for the topical treatment of ringworm infections, pityriasis versicolor, erythrasma and candidiasis. Br. J. Dermatol., 1973, 89(3), 297-303.
[http://dx.doi.org/10.1111/j.1365-2133.1973.tb02978.x] [PMID: 4582719]
[210]
Sivayathorn, A.; Piamphongsant, T. Topical antimycotic agents for the treatment of superficial dermatophytoses in Thailand--a double-blind study. Mykosen, 1979, 22(1), 21-24.
[http://dx.doi.org/10.1111/j.1439-0507.1979.tb01675.x] [PMID: 368628]
[211]
Wright, S.; Robertson, V.J. An institutional survey of tinea capitis in Harare, Zimbabwe and a trial of miconazole cream versus Whitfield’s ointment in its treatment. Clin. Exp. Dermatol., 1986, 11(4), 371-377.
[http://dx.doi.org/10.1111/j.1365-2230.1986.tb00477.x] [PMID: 2948740]
[212]
Gooskens, V.; Pönnighaus, J.M.; Clayton, Y.; Mkandawire, P.; Sterne, J.A. Treatment of superficial mycoses in the tropics: Whitfield’s ointment versus clotrimazole. Int. J. Dermatol., 1994, 33(10), 738-742.
[http://dx.doi.org/10.1111/j.1365-4362.1994.tb01524.x] [PMID: 8002148]
[213]
Thaker, S.J.; Mehta, D.S.; Shah, H.A.; Dave, J.N.; Kikani, K.M. A comparative study to evaluate efficacy, safety and cost-effectiveness between Whitfield’s ointment + oral fluconazole versus topical 1% butenafine in tinea infections of skin. Indian J. Pharmacol., 2013, 45(6), 622-624.
[http://dx.doi.org/10.4103/0253-7613.121378] [PMID: 24347774]
[214]
Chowdhury, B.; Adak, M.; Bose, S.K. Flurbiprofen, a unique non-steroidal anti-inflammatory drug with antimicrobial activity against Trichophyton, Microsporum and Epidermophyton species. Lett. Appl. Microbiol., 2003, 37(2), 158-161.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01370.x] [PMID: 12859660]
[215]
Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr., 2017, 57(14), 3084-3103.
[http://dx.doi.org/10.1080/10408398.2015.1087964] [PMID: 26587821]
[216]
Bertanha, C.S.; Utrera, S.H.; Gimenez, V.M.M.; Groppo, M.; Silva, M.L.A.; Cunha, W.R.; Martins, C.H.G.; Januario, A.H.; Pauletti, P.M. Antibacterial evaluation of Styrax pohlii and isolated compounds. Braz. J. Pharm. Sci., 2013, 49(4), 653-658.
[http://dx.doi.org/10.1590/S1984-82502013000400004]
[217]
Shapiro, J.; Maddin, S. Medicated shampoos. Clin. Dermatol., 1996, 14(1), 123-128.
[http://dx.doi.org/10.1016/0738-081X(95)00119-Z] [PMID: 8901410]
[218]
Guthery, E.; Seal, L.A.; Anderson, E.L. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects. Am. J. Infect. Control, 2005, 33(1), 15-22.
[http://dx.doi.org/10.1016/j.ajic.2004.07.012] [PMID: 15685130]
[219]
Han, G.Y.; Xu, P.X.; Wang, X.P.; Liu, M.Z.; Xu, X.Y.; Meng, L.N.; Chen, Z.L.; Zhu, D.Y. Studies on active principles of Polyalthia nemoralis. The isolation and identification of natural zinc compound. Acta Chimi. Sin., 1981, 39(5), 433-437.
[220]
Krejčová, P.; Kučerová, P.; Stafford, G.I.; Jäger, A.K.; Kubec, R. Antiinflammatory and neurological activity of pyrithione and related sulfur-containing pyridine N-oxides from Persian shallot (Allium stipitatum). J. Ethnopharmacol., 2014, 154(1), 176-182.
[http://dx.doi.org/10.1016/j.jep.2014.03.066] [PMID: 24721027]
[221]
Park, J.; Kim, B.J.; Kim, M.N.; Hong, Y.P.; Ju, J.H.; Lee, J.P.; Sohn, K.H.; Park, K.L.; Lee, E.C.; Chun, Y.J. Clinical efficacy for 1% zinc pyrithione shampoo for the treatment of dandruff. Korean J. Dermatol., 2009, 47(8), 875-883.
[222]
Schmidt-Rose, T.; Braren, S.; Fölster, H.; Hillemann, T.; Oltrogge, B.; Philipp, P.; Weets, G.; Fey, S. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff. Int. J. Cosmet. Sci., 2011, 33(3), 276-282.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00623.x] [PMID: 21272039]
[223]
Lorette, G.; Ermosilla, V. Clinical efficacy of a new ciclopiroxolamine/zinc pyrithione shampoo in scalp seborrheic dermatitis treatment. Eur. J. Dermatol., 2006, 16(5), 558-564.
[PMID: 17101479]
[224]
Bailey, P.; Arrowsmith, C.; Darling, K.; Dexter, J.; Eklund, J.; Lane, A.; Little, C.; Murray, B.; Scott, A.; Williams, A.; Wilson, D. A double-blind randomized vehicle-controlled clinical trial investigating the effect of ZnPTO dose on the scalp vs. antidandruff efficacy and antimycotic activity. Int. J. Cosmet. Sci., 2003, 25(4), 183-188.
[http://dx.doi.org/10.1046/j.1467-2494.2003.00183.x] [PMID: 18494899]
[225]
Schwartz, J.R.; Bacon, R.A.; Shah, R.; Mizoguchi, H.; Tosti, A. Therapeutic efficacy of anti-dandruff shampoos: a randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole. Int. J. Cosmet. Sci., 2013, 35(4), 381-387.
[http://dx.doi.org/10.1111/ics.12055] [PMID: 23614401]
[226]
Van Cutsem, J.; Van Gerven, F.; Fransen, J.; Schrooten, P.; Janssen, P.A.J. The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs. J. Am. Acad. Dermatol., 1990, 22(6 Pt 1), 993-998.
[http://dx.doi.org/10.1016/0190-9622(90)70140-D] [PMID: 2142498]
[227]
Nenoff, P.; Haustein, U-F. Effect of anti-seborrhea substances against Pityrosporum ovale in vitro Hautarzt, 1994, 45(7), 464-467.
[http://dx.doi.org/10.1007/s001050050105] [PMID: 7928340]
[228]
Schmidt, A.; Rühl-Hörster, B. In vitro susceptibility of Malassezia furfur. Arzneimittelforschung, 1996, 46(4), 442-444.
[PMID: 8740097]
[229]
Roques, C.; Brousse, S.; Panizzutti, C. In vitro antifungal efficacy of ciclopirox olamine alone and associated with zinc pyrithione compared to ketoconazole against Malassezia globosa and Malassezia restricta reference strains. Mycopathologia, 2006, 162(6), 395-400.
[http://dx.doi.org/10.1007/s11046-006-0075-0] [PMID: 17146583]
[230]
Onlom, C.; Khanthawong, S.; Waranuch, N.; Ingkaninan, K. In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int. J. Cosmet. Sci., 2014, 36(1), 74-78.
[http://dx.doi.org/10.1111/ics.12098] [PMID: 24117781]
[231]
McGinley, K.J.; Leyden, J.J. Antifungal activity of dermatological shampoos. Arch. Dermatol. Res., 1982, 272(3-4), 339-342.
[http://dx.doi.org/10.1007/BF00509065] [PMID: 7165342]
[232]
Bassett, I.B.; Pannowitz, D.L.; Barnetson, R.S. A comparative study of tea-tree oil versus benzoylperoxide in the treatment of acne. Med. J. Aust., 1990, 153(8), 455-458.
[PMID: 2145499]
[233]
Enshaieh, S.; Jooya, A.; Siadat, A.H.; Iraji, F. The efficacy of 5% topical tea tree oil gel in mild to moderate Acne vulgaris: a randomized, double-blind placebo-controlled study. Indian J. Dermatol. Venereol. Leprol., 2007, 73(1), 22-25.
[http://dx.doi.org/10.4103/0378-6323.30646] [PMID: 17314442]
[234]
Dryden, M.S.; Dailly, S.; Crouch, M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J. Hosp. Infect., 2004, 56(4), 283-286.
[http://dx.doi.org/10.1016/j.jhin.2004.01.008] [PMID: 15066738]
[235]
Blackwood, B.; Thompson, G.; McMullan, R.; Stevenson, M.; Riley, T.V.; Alderdice, F.A.; Trinder, T.J.; Lavery, G.G.; McAuley, D.F. Tea tree oil (5%) body wash versus standard care (Johnson’s Baby Softwash) to prevent colonization with methicillin-resistant Staphylococcus aureus in critically ill adults: a randomized controlled trial. J. Antimicrob. Chemother., 2013, 68(5), 1193-1199.
[http://dx.doi.org/10.1093/jac/dks501] [PMID: 23297395]
[236]
Buck, D.S.; Nidorf, D.M.; Addino, J.G. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca alternifolia (tea tree) oil and clotrimazole. J. Fam. Pract., 1994, 38(6), 601-605.
[PMID: 8195735]
[237]
Syed, T.A.; Qureshi, Z.A.; Ali, S.M.; Ahmad, S.; Ahmad, S.A. Treatment of toenail onychomycosis with 2% butenafine and 5% Melaleuca alternifolia (tea tree) oil in cream. Trop. Med. Int. Health, 1999, 4(4), 284-287.
[http://dx.doi.org/10.1046/j.1365-3156.1999.00396.x] [PMID: 10357864]
[238]
Tong, M.M.; Altman, P.M.; Barnetson, R.S. Tea tree oil in the treatment of tinea pedis. Australas. J. Dermatol., 1992, 33(3), 145-149.
[http://dx.doi.org/10.1111/j.1440-0960.1992.tb00103.x] [PMID: 1303075]
[239]
Satchell, A.C.; Saurajen, A.; Bell, C.; Barnetson, R.S. Treatment of interdigital tinea pedis with 25% and 50% tea tree oil solution: a randomized, placebo-controlled, blinded study. Australas. J. Dermatol., 2002, 43(3), 175-178.
[http://dx.doi.org/10.1046/j.1440-0960.2002.00590.x] [PMID: 12121393]
[240]
Satchell, A.C.; Saurajen, A.; Bell, C.; Barnetson, R.S. Treatment of dandruff with 5% tea tree oil shampoo. J. Am. Acad. Dermatol., 2002, 47(6), 852-855.
[http://dx.doi.org/10.1067/mjd.2002.122734] [PMID: 12451368]
[241]
Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev., 2006, 19(1), 50-62.
[http://dx.doi.org/10.1128/CMR.19.1.50-62.2006] [PMID: 16418522]
[242]
Andrade, B.F.M.T.; Barbosa, L.N.; Probst, I.S.; Fernandes, A., Jr Antimicrobial activity of essential oils. J. Essent. Oil Res., 2014, 26(1), 34-40.
[http://dx.doi.org/10.1080/10412905.2013.860409]
[243]
Carson, C.F.; Riley, T.V. Susceptibility of Propionibacterium acnes to the essential oil of Melaleuca alternifolia. Lett. Appl. Microbiol., 1994, 19(1), 24-25.
[http://dx.doi.org/10.1111/j.1472-765X.1994.tb00894.x]
[244]
Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol., 1995, 78(3), 264-269.
[http://dx.doi.org/10.1111/j.1365-2672.1995.tb05025.x] [PMID: 7730203]
[245]
Carson, C.F.; Cookson, B.D.; Farrelly, H.D.; Riley, T.V. Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J. Antimicrob. Chemother., 1995, 35(3), 421-424.
[http://dx.doi.org/10.1093/jac/35.3.421] [PMID: 7782258]
[246]
Christoph, F.; Kaulfers, P.M.; Stahl-Biskup, E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of beta-triketones. Planta Med., 2000, 66(6), 556-560.
[http://dx.doi.org/10.1055/s-2000-8604] [PMID: 10985085]
[247]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia (tea tree oil). Am. J. Infect. Control, 1996, 24(3), 186-189.
[http://dx.doi.org/10.1016/S0196-6553(96)90011-5] [PMID: 8806995]
[248]
Mann, C.M.; Markham, J.L. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol., 1998, 84(4), 538-544.
[http://dx.doi.org/10.1046/j.1365-2672.1998.00379.x] [PMID: 9633651]
[249]
Nelson, R.R. In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother., 1997, 40(2), 305-306.
[http://dx.doi.org/10.1093/jac/40.2.305] [PMID: 9302003]
[250]
Raman, A.; Weir, U.; Bloomfield, S.F. Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Lett. Appl. Microbiol., 1995, 21(4), 242-245.
[http://dx.doi.org/10.1111/j.1472-765X.1995.tb01051.x] [PMID: 7576514]
[251]
May, J.; Chan, C.H.; King, A.; Williams, L.; French, G.L. Time-kill studies of tea tree oils on clinical isolates. J. Antimicrob. Chemother., 2000, 45(5), 639-643.
[http://dx.doi.org/10.1093/jac/45.5.639] [PMID: 10797086]
[252]
Hammer, K.A.; Carson, C.F.; Riley, T.V. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chemother., 1998, 42(5), 591-595.
[http://dx.doi.org/10.1093/jac/42.5.591] [PMID: 9848442]
[253]
Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res., 2000, 12(2), 249-255.
[http://dx.doi.org/10.1080/10412905.2000.9699509]
[254]
Vazquez, J.A.; Arganoza, M.T.; Boikov, D.; Akins, R.A.; Vaishampayan, J.K. In vitro susceptibilities of Candida and Aspergillus species to Melaleuca alternafolia (tea tree) oil. Rev. Iberoam. Micol., 2000, 17(2), 60-63.
[PMID: 15813697]
[255]
Banes-Marshall, L.; Cawley, P.; Phillips, C.A. In vitro activity of Melaleuca alternifolia (tea tree) oil against bacterial and Candida spp. isolates from clinical specimens. Br. J. Biomed. Sci., 2001, 58(3), 139-145.
[PMID: 11575735]
[256]
D’Auria, F.D.; Laino, L.; Strippoli, V.; Tecca, M.; Salvatore, G.; Battinelli, L.; Mazzanti, G. In vitro activity of tea tree oil against Candida albicans mycelial conversion and other pathogenic fungi. J. Chemother., 2001, 13(4), 377-383.
[http://dx.doi.org/10.1179/joc.2001.13.4.377] [PMID: 11589479]
[257]
Ergin, A.; Arikan, S. Comparison of microdilution and disc diffusion methods in assessing the in vitro activity of fluconazole and Melaleuca alternifolia (tea tree) oil against vaginal Candida isolates. J. Chemother., 2002, 14(5), 465-472.
[http://dx.doi.org/10.1179/joc.2002.14.5.465] [PMID: 12462426]
[258]
Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J. Antimicrob. Chemother., 2002, 50(2), 195-199.
[http://dx.doi.org/10.1093/jac/dkf112] [PMID: 12161399]
[259]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol., 2003, 95(4), 853-860.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02059.x] [PMID: 12969301]
[260]
Mondello, F.; De Bernardis, F.; Girolamo, A.; Salvatore, G.; Cassone, A. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. J. Antimicrob. Chemother., 2003, 51(5), 1223-1229.
[http://dx.doi.org/10.1093/jac/dkg202] [PMID: 12668571]
[261]
Oliva, B.; Piccirilli, E.; Ceddia, T.; Pontieri, E.; Aureli, P.; Ferrini, A.M. Antimycotic activity of Melaleuca alternifolia essential oil and its major components. Lett. Appl. Microbiol., 2003, 37(2), 185-187.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01375.x] [PMID: 12859665]
[262]
Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol., 2000, 88(1), 170-175.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00943.x] [PMID: 10735256]
[263]
Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother., 2002, 46(6), 1914-1920.
[http://dx.doi.org/10.1128/AAC.46.6.1914-1920.2002] [PMID: 12019108]
[264]
Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol., 2001, 91(3), 492-497.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01406.x] [PMID: 11556915]
[265]
Loughlin, R.; Gilmore, B.F.; McCarron, P.A.; Tunney, M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol., 2008, 46(4), 428-433.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02334.x] [PMID: 18298453]
[266]
Ramage, G.; Milligan, S.; Lappin, D.F.; Sherry, L.; Sweeney, P.; Williams, C.; Bagg, J.; Culshaw, S. Antifungal, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front. Microbiol., 3(220), 1-8.2012.
[267]
Litwin, M.S.; Saigal, C.S.; Yano, E.M.; Avila, C.; Geschwind, S.A.; Hanley, J.M.; Joyce, G.F.; Madison, R.; Pace, J.; Polich, S.M.; Wang, M. Urologic diseases in America Project: analytical methods and principal findings. J. Urol., 2005, 173(3), 933-937.
[http://dx.doi.org/10.1097/01.ju.0000152365.43125.3b] [PMID: 15711342]
[268]
Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis. Mon., 2003, 49(2), 53-70.
[http://dx.doi.org/10.1067/mda.2003.7] [PMID: 12601337]
[269]
Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med., 2002, 113(Suppl. 1A), 5S-13S.
[http://dx.doi.org/10.1016/S0002-9343(02)01054-9] [PMID: 12113866]
[270]
Griebling, T.L. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J. Urol., 2005, 173(4), 1281-1287.
[http://dx.doi.org/10.1097/01.ju.0000155596.98780.82] [PMID: 15758783]
[271]
Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis. Mon., 2003, 49(2), 71-82.
[http://dx.doi.org/10.1067/mda.2003.8] [PMID: 12601338]
[272]
Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J. Infect. Public Health, 2009, 2(3), 101-111.
[http://dx.doi.org/10.1016/j.jiph.2009.08.003] [PMID: 20701869]
[273]
Ejrnæs, K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan. Med. Bull., 2011, 58(4), B4187.
[PMID: 21466767]
[274]
Bazylko, A.; Granica, S.; Filipek, A.; Piwowarski, J.; Stefanska, J.; Osinska, E.; Kiss, A.K. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind. Crops Prod., 2013, 50, 88-94.
[http://dx.doi.org/10.1016/j.indcrop.2013.07.003]
[275]
Bonetta, A.; Roviello, G.; Generali, D.; Zanotti, L.; Cappelletti, M.R.; Pacifico, C.; Di Pierro, F. Enteric-coated and highly standardized cranberry extract reduces antibiotic and nonsteroidal anti-inflammatory drug use for urinary tract infections during radiotherapy for prostate carcinoma. Res. Rep. Urol., 2017, 9, 65-69.
[http://dx.doi.org/10.2147/RRU.S133538] [PMID: 28491861]
[276]
Wise, G.J.; Talluri, G.S.; Marella, V.K. Fungal infections of the genitourinary system: manifestations, diagnosis, and treatment. Urol. Clin. North Am., 1999, 26(4), 701-718. [vii].
[http://dx.doi.org/10.1016/S0094-0143(05)70212-3] [PMID: 10584612]
[277]
Thomas, L.; Tracy, C.R. Treatment of fungal urinary tract infection. Urol. Clin. North Am., 2015, 42(4), 473-483.
[http://dx.doi.org/10.1016/j.ucl.2015.05.010] [PMID: 26475944]
[278]
Etienne, M.; Caron, F. Management of fungal urinary tract infections Presse Med., 2007, 36(12 Pt 3), 1899-1906.
[http://dx.doi.org/10.1016/j.lpm.2006.12.033] [PMID: 17544611]
[279]
Kranjčec, B.; Papeš, D.; Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J. Urol., 2014, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00345-013-1091-6] [PMID: 23633128]
[280]
Zowawi, H.M.; Harris, P.N.A.; Roberts, M.J.; Tambyah, P.A.; Schembri, M.A.; Pezzani, M.D.; Williamson, D.A.; Paterson, D.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol., 2015, 12(10), 570-584.
[http://dx.doi.org/10.1038/nrurol.2015.199] [PMID: 26334085]
[281]
Head, K.A. Natural approaches to prevention and treatment of infections of the lower urinary tract. Altern. Med. Rev., 2008, 13(3), 227-244.
[PMID: 18950249]
[282]
Leydon, G.M.; Turner, S.; Smith, H.; Little, P.; Team, U. Women’s views about management and cause of urinary tract infection: qualitative interview study. BMJ, 2010, 340, c279.
[http://dx.doi.org/10.1136/bmj.c279] [PMID: 20139217]
[283]
Beerepoot, M.; Geerlings, S. Non-antibiotic prophylaxis for urinary tract infections. Pathogens, 2016, 5(2), 8.
[http://dx.doi.org/10.3390/pathogens5020036] [PMID: 27092529]
[284]
Peri, L. Fighting urinary tract infections with antibiotic and non-antibiotic therapies. Urologia, 2016, 83(Suppl. 1), 5-10.
[http://dx.doi.org/10.5301/uro.5000186] [PMID: 27405343]
[285]
Raz, R.; Chazan, B.; Dan, M. Cranberry juice and urinary tract infection. Clin. Infect. Dis., 2004, 38(10), 1413-1419.
[http://dx.doi.org/10.1086/386328] [PMID: 15156480]
[286]
Abreu, O.A.; Barreto, G.; Prieto, S. Vaccinium (Ericaceae): Ethnobotany and pharmacological potentials. Emir. J. Food Agric., 2014, 26(7), 577-591.
[http://dx.doi.org/10.9755/ejfa.v26i7.16404]
[287]
Sobota, A.E. Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. J. Urol., 1984, 131(5), 1013-1016.
[http://dx.doi.org/10.1016/S0022-5347(17)50751-X] [PMID: 6368872]
[288]
Schmidt, D.R.; Sobota, A.E. An examination of the anti-adherence activity of cranberry juice on urinary and nonurinary bacterial isolates. Microbios, 1988, 55(224-225), 173-181.
[PMID: 3063927]
[289]
Zafriri, D.; Ofek, I.; Adar, R.; Pocino, M.; Sharon, N. Inhibitory activity of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli to eucaryotic cells. Antimicrob. Agents Chemother., 1989, 33(1), 92-98.
[http://dx.doi.org/10.1128/AAC.33.1.92] [PMID: 2653218]
[290]
Ofek, I.; Goldhar, J.; Zafriri, D.; Lis, H.; Adar, R.; Sharon, N. Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. N. Engl. J. Med., 1991, 324(22), 1599-1599.
[http://dx.doi.org/10.1056/NEJM199105303242214] [PMID: 1674106]
[291]
Burger, O.; Ofek, I.; Tabak, M.; Weiss, E.I.; Sharon, N.; Neeman, I. A high molecular mass constituent of cranberry juice inhibits helicobacter pylori adhesion to human gastric mucus. FEMS Immunol. Med. Microbiol., 2000, 29(4), 295-301.
[http://dx.doi.org/10.1111/j.1574-695X.2000.tb01537.x] [PMID: 11118911]
[292]
Leitão, D.P.S.; Polizello, A.C.M.; Ito, I.Y.; Spadaro, A.C.C. Antibacterial screening of anthocyanic and proanthocyanic fractions from cranberry juice. J. Med. Food, 2005, 8(1), 36-40.
[http://dx.doi.org/10.1089/jmf.2005.8.36] [PMID: 15857207]
[293]
Cote, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Antimicrobial effect of cranberry juice and extracts. Food Control, 2011, 22(8), 1413-1418.
[http://dx.doi.org/10.1016/j.foodcont.2011.02.024]
[294]
Caillet, S.; Cote, J.; Sylvain, J.F.; Lacroix, M. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control, 2012, 23(2), 419-428.
[http://dx.doi.org/10.1016/j.foodcont.2011.08.010]
[295]
Cote, J.; Caillet, S.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Effect of juice processing on cranberry antibacterial properties. Food Res. Int., 2011, 44(9), 2922-2929.
[http://dx.doi.org/10.1016/j.foodres.2011.06.049]
[296]
Pinzon-Arango, P.A.; Holguin, K.; Camesano, T.A. Impact of cranberry juice and proanthocyanidins on the ability of Escherichia coli to form biofilms. Food Sci. Biotechnol., 2011, 20(5), 1315-1321.
[http://dx.doi.org/10.1007/s10068-011-0181-8]
[297]
Sun, J.; Marais, J.P.J.; Khoo, C.; LaPlante, K.; Vejborg, R.M.; Givskov, M.; Tolker-Nielsen, T.; Seeram, N.P.; Rowley, D.C. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli. J. Funct. Foods, 2015, 17, 235-242.
[http://dx.doi.org/10.1016/j.jff.2015.05.016] [PMID: 26613004]
[298]
Luís, Â.; Domingues, F.; Pereira, L. Can cranberries contribute to reduce the incidence of urinary tract infections? A systematic review with meta-analysis and trial sequential analysis of clinical trials. J. Urol., 2017, 198(3), 614-621.
[http://dx.doi.org/10.1016/j.juro.2017.03.078] [PMID: 28288837]
[299]
Freire, G. C.; Williams, G.; Craig, J.C. Cranberries for preventing urinary tract infections. Sao Paulo Med. J., 2013, 131(5), 363-363.
[http://dx.doi.org/10.1590/1516-3180.20131315T1] [PMID: 24310806]
[300]
Sánchez-Patán, F.; Bartolomé, B.; Martín-Alvarez, P.J.; Anderson, M.; Howell, A.; Monagas, M. Comprehensive assessment of the quality of commercial cranberry products. Phenolic characterization and in vitro bioactivity. J. Agric. Food Chem., 2012, 60(13), 3396-3408.
[http://dx.doi.org/10.1021/jf204912u] [PMID: 22439747]
[301]
Di Pierro, F. The need for a more exact analytical characterization and dosing of cranberry extract in relation with its actual therapeutic properties. Altern. Integr. Med., 2013, 2(107), 1-5.
[http://dx.doi.org/10.4172/2327-5162.1000107]
[302]
Palikova, I.; Vostalova, J.; Zdarilova, A.; Svobodova, A.; Kosina, P.; Vecera, R.; Stejskal, D.; Proskova, J.; Hrbac, J.; Bednar, P.; Maier, V.; Cernochova, D.; Simanek, V.; Ulrichova, J. Long-term effects of three commercial cranberry products on the antioxidative status in rats: a pilot study. J. Agric. Food Chem., 2010, 58(3), 1672-1678.
[http://dx.doi.org/10.1021/jf903710y] [PMID: 20058864]
[303]
Grace, M.H.; Massey, A.R.; Mbeunkui, F.; Yousef, G.G.; Lila, M.A. Comparison of health-relevant flavonoids in commonly consumed cranberry products. J. Food Sci., 2012, 77(8), H176-H183.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02788.x] [PMID: 22747948]
[304]
Ledda, A.; Belcaro, G.; Dugall, M.; Riva, A.; Togni, S.; Eggenhoffner, R.; Giacomelli, L. Highly standardized cranberry extract supplementation (Anthocran®) as prophylaxis in young healthy subjects with recurrent urinary tract infections. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(2), 389-393.
[PMID: 28165546]
[305]
Ledda, A.; Bottari, A.; Luzzi, R.; Belcaro, G.; Hu, S.; Dugall, M.; Hosoi, M.; Ippolito, E.; Corsi, M.; Gizzi, G.; Morazzoni, P.; Riva, A.; Giacomelli, L.; Togni, S. Cranberry supplementation in the prevention of non-severe lower urinary tract infections: a pilot study. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(1), 77-80.
[PMID: 25635978]
[306]
Ledda, A.; Belcaro, G.; Dugall, M.; Feragalli, B.; Riva, A.; Togni, S.; Giacomelli, L. Supplementation with high titer cranberry extract (Anthocran®) for the prevention of recurrent urinary tract infections in elderly men suffering from moderate prostatic hyperplasia: a pilot study. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(24), 5205-5209.
[PMID: 28051247]
[307]
Sánchez Ballester, F.; Ruiz Vidal, V.; López Alcina, E.; Domenech Perez, C.; Escudero Fontano, E.; Oltra Benavent, A.; Montoliu García, A.; Sobrón Bustamante, M. Cysticlean® a highly pac standardized content in the prevention of recurrent urinary tract infections: an observational, prospective cohort study. BMC Urol., 2013, 13, 28.
[http://dx.doi.org/10.1186/1471-2490-13-28] [PMID: 23738867]
[308]
Bártíková, H.; Boušová, I.; Jedličková, P.; Lněničková, K.; Skálová, L.; Szotáková, B. Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine. Molecules, 2014, 19(9), 14948-14960.
[http://dx.doi.org/10.3390/molecules190914948] [PMID: 25237750]
[309]
Diarra, M.S.; Block, G.; Rempel, H.; Oomah, B.D.; Harrison, J.; McCallum, J.; Boulanger, S.; Brouillette, É.; Gattuso, M.; Malouin, F. In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with β-lactams against Staphylococcus aureus. BMC Complement. Altern. Med., 2013, 13, 90.
[http://dx.doi.org/10.1186/1472-6882-13-90] [PMID: 23622254]
[310]
Larsson, B.; Jonasson, A.; Fianu, S. Prophylactic effect of Uva-E in women with recurrent cystitis - a preliminary report. Curr. Ther. Res. Clin. Exp., 1993, 53(4), 441-443.
[http://dx.doi.org/10.1016/S0011-393X(05)80204-8]
[311]
de Arriba, S.G.; Naser, B.; Nolte, K.U. Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int. J. Toxicol., 2013, 32(6), 442-453.
[http://dx.doi.org/10.1177/1091581813507721] [PMID: 24296864]
[312]
Yarnell, E. Botanical medicines for the urinary tract. World J. Urol., 2002, 20(5), 285-293.
[PMID: 12522584]
[313]
Jurica, K.; Gobin, I.; Kremer, D.; Cepo, D.V.; Grubesic, R.J.; Karaconji, I.B.; Kosalec, I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J. Herb. Med., 2017, 8, 17-23.
[http://dx.doi.org/10.1016/j.hermed.2017.03.006]
[314]
Albrecht, U.; Goos, K.H.; Schneider, B. A randomised, double-blind, placebo-controlled trial of a herbal medicinal product containing Tropaeoli majoris herba (Nasturtium) and Armoraciae rusticanae radix (Horseradish) for the prophylactic treatment of patients with chronically recurrent lower urinary tract infections. Curr. Med. Res. Opin., 2007, 23(10), 2415-2422.
[http://dx.doi.org/10.1185/030079907X233089] [PMID: 17723159]
[315]
Nedorostova, L.; Kloucek, P.; Kokoska, L.; Stolcova, M.; Pulkrabek, J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control, 2009, 20(2), 157-160.
[http://dx.doi.org/10.1016/j.foodcont.2008.03.007]
[316]
Dufour, V.; Alazzam, B.; Ermel, G.; Thepaut, M.; Rossero, A.; Tresse, O.; Baysse, C. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front. Cell. Infect. Microbiol., 2012, 2, 53.
[http://dx.doi.org/10.3389/fcimb.2012.00053] [PMID: 22919644]
[317]
Dekić, M.S.; Radulović, N.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Najman, S.; Stojanović, S. Spasmolytic, antimicrobial and cytotoxic activities of 5-phenylpentyl isothiocyanate, a new glucosinolate autolysis product from horseradish (Armoracia rusticana P. Gaertn., B. Mey. & Scherb., Brassicaceae). Food Chem., 2017, 232, 329-339.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.150] [PMID: 28490082]
[318]
Moolla, A.; Viljoen, A.M. ‘Buchu’ -Agathosma betulina and Agathosma crenulata (Rutaceae): a review. J. Ethnopharmacol., 2008, 119(3), 413-419.
[http://dx.doi.org/10.1016/j.jep.2008.07.036] [PMID: 18725278]
[319]
Tserennadmid, R.; Tako, M.; Galgoczy, L.; Papp, T.; Vagvolgyi, C.; Gero, L.; Krisch, J. Antibacterial effect of essential oils and interaction with food components. Cent. Eur. J. Biol., 2010, 5(5), 641-648.
[320]
Stanic, G.; Samarzija, I.; Blazevic, N. Time-dependent diuretic response in rats treated with juniper berry preparations. Phytother. Res., 1998, 12(7), 494-497.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199811)12:7<494:AID-PTR340>3.0.CO;2-N]
[321]
Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals; Churchill Livingstone/Elsevier: Edinburgh, 2014.
[322]
Jenner, P.M.; Hagan, E.C.; Taylor, J.M.; Cook, E.L.; Fitzhugh, O.G. Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet. Toxicol., 1964, 2(C), 327-343.
[http://dx.doi.org/10.1016/S0015-6264(64)80192-9]
[323]
Chung, Y.C.; Chen, H.H.; Yeh, M.L. Vinegar for decreasing catheter-associated bacteriuria in long-term catheterized patients: a randomized controlled trial. Biol. Res. Nurs., 2012, 14(3), 294-301.
[http://dx.doi.org/10.1177/1099800411412767] [PMID: 21708892]
[324]
Coley, P.D.; Heller, M.V.; Aizprua, R.; Arauz, B.; Flores, N.; Correa, M.; Gupta, M.; Solis, P.N.; Ortega-Barria, E.; Romero, L.I.; Gomez, B.; Ramos, M.; Cubilla-Rios, L.; Capson, T.L.; Kursar, T.A. Using ecological criteria to design plant collection strategies for drug discovery. Front. Ecol. Environ, 2003. 1(8), 421-428.
[http://dx.doi.org/10.1890/1540-9295(2003)001[0421:UECTDP]2.0.CO;2]
[325]
Maregesi, S.M.; Hermans, N.; Dhooghe, L.; Cimanga, K.; Ferreira, D.; Pannecouque, C.; Vanden Berghe, D.A.; Cos, P.; Maes, L.; Vlietinck, A.J.; Apers, S.; Pieters, L. Phytochemical and biological investigations of Elaeodendron schlechteranum. J. Ethnopharmacol., 2010, 129(3), 319-326.
[http://dx.doi.org/10.1016/j.jep.2010.03.034] [PMID: 20371284]
[326]
Novy, P.; Kloucek, P.; Rondevaldova, J.; Havlik, J.; Kourimska, L.; Kokoska, L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia, 2014, 94, 102-107.
[http://dx.doi.org/10.1016/j.fitote.2014.01.024] [PMID: 24508861]
[327]
Rondevaldova, J.; Novy, P.; Urban, J.; Kokoska, L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmatTM as a vapor barrier. Arab. J. Chem., 2017, 10(4), 566-572.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.021]
[328]
Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 2017, 118, 56-62.
[http://dx.doi.org/10.1016/j.fitote.2017.02.008] [PMID: 28223069]
[329]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[330]
Gyawali, R.; Ibrahim, S.A. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Appl. Microbiol. Biotechnol., 2012, 95(1), 29-45.
[http://dx.doi.org/10.1007/s00253-012-4117-x] [PMID: 22622837]
[331]
Drusch, S. Microencapsulation of plant ingredients. Z. Arznei Gewurzpflanzen, 2010, 15(4), 173-178.
[332]
Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J. Biotechnol., 2012, 159(4), 342-350.
[http://dx.doi.org/10.1016/j.jbiotec.2011.07.001] [PMID: 21763730]
[333]
Kaper, J.B.; Sperandio, V. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect. Immun., 2005, 73(6), 3197-3209.
[http://dx.doi.org/10.1128/IAI.73.6.3197-3209.2005] [PMID: 15908344]
[334]
Netopilova, M.; Houdkova, M.; Rondevaldova, J.; Kmet, V.; Kokoska, L. Evaluation of in vitro growth-inhibitory effect of carvacrol and thymol combination against Staphylococcus aureus in liquid and vapour phase using new broth volatilization chequerboard method. Fitoterapia, 2018, 129, 185-190.
[http://dx.doi.org/10.1016/j.fitote.2018.07.002] [PMID: 29981875]
[335]
Hadacek, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci., 2002, 21(4), 273-322.
[http://dx.doi.org/10.1080/0735-260291044269]
[336]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; O’Neal, J.M.; Cornwell, T.; Pastor, I.; Fridlender, B. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[http://dx.doi.org/10.1016/S0167-7799(02)02080-2] [PMID: 12443874]
[337]
Martin, K.W.; Ernst, E. Herbal medicines for treatment of fungal infections: a systematic review of controlled clinical trials. Mycoses, 2004, 47(3-4), 87-92.
[http://dx.doi.org/10.1046/j.1439-0507.2003.00951.x] [PMID: 15078424]
[338]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[339]
Kumar, A. Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[340]
Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 2008, 15(8), 639-652.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[341]
Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: a review. Crit. Rev. Microbiol., 2014, 40(1), 76-94.
[http://dx.doi.org/10.3109/1040841X.2013.763219] [PMID: 23445470]
[342]
Rambout, L.; Sahai, J.; Gallicano, K.; Oliveras, L.; Garber, G. Effect of bismuth subsalicylate on ciprofloxacin bioavailability. Antimicrob. Agents Chemother., 1994, 38(9), 2187-2190.
[http://dx.doi.org/10.1128/AAC.38.9.2187] [PMID: 7811043]
[343]
Mahony, D.E.; Woods, A.; Eelman, M.D.; Burford, N.; Veldhuyzen van Zanten, S.J.O. Interaction of bismuth subsalicylate with fruit juices, ascorbic acid, and thiol-containing substrates to produce soluble bismuth products active against Clostridium difficile. Antimicrob. Agents Chemother., 2005, 49(1), 431-433.
[http://dx.doi.org/10.1128/AAC.49.1.431-433.2005] [PMID: 15616328]
[344]
Oda, Y.; Kobayashi, N.; Yamanoi, T.; Katsuraya, K.; Takahashi, K.; Hattori, K. β-cyclodextrin conjugates with glucose moieties designed as drug carriers: their syntheses, evaluations using concanavalin A and doxorubicin, and structural analyses by NMR spectroscopy. Med. Chem., 2008, 4(3), 244-255.
[http://dx.doi.org/10.2174/157340608784325098] [PMID: 18473917]
[345]
Chauhan, B.; Yu, C.; Krantis, A.; Scott, I.; Arnason, J.T.; Marles, R.J.; Foster, B.C. In vitro activity of uva-ursi against cytochrome P450 isoenzymes and P-glycoprotein. Can. J. Physiol. Pharmacol., 2007, 85(11), 1099-1107.
[http://dx.doi.org/10.1139/Y07-106] [PMID: 18066112]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy