General Review Article

信号转导和转录蛋白3(STAT3)的激活剂:作为有希望的抗癌药的直接抑制剂的更新。

卷 26, 期 27, 2019

页: [5165 - 5206] 页: 42

弟呕挨: 10.2174/0929867325666180719122729

价格: $65

conference banner
摘要

背景:由于信号转导子和转录激活因子3(STAT3)是一种转录因子,在癌症的各个方面(包括疾病的进展和迁移)中都起着重要的作用,并且在各种人类肿瘤中都被组成性激活,因此已证实STAT3的抑制作用已得到验证。几种恶性肿瘤的治疗策略。这篇综述的目的是提供有关靶向STAT3结构域的新有希望的直接抑制剂作为潜在抗癌药的鉴定的最新信息。 方法:针对最近报道的STAT3直接抑制剂进行了全面的文献检索。我们考虑了有关STAT3域的相关进展,这些已被确定为潜在的药物靶标。 结果:详细引用了135篇经同行评审的论文和7项专利;我们考虑的抑制剂靶向DNA结合域(化合物分为天然衍生物,小分子,肽,适体和寡核苷酸),SH2结合域(天然,半合成和合成化合物)和特定的残基,例如半胱氨酸(天然,半合成,合成化合物和双重抑制剂)和酪氨酸705。 结论:尽管目前尚无靶向这种酶的药物可用于抗癌治疗,但最近鉴定出的大量直接STAT3抑制剂显示出对这一靶标研究的浓厚兴趣,尽管这是一项艰巨的任务。值得注意的是,对可用抑制剂的许多研究表明它们中的一些具有双重作用机理。

关键词: STAT3直接抑制,SH2结构域,DNA结合结构域,半胱氨酸,小分子,天然化合物,半合成化合物。

[1]
Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol., 2001, 13(2), 211-217.
[http://dx.doi.org/10.1016/S0955-0674(00)00199-X] [PMID: 11248555]
[2]
Lai, S.Y.; Johnson, F.M. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist. Updat., 2010, 13(3), 67-78.
[http://dx.doi.org/10.1016/j.drup.2010.04.001] [PMID: 20471303]
[3]
Debnath, B.; Xu, S.; Neamati, N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J. Med. Chem., 2012, 55(15), 6645-6668.
[http://dx.doi.org/10.1021/jm300207s] [PMID: 22650325]
[4]
Pellegrini, S.; Dusanter-Fourt, I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur. J. Biochem., 1997, 248(3), 615-633.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00615.x] [PMID: 9342212]
[5]
Sgrignani, J.; Garofalo, M.; Matkovic, M.; Merulla, J.; Catapano, C.V.; Cavalli, A. Structural biology of STAT3 and its implications for anticancer therapies development. Int. J. Mol. Sci., 2018, 19(6), 1591.
[http://dx.doi.org/10.3390/ijms19061591] [PMID: 29843450]
[6]
Zhang, X.; Darnell, J.E., Jr Functional importance of Stat3 tetramerization in activation of the α 2-macroglobulin gene. J. Biol. Chem., 2001, 276(36), 33576-33581.
[http://dx.doi.org/10.1074/jbc.M104978200] [PMID: 11438543]
[7]
Levy, D.E.; Darnell, J.E., Jr Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 651-662.
[http://dx.doi.org/10.1038/nrm909] [PMID: 12209125]
[8]
Schindler, C.; Levy, D.E.; Decker, T. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem., 2007, 282(28), 20059-20063.
[http://dx.doi.org/10.1074/jbc.R700016200] [PMID: 17502367]
[9]
Bowman, T.; Garcia, R.; Turkson, J.; Jove, R. STATs in oncogenesis. Oncogene, 2000, 19(21), 2474-2488.
[http://dx.doi.org/10.1038/sj.onc.1203527] [PMID: 10851046]
[10]
Bromberg, J.F.; Horvath, C.M.; Wen, Z.; Schreiber, R.D.; Darnell, J.E., Jr Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7673-7678.
[http://dx.doi.org/10.1073/pnas.93.15.7673] [PMID: 8755534]
[11]
Furtek, S.L.; Matheson, C.J.; Backos, D.S.; Reigan, P. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors. Oncotarget, 2016, 7(47), 77998-78008.
[http://dx.doi.org/10.18632/oncotarget.12868] [PMID: 27793003]
[12]
Carpenter, R.L.; Lo, H-W. STAT3 target genes relevant to human cancers. Cancers (Basel), 2014, 6(2), 897-925.
[http://dx.doi.org/10.3390/cancers6020897] [PMID: 24743777]
[13]
Obana, M.; Maeda, M.; Takeda, K.; Hayama, A.; Mohri, T.; Yamashita, T.; Nakaoka, Y.; Komuro, I.; Takeda, K.; Matsumiya, G.; Azuma, J.; Fujio, Y. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 2010, 121(5), 684-691.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.893677] [PMID: 20100971]
[14]
Khan, J.A.; Cao, M.; Kang, B.Y.; Liu, Y.; Mehta, J.L.; Hermonat, P.L. AAV/hSTAT3-gene delivery lowers aortic inflammatory cell infiltration in LDLR KO mice on high cholesterol. Atherosclerosis, 2010, 213(1), 59-66.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.07.029] [PMID: 20727521]
[15]
Wang, P.; Yang, F.J.; Du, H.; Guan, Y.F.; Xu, T.Y.; Xu, X.W.; Su, D.F.; Miao, C.Y. Involvement of leptin receptor long isoform (LepRb)-STAT3 signaling pathway in brain fat mass- and obesity-associated (FTO) downregulation during energy restriction. Mol. Med., 2011, 17(5-6), 523-532.
[http://dx.doi.org/10.2119/molmed.2010.000134] [PMID: 21267512]
[16]
Mair, M.; Zollner, G.; Schneller, D.; Musteanu, M.; Fickert, P.; Gumhold, J.; Schuster, C.; Fuchsbichler, A.; Bilban, M.; Tauber, S.; Esterbauer, H.; Kenner, L.; Poli, V.; Blaas, L.; Kornfeld, J.W.; Casanova, E.; Mikulits, W.; Trauner, M.; Eferl, R. Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis. Gastroenterology, 2010, 138(7), 2499-2508.
[http://dx.doi.org/10.1053/j.gastro.2010.02.049] [PMID: 20193684]
[17]
Pang, M.; Ma, L.; Gong, R.; Tolbert, E.; Mao, H.; Ponnusamy, M.; Chin, Y.E.; Yan, H.; Dworkin, L.D.; Zhuang, S. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int., 2010, 78(3), 257-268.
[http://dx.doi.org/10.1038/ki.2010.154] [PMID: 20520592]
[18]
Gao, H.; Ward, P.A. STAT3 and suppressor of cytokine signaling 3: potential targets in lung inflammatory responses. Expert Opin. Ther. Targets, 2007, 11(7), 869-880.
[http://dx.doi.org/10.1517/14728222.11.7.869] [PMID: 17614756]
[19]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[20]
Darnell, J.E., Jr Validating Stat3 in cancer therapy. Nat. Med., 2005, 11(6), 595-596.
[http://dx.doi.org/10.1038/nm0605-595] [PMID: 15937466]
[21]
Masciocchi, D.; Gelain, A.; Villa, S.; Meneghetti, F.; Barlocco, D. Signal transducer and activator of transcription 3 (STAT3): a promising target for anticancer therapy. Future Med. Chem., 2011, 3(5), 567-597.
[http://dx.doi.org/10.4155/fmc.11.22] [PMID: 21526897]
[22]
Masciocchi, D.; Gelain, A.; Porta, F.; Meneghetti, F.; Pedretti, A.; Celentano, G.; Barlocco, D.; Legnani, L.; Toma, L.; Kwon, B-M.; Asai, A.; Villa, S. Synthesis, structure-activity relationships and stereochemical investigations of new tricyclic pyridazinone derivatives as potential STAT3 inhibitors. MedChemComm, 2013, 4(8), 1181-1188.
[http://dx.doi.org/10.1039/c3md00095h]
[23]
LaPorte, M.G.; Wang, Z.; Colombo, R.; Garzan, A.; Peshkov, V.A.; Liang, M.; Johnston, P.A.; Schurdak, M.E.; Sen, M.; Camarco, D.P.; Hua, Y.; Pollock, N.I.; Lazo, J.S.; Grandis, J.R.; Wipf, P.; Huryn, D.M. Optimization of pyrazole-containing 1,2,4-triazolo-[3,4-b]thiadiazines, a new class of STAT3 pathway inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(15), 3581-3585.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.017] [PMID: 27381083]
[24]
Matsumoto, S.; Takuwa, T.; Kondo, N.; Hasegawa, S. Influence of a STAT3 inhibitor on tumor infiltrating lymphocytes in malignant pleural mesothelioma. J. Clin. Oncol., 2017, 35(15)e23078
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e23078]
[25]
Zhang, W.; Ma, T.; Li, S.; Yang, Y.; Guo, J.; Yu, W.; Kong, L. Antagonizing STAT3 activation with benzo[b]thiophene 1, 1-dioxide based small molecules. Eur. J. Med. Chem., 2017, 125, 538-550.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.068] [PMID: 27718470]
[26]
Park, J.H.; Hong, S.Y.; Kim, J.; Lee, H.J.; Lee, H.H.; Kim, K.Y.; Lee, S.W.; Oh, H-M.; Rho, M-C.; Lee, B-G.; Song, Y-H. Convenient synthesis of novel phenylpyrimido[1,2-c]thienopyrimidinones as IL-6/STAT3 inhibitors. Heterocycles, 2015, 91(4), 835-848.
[http://dx.doi.org/10.3987/COM-15-13166]
[27]
Rottenberg, M.E.; Carow, B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin. Immunol., 2014, 26(6), 518-532.
[http://dx.doi.org/10.1016/j.smim.2014.10.004] [PMID: 25458989]
[28]
Schmidt, P.J. Regulation of iron metabolism by hepcidin under conditions of inflammation. J. Biol. Chem., 2015, 290(31), 18975-18983.
[http://dx.doi.org/10.1074/jbc.R115.650150] [PMID: 26055723]
[29]
Meneghetti, F.; Villa, S.; Gelain, A.; Barlocco, D.; Chiarelli, L.R.; Pasca, M.R.; Costantino, L. Iron acquisition pathways as targets for antitubercular drugs. Curr. Med. Chem., 2016, 23(35), 4009-4026.
[http://dx.doi.org/10.2174/0929867323666160607223747] [PMID: 27281295]
[30]
Timofeeva, O.A.; Gaponenko, V.; Lockett, S.J.; Tarasov, S.G.; Jiang, S.; Michejda, C.J.; Perantoni, A.O.; Tarasova, N.I. Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem. Biol., 2007, 2(12), 799-809.
[http://dx.doi.org/10.1021/cb700186x] [PMID: 18154267]
[31]
Mäe, M.; Langel, U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol., 2006, 6(5), 509-514.
[http://dx.doi.org/10.1016/j.coph.2006.04.004] [PMID: 16860608]
[32]
Timofeeva, O.A.; Tarasova, N.I.; Zhang, X.; Chasovskikh, S.; Cheema, A.K.; Wang, H.; Brown, M.L.; Dritschilo, A. STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc. Natl. Acad. Sci. USA, 2013, 110(4), 1267-1272.
[http://dx.doi.org/10.1073/pnas.1211805110] [PMID: 23288901]
[33]
Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy: Have all roads been explored? JAK-STAT, 2013, 2(1)e22882
[http://dx.doi.org/10.4161/jkst.22882] [PMID: 24058788]
[34]
Ginter, T.; Fahrer, J.; Kröhnert, U.; Fetz, V.; Garrone, A.; Stauber, R.H.; Reichardt, W.; Müller-Newen, G.; Kosan, C.; Heinzel, T.; Krämer, O.H. Arginine residues within the DNA binding domain of STAT3 promote intracellular shuttling and phosphorylation of STAT3. Cell. Signal., 2014, 26(8), 1698-1706.
[http://dx.doi.org/10.1016/j.cellsig.2014.03.033] [PMID: 24721162]
[35]
Buettner, R.; Corzano, R.; Rashid, R.; Lin, J.; Senthil, M.; Hedvat, M.; Schroeder, A.; Mao, A.; Herrmann, A.; Yim, J.; Li, H.; Yuan, Y.C.; Yakushijin, K.; Yakushijin, F.; Vaidehi, N.; Moore, R.; Gugiu, G.; Lee, T.D.; Yip, R.; Chen, Y.; Jove, R.; Horne, D.; Williams, J.C. Alkylation of cysteine 468 in Stat3 defines a novel site for therapeutic development. ACS Chem. Biol., 2011, 6(5), 432-443.
[http://dx.doi.org/10.1021/cb100253e] [PMID: 21226522]
[36]
Zhang, J-T.; Liu, J-Y. Drugging the “undruggable” DNA-binding domain of STAT3. Oncotarget, 2016, 7(41), 66324-66325.
[http://dx.doi.org/10.18632/oncotarget.12181] [PMID: 27661130]
[37]
Lee, D.Y.; Hwang, C.J.; Choi, J.Y.; Park, M.H.; Song, M.J.; Oh, K.W.; Son, D.J.; Lee, S.H.; Han, S.B.; Hong, J.T. Inhibitory effect of carnosol on phthalic anhydride-induced atopic dermatitis via inhibition of STAT3. Biomol. Ther. (Seoul), 2017, 25(5), 535-544.
[http://dx.doi.org/10.4062/biomolther.2017.006] [PMID: 28655070]
[38]
Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.; Serra, A.T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 398-413.
[http://dx.doi.org/10.1111/bcpt.12335] [PMID: 25287116]
[39]
Oliveira, G. A.; de Oliveira, A.E.; da Conceição, E.C.; Leles, M.I. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem., 2016, 211, 465-473.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.042] [PMID: 27283656]
[40]
Park, K-W.; Kundu, J.; Chae, I-G.; Kim, D-H.; Yu, M-H.; Kundu, J.K.; Chun, K-S. Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int. J. Oncol., 2014, 44(4), 1309-1315.
[http://dx.doi.org/10.3892/ijo.2014.2281] [PMID: 24481553]
[41]
Kashyap, D.; Kumar, G.; Sharma, A.; Sak, K.; Tuli, H.S.; Mukherjee, T.K. Mechanistic insight into carnosol-mediated pharmacological effects: Recent trends and advancements. Life Sci., 2017, 169, 27-36.
[http://dx.doi.org/10.1016/j.lfs.2016.11.013] [PMID: 27871947]
[42]
Fossey, S.L.; Bear, M.D.; Lin, J.; Li, C.; Schwartz, E.B.; Li, P.K.; Fuchs, J.R.; Fenger, J.; Kisseberth, W.C.; London, C.A. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer, 2011, 11, 112.
[http://dx.doi.org/10.1186/1471-2407-11-112] [PMID: 21443800]
[43]
Rath, K.S.; Naidu, S.K.; Lata, P.; Bid, H.K.; Rivera, B.K.; McCann, G.A.; Tierney, B.J.; Elnaggar, A.C.; Bravo, V.; Leone, G.; Houghton, P.; Hideg, K.; Kuppusamy, P.; Cohn, D.E.; Selvendiran, K. HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res., 2014, 74(8), 2316-2327.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2433] [PMID: 24590057]
[44]
Shi, L.; Zheng, H.; Hu, W.; Zhou, B.; Dai, X.; Zhang, Y.; Liu, Z.; Wu, X.; Zhao, C.; Liang, G. Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. OncoTargets Ther., 2017, 10, 1767-1776.
[http://dx.doi.org/10.2147/OTT.S129449] [PMID: 28367059]
[45]
Huang, W.; Dong, Z.; Wang, F.; Peng, H.; Liu, J-Y.; Zhang, J-T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol., 2014, 9(5), 1188-1196.
[http://dx.doi.org/10.1021/cb500071v] [PMID: 24661007]
[46]
Huang, W.; Dong, Z.; Chen, Y.; Wang, F.; Wang, C.J.; Peng, H.; He, Y.; Hangoc, G.; Pollok, K.; Sandusky, G.; Fu, X-Y.; Broxmeyer, H.E.; Zhang, Z-Y.; Liu, J-Y.; Zhang, J-T. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene, 2016, 35(6), 783-792.
[http://dx.doi.org/10.1038/onc.2015.215] [PMID: 26073084]
[47]
Sun, S.; Yue, P.; He, M.; Zhang, X.; Paladino, D.; Al-Abed, Y.; Turkson, J.; Buolamwini, J.K. An integrated computational and experimental binding study identifies the DNA binding domain as the putative binding site of novel pyrimidinetrione signal transducer and activator of transcription 3 (STAT3) inhibitors. Drug Des., 2017, 6(1)1000142
[http://dx.doi.org/10.4172/2169-0138.1000142]
[48]
Assi, H.H.; Paran, C.; VanderVeen, N.; Savakus, J.; Doherty, R.; Petruzzella, E.; Hoeschele, J.D.; Appelman, H.; Raptis, L.; Mikkelsen, T.; Lowenstein, P.R.; Castro, M.G. Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy. J. Pharmacol. Exp. Ther., 2014, 349(3), 458-469.
[http://dx.doi.org/10.1124/jpet.114.214619] [PMID: 24696041]
[49]
Ashizawa, T.; Miyata, H.; Iizuka, A.; Komiyama, M.; Oshita, C.; Kume, A.; Nogami, M.; Yagoto, M.; Ito, I.; Oishi, T.; Watanabe, R.; Mitsuya, K.; Matsuno, K.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Asai, A.; Nakasu, Y.; Yamaguchi, K.; Akiyama, Y. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int. J. Oncol., 2013, 43(1), 219-227.
[http://dx.doi.org/10.3892/ijo.2013.1916] [PMID: 23612755]
[50]
Yue, P.; Lopez-Tapia, F.; Paladino, D.; Li, Y.; Chen, C.H.; Namanja, A.T.; Hilliard, T.; Chen, Y.; Tius, M.A.; Turkson, J. Hydroxamic acid and benzoic acid-based STAT3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res., 2016, 76(3), 652-663.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3558] [PMID: 26088127]
[51]
Szelag, M.; Wesoly, J.; Bluyssen, H.A. Advances in peptidic and peptidomimetic-based approaches to inhibit STAT signaling in human diseases. Curr. Protein Pept. Sci., 2016, 17(2), 135-146.
[http://dx.doi.org/10.2174/1389203716666151102103706] [PMID: 26521960]
[52]
Teng, P.; Zhang, X.; Wu, H.; Qiao, Q.; Sebti, S.M.; Cai, J. Identification of novel inhibitors that disrupt STAT3-DNA interaction from a γ-AApeptide OBOC combinatorial library. Chem. Commun. (Camb.), 2014, 50(63), 8739-8742.
[http://dx.doi.org/10.1039/C4CC03909B] [PMID: 24964402]
[53]
Niu, Y.; Hu, Y.; Li, X.; Chen, J.; Cai, J. γ-AApeptides: design, synthesis and evaluation. New J. Chem., 2011, 35(3), 542-545.
[http://dx.doi.org/10.1039/c0nj00943a]
[54]
Liu, K.; Lin, B.; Lan, X. Aptamers: a promising tool for cancer imaging, diagnosis, and therapy. J. Cell. Biochem., 2013, 114(2), 250-255.
[http://dx.doi.org/10.1002/jcb.24373] [PMID: 22949372]
[55]
Farokhzad, O.C.; Jon, S.; Khademhosseini, A.; Tran, T.N.; Lavan, D.A.; Langer, R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res., 2004, 64(21), 7668-7672.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2550] [PMID: 15520166]
[56]
Nagel-Wolfrum, K.; Buerger, C.; Wittig, I.; Butz, K.; Hoppe-Seyler, F.; Groner, B. The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol. Cancer Res., 2004, 2(3), 170-182.
[PMID: 15037656]
[57]
Zhang, X.; Zhang, J.; Wang, L.; Wei, H.; Tian, Z. Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer, 2007, 7, 149.
[http://dx.doi.org/10.1186/1471-2407-7-149] [PMID: 17683579]
[58]
Leong, P.L.; Andrews, G.A.; Johnson, D.E.; Dyer, K.F.; Xi, S.; Mai, J.C.; Robbins, P.D.; Gadiparthi, S.; Burke, N.A.; Watkins, S.F.; Grandis, J.R. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4138-4143.
[http://dx.doi.org/10.1073/pnas.0534764100] [PMID: 12640143]
[59]
Souissi, I.; Ladam, P.; Cognet, J.A.; Le Coquil, S.; Varin-Blank, N.; Baran-Marszak, F.; Metelev, V.; Fagard, R.A. STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol. Cancer, 2012, 11, 12.
[http://dx.doi.org/10.1186/1476-4598-11-12] [PMID: 22423663]
[60]
Souissi, I.; Najjar, I.; Ah-Koon, L.; Schischmanoff, P.O.; Lesage, D.; Le Coquil, S.; Roger, C.; Dusanter-Fourt, I.; Varin-Blank, N.; Cao, A.; Metelev, V.; Baran-Marszak, F.; Fagard, R.A. STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB. BMC Cell Biol., 2011, 12, 14.
[http://dx.doi.org/10.1186/1471-2121-12-14] [PMID: 21486470]
[61]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P-K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0191] [PMID: 22719020]
[62]
Zhang, Q.; Hossain, D.M.S.; Duttagupta, P.; Moreira, D.; Zhao, X.; Won, H.; Buettner, R.; Nechaev, S.; Majka, M.; Zhang, B.; Cai, Q.; Swiderski, P.; Kuo, Y-H.; Forman, S.; Marcucci, G.; Kortylewski, M. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127(13), 1687-1700.
[http://dx.doi.org/10.1182/blood-2015-08-665604] [PMID: 26796361]
[63]
Kortylewski, M.; Moreira, D. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol. Immunother., 2017, 66(8), 979-988.
[http://dx.doi.org/10.1007/s00262-017-1966-2] [PMID: 28214929]
[64]
Njatcha, C.; Farooqui, M.; Grandis, J.R.; Siegfried, J.M. Targeting the EGFR/STAT3 axis in NSCLC with resistance to EGFR tyrosine kinase inhibitors using an oligonucleotide-based decoy. Cancer Res., 2017, 77(13), 4101.
[http://dx.doi.org/10.1158/1538-7445.AM2017-4101]
[65]
Resetca, D.; Haftchenary, S.; Gunning, P.T.; Wilson, D.J. Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization. J. Biol. Chem., 2014, 289(47), 32538-32547.
[http://dx.doi.org/10.1074/jbc.M114.595454] [PMID: 25288792]
[66]
Shin, D-S.; Kim, H-N.; Shin, K.D.; Yoon, Y.J.; Kim, S-J.; Han, D.C.; Kwon, B-M. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res., 2009, 69(1), 193-202.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2575] [PMID: 19118003]
[67]
Park, I.H.; Li, C. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J. Mol. Recognit., 2011, 24(2), 254-265.
[http://dx.doi.org/10.1002/jmr.1047] [PMID: 21360612]
[68]
Yesylevskyy, S.O.; Ramseyer, C.; Pudlo, M.; Pallandre, J.R.; Borg, C. Selective inhibition of STAT3 with respect to STAT1: insights from molecular dynamics and ensemble docking simulations. J. Chem. Inf. Model., 2016, 56(8), 1588-1596.
[http://dx.doi.org/10.1021/acs.jcim.6b00198] [PMID: 27479469]
[69]
Fletcher, S.; Page, B.D.G.; Zhang, X.; Yue, P.; Li, Z.H.; Sharmeen, S.; Singh, J.; Zhao, W.; Schimmer, A.D.; Trudel, S.; Turkson, J.; Gunning, P.T. Antagonism of the Stat3-Stat3 protein dimer with salicylic acid based small molecules. ChemMedChem, 2011, 6(8), 1459-1470.
[http://dx.doi.org/10.1002/cmdc.201100194] [PMID: 21618433]
[70]
Zhang, X.; Yue, P.; Page, B.D.; Li, T.; Zhao, W.; Namanja, A.T.; Paladino, D.; Zhao, J.; Chen, Y.; Gunning, P.T.; Turkson, J. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9623-9628.
[http://dx.doi.org/10.1073/pnas.1121606109] [PMID: 22623533]
[71]
Namanja, A.T.; Wang, J.; Buettner, R.; Colson, L.; Chen, Y. Allosteric communication across STAT3 domains associated with STAT3 function and disease-causing mutation. J. Mol. Biol., 2016, 428(3), 579-589.
[http://dx.doi.org/10.1016/j.jmb.2016.01.003] [PMID: 26774853]
[72]
Li, W.; Saud, S.M.; Young, M.R.; Colburn, N.H.; Hua, B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol. Cell. Biochem., 2015, 406(1-2), 63-73.
[http://dx.doi.org/10.1007/s11010-015-2424-0] [PMID: 25912550]
[73]
Tang, Z.; Tang, Y.; Fu, L. Growth inhibition and apoptosis induction in human hepatoma cells by tanshinone II A. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2003, 23(2), 166-168, 172.
[http://dx.doi.org/10.1007/BF02859946] [PMID: 12973939]
[74]
Yuan, S.L.; Wei, Y.Q.; Wang, X.J.; Xiao, F.; Li, S.F.; Zhang, J. Growth inhibition and apoptosis induction of tanshinone II-A on human hepatocellular carcinoma cells. World J. Gastroenterol., 2004, 10(14), 2024-2028.
[http://dx.doi.org/10.3748/wjg.v10.i14.2024] [PMID: 15237427]
[75]
Su, C-C.; Chen, G-W.; Kang, J-C.; Chan, M-H. Growth inhibition and apoptosis induction by tanshinone IIA in human colon adenocarcinoma cells. Planta Med., 2008, 74(11), 1357-1362.
[http://dx.doi.org/10.1055/s-2008-1081299] [PMID: 18622903]
[76]
Jin, D-Z.; Yin, L-L.; Ji, X-Q.; Zhu, X-Z. Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. Eur. J. Pharmacol., 2006, 549(1-3), 166-172.
[http://dx.doi.org/10.1016/j.ejphar.2006.07.055] [PMID: 16989810]
[77]
Dell’Orto, S.; Masciocchi, D.; Villa, S.; Meneghetti, F.; Celentano, G.; Barlocco, D.; Colombo, D.; Legnani, L.; Toma, L.; Jeon, Y.J.; Kwon, B-M.; Asai, A.; Gelain, A. Modeling, synthesis and NMR characterization of novel chimera compounds targeting STAT3. MedChemComm, 2014, 5, 1651-1657.
[http://dx.doi.org/10.1039/C4MD00177J]
[78]
Kim, J-K.; Kim, J-Y.; Kim, H-J.; Park, K-G.; Harris, R.A.; Cho, W-J.; Lee, J-T.; Lee, I-K. Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity. PLoS One, 2013, 8(11)e80391
[http://dx.doi.org/10.1371/journal.pone.0080391] [PMID: 24260381]
[79]
Sethi, G.; Chatterjee, S.; Rajendran, P.; Li, F.; Shanmugam, M.K.; Wong, K.F.; Kumar, A.P.; Senapati, P.; Behera, A.K.; Hui, K.M.; Basha, J.; Natesh, N.; Luk, J.M.; Kundu, T.K. Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Mol. Cancer, 2014, 13, 66.
[http://dx.doi.org/10.1186/1476-4598-13-66] [PMID: 24655440]
[80]
Wang, Y.; Ren, X.; Deng, C.; Yang, L.; Yan, E.; Guo, T.; Li, Y.; Xu, M.X. Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol. Rep., 2013, 30(6), 2691-2696.
[http://dx.doi.org/10.3892/or.2013.2743] [PMID: 24065300]
[81]
Mantaj, J.; Rahman, S.M.A.; Bokshi, B.; Hasan, C.M.; Jackson, P.J.M.; Parsons, R.B.; Rahman, K.M. Crispene E, a cis-clerodane diterpene inhibits STAT3 dimerization in breast cancer cells. Org. Biomol. Chem., 2015, 13(13), 3882-3886.
[http://dx.doi.org/10.1039/C5OB00052A] [PMID: 25721973]
[82]
Bill, M.A.; Nicholas, C.; Mace, T.A.; Etter, J.P.; Li, C.; Schwartz, E.B.; Fuchs, J.R.; Young, G.S.; Lin, L.; Lin, J.; He, L.; Phelps, M.; Li, P-K.; Lesinski, G.B. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. PLoS One, 2012, 7(8)e40724
[http://dx.doi.org/10.1371/journal.pone.0040724] [PMID: 22899991]
[83]
Jordan, B.C.; Kumar, B.; Thilagavathi, R.; Yadhav, A.; Kumar, P.; Selvam, C. Synthesis, evaluation of cytotoxic properties of promising curcumin analogues and investigation of possible molecular mechanisms. Chem. Biol. Drug Des., 2018, 91(1), 332-337.
[http://dx.doi.org/10.1111/cbdd.13061] [PMID: 28649799]
[84]
Liu, L-J.; Leung, K-H.; Chan, D-S.; Wang, Y-T.; Ma, D-L.; Leung, C-H. Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis., 2014, 5e1293
[http://dx.doi.org/10.1038/cddis.2014.250] [PMID: 24922077]
[85]
Liu, L.; Wu, Y.; Cao, K.; Xu, Y-Y.; Gao, X-H.; Chen, H-D.; Geng, L. Shikonin inhibits IFN-γ-induced K17 over-expression of HaCaT cells by interfering with STAT3 signaling. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9202-9207.
[PMID: 26464667]
[86]
Qiu, H-Y.; Zhu, X.; Luo, Y-L.; Lin, H-Y.; Tang, C-Y.; Qi, J-L.; Pang, Y.J.; Yang, R-W.; Lu, G-H.; Wang, X-M.; Yang, Y-H. Identification of new shikonin derivatives as antitumor agents targeting STAT3 SH2 domain. Sci. Rep., 2017, 7(1), 2863.
[http://dx.doi.org/10.1038/s41598-017-02671-7] [PMID: 28588262]
[87]
Yan, W.; Tu, B.; Liu, Y-Y.; Wang, T-Y.; Qiao, H.; Zhai, Z-J.; Li, H-W.; Tang, T-T. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expression. Bone Res., 2013, 1(4), 362-370.
[http://dx.doi.org/10.4248/BR201304007] [PMID: 26273514]
[88]
Lin, L.; Liu, A.; Peng, Z.; Lin, H-J.; Li, P-K.; Li, C.; Lin, J. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res., 2011, 71(23), 7226-7237.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4660] [PMID: 21900397]
[89]
Bhasin, D.; Cisek, K.; Pandharkar, T.; Regan, N.; Li, C.; Pandit, B.; Lin, J.; Li, P-K. Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(1), 391-395.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.031] [PMID: 18006313]
[90]
Dhanik, A.; McMurray, J.S.; Kavraki, L.E. Binding modes of peptidomimetics designed to inhibit STAT3. PLoS One, 2012, 7(12)e51603
[http://dx.doi.org/10.1371/journal.pone.0051603] [PMID: 23251591]
[91]
Schust, J.; Sperl, B.; Hollis, A.; Mayer, T.U.; Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol., 2006, 13(11), 1235-1242.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.018] [PMID: 17114005]
[92]
Matsuno, K.; Masuda, Y.; Uehara, Y.; Sato, H.; Muroya, A.; Takahashi, O.; Yokotagawa, T.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Ashizawa, T.; Oshita, C.; Tai, S.; Ishii, H.; Akiyama, Y.; Asai, A. Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med. Chem. Lett., 2010, 1(8), 371-375.
[http://dx.doi.org/10.1021/ml1000273] [PMID: 24900220]
[93]
Asai, A.; Matsuno, K.; Ogo, N.; Yokotagawa, T.; Takahashi, O.; Akiyama, Y.; Ashizawa, T.; Okawara, T. Preparation of quinolinecarboxamide derivatives as STAT3 inhibitors WO 2010004761 A1, January 14 2010.
[94]
Akiyama, Y.; Nonomura, C.; Ashizawa, T.; Iizuka, A.; Kondou, R.; Miyata, H.; Sugino, T.; Mitsuya, K.; Hayashi, N.; Nakasu, Y.; Asai, A.; Ito, M.; Kiyohara, Y.; Yamaguchi, K. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol. Lett., 2017, 190, 20-25.
[http://dx.doi.org/10.1016/j.imlet.2017.07.005] [PMID: 28716484]
[95]
Botta, A.; Sirignano, E.; Popolo, A.; Saturnino, C.; Terracciano, S.; Foglia, A.; Sinicropi, M.S.; Longo, P.; Di Micco, S. Identification of lead compound as inhibitors of STAT3: design, synthesis and bioactivity. Mol. Inform., 2015, 34(10), 689-697.
[http://dx.doi.org/10.1002/minf.201500043] [PMID: 27490969]
[96]
Pallandre, J.R.; Borg, C.; Rognan, D.; Boibessot, T.; Luzet, V.; Yesylevskyy, S.; Ramseyer, C.; Pudlo, M. Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. Eur. J. Med. Chem., 2015, 103, 163-174.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.054] [PMID: 26352675]
[97]
Ji, P.; Xu, X.; Ma, S.; Fan, J.; Zhou, Q.; Mao, X.; Qiao, C. Novel 2-carbonylbenzo[b]thiophene 1,1-dioxide derivatives as potent inhibitors of STAT3 signaling pathway. ACS Med. Chem. Lett., 2015, 6(9), 1010-1014.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00228] [PMID: 26396689]
[98]
Gao, D.; Xiao, Q.; Zhang, M.; Li, Y. Design, synthesis and biological evaluation of benzyloxyphenyl-methylaminophenol derivatives as STAT3 signaling pathway inhibitors. Bioorg. Med. Chem., 2016, 24(11), 2549-2558.
[http://dx.doi.org/10.1016/j.bmc.2016.04.022] [PMID: 27134117]
[99]
Ji, P.; Yuan, C.; Ma, S.; Fan, J.; Fu, W.; Qiao, C. 4-Carbonyl-2,6-dibenzylidenecyclohexanone derivatives as small molecule inhibitors of STAT3 signaling pathway. Bioorg. Med. Chem., 2016, 24(23), 6174-6182.
[http://dx.doi.org/10.1016/j.bmc.2016.09.070] [PMID: 27816267]
[100]
Leung, K-H.; Liu, L-J.; Lin, S.; Lu, L.; Zhong, H-J.; Susanti, D.; Rao, W.; Wang, M.; Che, W.I.; Chan, D.S-H.; Leung, C-H.; Chan, P.W.H.; Ma, D-L. Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods, 2015, 71, 38-43.
[http://dx.doi.org/10.1016/j.ymeth.2014.07.010] [PMID: 25160651]
[101]
Daka, P.; Liu, A.; Karunaratne, C.; Csatary, E.; Williams, C.; Xiao, H.; Lin, J.; Xu, Z.; Page, R.C.; Wang, H. Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg. Med. Chem., 2015, 23(6), 1348-1355.
[http://dx.doi.org/10.1016/j.bmc.2015.01.025] [PMID: 25698618]
[102]
Xiao, H.; Bid, H.K.; Jou, D.; Wu, X.; Yu, W.; Li, C.; Houghton, P.J.; Lin, J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J. Biol. Chem., 2015, 290(6), 3418-3429.
[http://dx.doi.org/10.1074/jbc.M114.616748] [PMID: 25313399]
[103]
Yu, W.; Xiao, H.; Lin, J.; Li, C. Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design. J. Med. Chem., 2013, 56(11), 4402-4412.
[http://dx.doi.org/10.1021/jm400080c] [PMID: 23651330]
[104]
Yu, P.Y.; Gardner, H.L.; Roberts, R.; Cam, H.; Hariharan, S.; Ren, L.; LeBlanc, A.K.; Xiao, H.; Lin, J.; Guttridge, D.C.; Mo, X.; Bennett, C.E.; Coss, C.C.; Ling, Y.; Phelps, M.A.; Houghton, P.; London, C.A. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma. PLoS One, 2017, 12(7)e0181885
[http://dx.doi.org/10.1371/journal.pone.0181885] [PMID: 28750090]
[105]
Gabriele, E.; Ricci, C.; Meneghetti, F.; Ferri, N.; Asai, A.; Sparatore, A. Methanethiosulfonate derivatives as ligands of the STAT3-SH2 domain. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 337-344.
[http://dx.doi.org/10.1080/14756366.2016.1252757] [PMID: 28097912]
[106]
Gabriele, E.; Porta, F.; Facchetti, G.; Galli, C.; Gelain, A.; Meneghetti, F.; Rimoldi, I.; Romeo, S.; Villa, S.; Ricci, C.; Ferri, N.; Asai, A.; Barlocco, D.; Sparatore, A. Synthesis of new dithiolethione and methanethiosulfonate systems endowed with pharmaceutical interest. ARKIVOC, 2017, 235-250.
[107]
Huang, M.; Chen, Z.; Zhang, L.; Huang, Z.; Chen, Y.; Xu, J.; Zhang, J.; Shu, X. Screening and biological evaluation of a novel STAT3 signaling pathway inhibitor against cancer. Bioorg. Med. Chem. Lett., 2016, 26(21), 5172-5176.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.073] [PMID: 27727126]
[108]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[109]
Brambilla, L.; Genini, D.; Laurini, E.; Merulla, J.; Perez, L.; Fermeglia, M.; Carbone, G.M.; Pricl, S.; Catapano, C.V. Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol. Oncol., 2015, 9(6), 1194-1206.
[http://dx.doi.org/10.1016/j.molonc.2015.02.012] [PMID: 25777967]
[110]
Kim, M.J.; Nam, H.J.; Kim, H.P.; Han, S.W. Im, S.A.; Kim, T.Y.; Oh, D.Y.; Bang, Y.J. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett., 2013, 335(1), 145-152.
[http://dx.doi.org/10.1016/j.canlet.2013.02.010] [PMID: 23402820]
[111]
Hayakawa, F.; Sugimoto, K.; Harada, Y.; Hashimoto, N.; Ohi, N.; Kurahashi, S.; Naoe, T. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J., 2013, 3e166
[http://dx.doi.org/10.1038/bcj.2013.63] [PMID: 24292418]
[112]
Oh, D-Y.; Lee, S-H.; Han, S-W.; Kim, M-J.; Kim, T-M.; Kim, T-Y.; Heo, D.S.; Yuasa, M.; Yanagihara, Y.; Bang, Y-J. Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res. Treat., 2015, 47(4), 607-615.
[http://dx.doi.org/10.4143/crt.2014.249] [PMID: 25715763]
[113]
Genini, D.; Brambilla, L.; Laurini, E.; Merulla, J.; Civenni, G.; Pandit, S.; D’Antuono, R.; Perez, L.; Levy, D.E.; Pricl, S.; Carbone, G.M.; Catapano, C.V. Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Proc. Natl. Acad. Sci. USA, 2017, 114(25), E4924-E4933.
[http://dx.doi.org/10.1073/pnas.1615730114] [PMID: 28584133]
[114]
Wong, A.L.; Soo, R.A.; Tan, D.S.; Lee, S.C.; Lim, J.S.; Marban, P.C.; Kong, L.R.; Lee, Y.J.; Wang, L.Z.; Thuya, W.L.; Soong, R.; Yee, M.Q.; Chin, T.M.; Cordero, M.T.; Asuncion, B.R.; Pang, B.; Pervaiz, S.; Hirpara, J.L.; Sinha, A.; Xu, W.W.; Yuasa, M.; Tsunoda, T.; Motoyama, M.; Yamauchi, T.; Goh, B.C. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann. Oncol., 2015, 26(5), 998-1005.
[http://dx.doi.org/10.1093/annonc/mdv026] [PMID: 25609248]
[115]
Nan, J.; Du, Y.; Chen, X.; Bai, Q.; Wang, Y.; Zhang, X.; Zhu, N.; Zhang, J.; Hou, J.; Wang, Q.; Yang, J. TPCA-1 is a direct dual inhibitor of STAT3 and NF-κB and regresses mutant EGFR-associated human non-small cell lung cancers. Mol. Cancer Ther., 2014, 13(3), 617-629.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0464] [PMID: 24401319]
[116]
Hato, S.V.; Figdor, C.G.; Takahashi, S.; Pen, A.E.; Halilovic, A.; Bol, K.F.; Vasaturo, A.; Inoue, Y.; de Haas, N.; Verweij, D.; Van Herpen, C.M.L.; Kaanders, J.H.; van Krieken, J.H.J.M.; Van Laarhoven, H.W.M.; Hooijer, G.K.J.; Punt, C.J.A.; Asai, A.; de Vries, I.J.M.; Lesterhuis, W.J. Direct inhibition of STAT signaling by platinum drugs contributes to their anti-cancer activity. Oncotarget, 2017, 8(33), 54434-54443.
[http://dx.doi.org/10.18632/oncotarget.17661] [PMID: 28903353]
[117]
Porta, F.; Facchetti, G.; Ferri, N.; Gelain, A.; Meneghetti, F.; Villa, S.; Barlocco, D.; Masciocchi, D.; Asai, A.; Miyoshi, N.; Marchianò, S.; Kwon, B-M.; Jin, Y.; Gandin, V.; Marzano, C.; Rimoldi, I. An in vivo active 1,2,5-oxadiazole Pt(II) complex: A promising anticancer agent endowed with STAT3 inhibitory properties. Eur. J. Med. Chem., 2017, 131, 196-206.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.017] [PMID: 28324784]
[118]
Ma, D-L.; Liu, L-J.; Leung, K-H.; Chen, Y-T.; Zhong, H-J.; Chan, D.S-H.; Wang, H-M.D.; Leung, C-H. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9178-9182.
[http://dx.doi.org/10.1002/anie.201404686] [PMID: 24889897]
[119]
Drewry, J.A.; Fletcher, S.; Yue, P.; Marushchak, D.; Zhao, W.; Sharmeen, S.; Zhang, X.; Schimmer, A.D.; Gradinaru, C.; Turkson, J.; Gunning, P.T. Coordination complex SH2 domain proteomimetics: an alternative approach to disrupting oncogenic protein-protein interactions. Chem. Commun. (Camb.), 2010, 46(6), 892-894.
[http://dx.doi.org/10.1039/B919608K] [PMID: 20107641]
[120]
Turkson, J.; Gunning, P. Substituted 2-(9H-purin-9- yl)acetic acid analogs as inhibitors of STAT3. WO 2011163424 A2, December 29, 2011.
[121]
Turkson, J.; Gunning, P. Compounds that suppress cancer cells and exhibit antitumor activity WO 2010117438 A2, October 14, 2010.
[122]
Fishel, M.L.; Gunning, P.T.; Haftchenary, S.; Page, B.D.G.; Weiss, S.; Luchman, H.A. Preparation of new salicylic acid derivatives for inhibiting STAT3 and/or STAT5 activity. WO 2013177534 A2, November 28 2013.
[123]
Sebti, S.M.; Lawrence, N.J.; Lawrence, H.R. Preparation of STAT3 dimerization inhibitors. WO 2014070859 A1, May 8, 2014.
[124]
Li, C.; Yu, W.; Lin, J. Preparation of naphthalenesulfonamides, naphtho[1,8-cd]isothiazolones, and related compounds as STAT3 inhibitors and their use for treating cancer and other cell proliferation disorders. WO 2014028909 A1, February 20, , 2014.
[125]
McMurray, J.S.; Mandal, P.K.; Liao, W.S.; Ren, Z.; Chen, X.; Rajaopal, R.; Robertson, F. Preparation of phosphopeptide inhibitors of STAT3. WO 2010118309 A2, October 14 2010.
[126]
Ball, D.P.; Lewis, A.M.; Williams, D.; Resetca, D.; Wilson, D.J.; Gunning, P.T. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent. Oncotarget, 2016, 7(15), 20669-20679.
[http://dx.doi.org/10.18632/oncotarget.7838] [PMID: 26942696]
[127]
Butturini, E.; Gotte, G.; Dell’Orco, D.; Chiavegato, G.; Marino, V.; Canetti, D.; Cozzolino, F.; Monti, M.; Pucci, P.; Mariotto, S. Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function. Biochem. J., 2016, 473(19), 3205-3219.
[http://dx.doi.org/10.1042/BCJ20160294] [PMID: 27486258]
[128]
Zhao, Y.; Niu, X-M.; Qian, L.P.; Liu, Z-Y.; Zhao, Q-S.; Sun, H-D. Synthesis and cytotoxicity of some new eriocalyxin B derivatives. Eur. J. Med. Chem., 2007, 42(4), 494-502.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.004] [PMID: 17189663]
[129]
Don-Doncow, N.; Escobar, Z.; Johansson, M.; Kjellström, S.; Garcia, V.; Munoz, E.; Sterner, O.; Bjartell, A.; Hellsten, R. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J. Biol. Chem., 2014, 289(23), 15969-15978.
[http://dx.doi.org/10.1074/jbc.M114.564252] [PMID: 24755219]
[130]
Canesin, G.; Evans-Axelsson, S.; Hellsten, R.; Sterner, O.; Krzyzanowska, A.; Andersson, T.; Bjartell, A. The STAT3 inhibitor galiellalactone effectively reduces tumor growth and metastatic spread in an orthotopic xenograft mouse model of prostate cancer. Eur. Urol., 2016, 69(3), 400-404.
[http://dx.doi.org/10.1016/j.eururo.2015.06.016] [PMID: 26144873]
[131]
Sun, H-D.; Lin, Z-W.; Niu, F-D.; Shen, P-Q.; Pan, L-T.; Lin, L-Z.; Cordell, G.A. Diterpenoids from Isodon eriocalyx var. laxiflora. Phytochemistry, 1995, 38(6), 1451-1455.
[http://dx.doi.org/10.1016/0031-9422(94)00815-B] [PMID: 7786475]
[132]
Yu, X.; He, L.; Cao, P.; Yu, Q. Eriocalyxin B inhibits STAT3 signaling by covalently targeting STAT3 and blocking phosphorylation and activation of STAT3. PLoS One, 2015, 10(5)e0128406
[http://dx.doi.org/10.1371/journal.pone.0128406] [PMID: 26010889]
[133]
Qing, Y.; Stark, G.R. Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J. Biol. Chem., 2004, 279(40), 41679-41685.
[http://dx.doi.org/10.1074/jbc.M406413200] [PMID: 15284232]
[134]
Sun, J.; Blaskovich, M.A.; Jove, R.; Livingston, S.K.; Coppola, D.; Sebti, S.M. Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene, 2005, 24(20), 3236-3245.
[http://dx.doi.org/10.1038/sj.onc.1208470] [PMID: 15735720]
[135]
Johansson, M.; Sterner, O. Preparation of tricyclic prodrugs of Galiellalactone WO 2015132396 A1, September 11 2015.
[136]
Escobar, Z.; Bjartell, A.; Canesin, G.; Evans-Axelsson, S.; Sterner, O.; Hellsten, R.; Johansson, M.H. Preclinical Characterization of 3β-(N-Acetyl L-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a Prodrug of a Direct STAT3 Inhibitor for the Treatment of Prostate Cancer. J. Med. Chem., 2016, 59(10), 4551-4562.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01814] [PMID: 27111731]
[137]
Tahara, T.; Streit, U.; Pelish, H.E.; Shair, M.D. STAT3 inhibitory activity of structurally simplified withaferin A analogues. Org. Lett., 2017, 19(7), 1538-1541.
[http://dx.doi.org/10.1021/acs.orglett.7b00332] [PMID: 28350459]
[138]
Um, H.J.; Min, K-J.; Kim, D.E.; Kwon, T.K. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem. Biophys. Res. Commun., 2012, 427(1), 24-29.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.133] [PMID: 22982675]
[139]
Choi, B.Y.; Kim, B-W. Withaferin-A inhibits colon cancer cell growth by blocking STAT3 transcriptional activity. J. Cancer Prev., 2015, 20(3), 185-192.
[http://dx.doi.org/10.15430/JCP.2015.20.3.185] [PMID: 26473157]
[140]
Yco, L.P.; Mocz, G.; Opoku-Ansah, J.; Bachmann, A.S. Withaferin A inhibits STAT3 and induces tumor cell death in neuroblastoma and multiple myeloma. Biochem. Insights, 2014, 7, 1-13.
[http://dx.doi.org/10.4137/BCI.S18863] [PMID: 25452693]
[141]
Heidelberger, S.; Zinzalla, G.; Antonow, D.; Essex, S.; Basu, B.P.; Palmer, J.; Husby, J.; Jackson, P.J.M.; Rahman, K.M.; Wilderspin, A.F.; Zloh, M.; Thurston, D.E. Investigation of the protein alkylation sites of the STAT3:STAT3 inhibitor Stattic by mass spectrometry. Bioorg. Med. Chem. Lett., 2013, 23(16), 4719-4722.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.066] [PMID: 23810499]
[142]
Iwamoto, K.; Uehara, Y.; Inoue, Y.; Taguchi, K.; Muraoka, D.; Ogo, N.; Matsuno, K.; Asai, A. Inhibition of STAT3 by anticancer drug bendamustine. PLoS One, 2017, 12(1)e0170709
[http://dx.doi.org/10.1371/journal.pone.0170709] [PMID: 28125678]
[143]
Bharadwaj, U.; Eckols, T.K.; Kolosov, M.; Kasembeli, M.M.; Adam, A.; Torres, D.; Zhang, X.; Dobrolecki, L.E.; Wei, W.; Lewis, M.T.; Dave, B.; Chang, J.C.; Landis, M.D.; Creighton, C.J.; Mancini, M.A.; Tweardy, D.J. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene, 2015, 34(11), 1341-1353.
[http://dx.doi.org/10.1038/onc.2014.72] [PMID: 24681959]
[144]
Dutzmann, J.; Daniel, J.M.; Bauersachs, J.; Hilfiker-Kleiner, D.; Sedding, D.G. Emerging translational approaches to target STAT3 signalling and its impact on vascular disease. Cardiovasc. Res., 2015, 106(3), 365-374.
[http://dx.doi.org/10.1093/cvr/cvv103] [PMID: 25784694]
[145]
Yang, H.; Yamazaki, T.; Pietrocola, F.; Zhou, H.; Zitvogel, L.; Ma, Y.; Kroemer, G. Improvement of immunogenic chemotherapy by STAT3 inhibition. OncoImmunology, 2015, 5(2)e1078061
[http://dx.doi.org/10.1080/2162402X.2015.1078061] [PMID: 27057456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy