[1]
Yarbro, C.H.; Wujcik, D.; Gobel, B.H. Cancer nursing: Principles and practice; Jones and Bartlett Publishers: Sudbury, Mass., 2011.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65, 5-29.
[3]
Dubey, P.; Srinivas Rao, S.; Aparna, V. Synthesis of some novel 3-(2-chloro-3-quinolyl)-5-phenyl [1, 3] thiazolo [2, 3-c][1, 2, 4] triazoles. Heterocycl. Commun., 2003, 9, 281-286.
[4]
Mital, A.; Negi, V.S.; Ramachandran, U. Synthesis and antimycobacterial activities of certain trifluoromethyl-aminoquinoline derivatives. Arkivoc, 2006, 10, 220-227.
[5]
Pandey, V.; Tusi, S.; Misra, R.; Shukla, R. A chemical strategy for the construction of quinoline isoquinoline core units., 2010.
[6]
Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S. Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde. Arkivoc, 2006, 11, 196-204.
[7]
Srivastava, A.; Chandra, A.; Singh, R. Thiophene-fused quinoline analogues: facile synthesis of 3-amino-2-cyanothieno [2, 3-b] quinolines from 2-chloro-3-cyanoquinolines. Ind J. Chem., 2005, 44B, 2077-2081.
[8]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
[9]
Desai, N.C.; Dodiya, A.; Shihory, N. Synthesis and antimicrobial activity of novel quinazolinone-thiazolidine-quinoline compounds. J. Saudi Chem. Soc., 2013, 17, 259-267.
[10]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45, 3374-3383.
[11]
Rossiter, S.; Peron, J.M.; Whitfield, P.J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. Bioorg. Med. Chem. Lett., 2005, 15, 4806-4808.
[12]
Kumar, H.; Devaraji, V.; Joshi, R.; Jadhao, M.; Ahirkar, P.; Prasath, R.; Bhavana, P.; Ghosh, S.K. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Advances, 2015, 5, 65496-65513.
[13]
Fernandez-Bachiller, M.I.; Perez, C.; Gonzalez-Munoz, G.C.; Conde, S.; Lopez, M.G.; Villarroya, M.; Garcia, A.G.; Rodriguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53, 4927-4937.
[14]
Magda, A.; Massoud, M.A.; Tantawy, A.S.; Nasr, M.N.; Barghash, A.E-D.M.; Abou-Zeid, L.A. Synthesis and biological evaluation of new unsaturated derivatives of cyclic compounds as potent antioxidant agent. Der. Pharma. Chemica., 2012, 5, 1785-1797.
[15]
El-Gazzar, A.B.A.; Youssef, M.M.; Youssef, A.M.S.; Abu-Hashem, A.A.; Badria, F.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2009, 44, 609-624.
[16]
El-Emam, A.A.; Massoud, M.A.; El-Bendary, E.R.; El-Sayed, M.A. Synthesis of certain 6-(arylthio) uracils and related derivatives as potential antiviral agents. Bull. Korean Chem. Soc., 2004, 25, 991-996.
[17]
RohitKumar, H.G.; Asha, K.R.; Kiran Kumar Inamdar, L.S.; Rao, G.M. Cell cycle arrest and induction of apoptosis in colon adenocarcinoma cells by a DNA intercalative quinoline derivative, 4-morpholinopyrimido [4′,5′:4,5] selenolo (2,3-b) quinoline. Nucleosi. Nucleoti. Nucleic Acid., 2015, 34, 525-543.
[18]
Borgstrom, P.; Torres Filho, I.P.; Hartley-Asp, B. Inhibition of angiogenesis and metastases of the Lewis-lung cell carcinoma by the quinoline-3-carboxamide, Linomide. Anticancer Res., 1995, 15, 719-728.
[19]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[20]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[21]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12, 583-597.
[22]
Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy, 5th ed; Swedish Pharmaceutical Press: Stockholm, Sweden, 2004.
[23]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J. Med. Chem., 2004, 47, 6299-6310.
[24]
Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg. Med. Chem. Lett., 2005, 15, 4745-4751.
[25]
Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5, 1647-1660.
[26]
Sonsona, I.G.; Marqués-López, E.; Herrera, R.P. Enantioselective organocatalyzed synthesis of 2-amino-3-cyano-4H-chromene derivatives. Symmetry , 2015, 7, 1519-1535.
[27]
Lu, X.; Dong, G.; Zheng, Y.; Zhang, C.; Qiu, Y.; Lua, T.; Zhou, X. Synthesis and anticancer study of novel 4H-chromen derivatives. Anticancer. Agents Med. Chem., 2017, 17, 1070-1083.
[28]
Mohareb, R.; Moustafa, H. Use of 2-aminoprop-1-ene-1, 1, 3-tricarbonitrile for the synthesis of tetrahydronaphthalene, hexahydroisoquinoline and hexahydrocinnoline derivatives with potential antitumor activities. Acta Pharmaceutica., 2011, 61, 51-62.
[29]
Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M.; Cortistatins, A. B, C, and D, Anti-angiogenic steroidal alkaloids, from the marine sponge corticium simplex. J. Am. Chem. Soc., 2006, 128, 3148-3149.
[30]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines and related fused pyridines, Part 5. The synthesis of 2-chloroquinoline-3-carbaldehydes. J. Chem. Soc., 1981, 1520-1530.
[31]
Jay, P.; Nirmal, M.P.P.; Ranjan, G.P. Microwave-assisted synthesis of some new biquinoline compounds catalyzed by DMAP and their biological activities. Ind J. Chem., 2009, 48B, 712-717.
[32]
Zonouz, A.; Eskandari, I.; Notash, B. An efficient and green procedure for the synthesis of highly substituted polyhydronaphthalene derivatives via a one-pot, multi-component reaction in aqueous media. Curr. Chem. Lett., 2015, 4, 85-92.
[33]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[34]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89, 271-277.
[35]
Mauceri, H.J.; Hanna, N.N.; Beckett, M.A.; Gorski, D.H.; Staba, M.J.; Stellato, K.A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M.; Soff, G.A.; Sukhatme, V.P.; Kufe, D.W.; Weichselbaum, R.R. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature, 1998, 394, 287-291.
[36]
Giovannetti, E.; Lemos, C.; Tekle, C.; Smid, K.; Nannizzi, S.; Rodriguez, J.A.; Ricciardi, S.; Danesi, R.; Giaccone, G.; Peters, G.J. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol. Pharmacol., 2008, 73, 1290-1300.
[37]
Crowther, J.R. Basic principles of ELISA. In: ELISA; Springer, 1995; pp. 35-61.
[38]
Volpe, G.; Draisci, R.; Palleschi, G.; Compagnone, D. 3, 3′, 5, 5′-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study. Analyst , 1998, 123, 1303-1307.
[39]
Kiianitsa, K.; Maizels, N. Ultrasensitive isolation, identification and quantification of DNA-protein adducts by ELISA-based RADAR assay. Nucleic Acids Res., 2014, 42, e108.
[40]
Hayakawa, I.; Hasegawa, M.; Takehara, K.; Sato, S. Anti-DNA topoisomerase IIalpha autoantibodies in localized scleroderma. Arthritis Rheum., 2004, 50, 227-232.
[41]
Buck, E.; Eyzaguirre, A.; Brown, E.; Petti, F.; McCormack, S.; Haley, J.D.; Iwata, K.K.; Gibson, N.W.; Griffin, G. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol. Cancer Ther., 2006, 5, 2676-2684.
[42]
Lawrence, H.R.; Mahajan, K.; Luo, Y.; Zhang, D.; Tindall, N.; Huseyin, M.; Gevariya, H.; Kazi, S.; Ozcan, S.; Mahajan, N.P. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach. J. Med. Chem., 2015, 58, 2746-2763.
[43]
Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99, 15387-15392.
[44]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277, 46265-46272.
[45]
Kidwai, M.; Saxena, S.; Rahman, K.M.K.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15, 4295-4298.
[46]
Kidwai, M.; Poddar, R. Transesterification of chromenes employing immobilized lipase in ionic liquids. Catal. Lett., 2008, 124, 311.
[47]
Paplal, B.; Nagaraju, S.; Veerabhadraiah, P.; Sujatha, K.; Kanvah, S.; Kumar, B.V.; Kashinath, D. Recyclable Bi 2 WO 6-nanoparticle mediated one-pot multicomponent reactions in aqueous medium at room temperature. RSC Advances, 2014, 4, 54168-54174.
[48]
Heravi, M.M.; Hosseinnejad, T.; Faghihi, Z.; Shiri, M.; Vazinfard, M. Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: Computational study on substituent effects. J. Iran. Chem. Soc., 2017, 14, 823-832.
[49]
Gelfand, R.; Vernet, D.; Bruhn, K.; Vadgama, J.; Gonzalez-Cadavid, N.F. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features. Int. J. Oncol., 2016, 48, 2399-2414.
[50]
Kollmannsberger, C.; Mross, K.; Jakob, A.; Kanz, L.; Bokemeyer, C. Topotecan-a novel topoisomerase I inhibitor: Pharmacology and clinical experience. Oncology, 1999, 56, 1-12.
[51]
Kiianitsa, K.; Maizels, N. A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res., 2013, 41, 21.
[52]
Sasaki, T.; Hiroki, K.; Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res. Int., 2013, 2013, 8.
[53]
Schettino, C.; Bareschino, M.A.; Ricci, V.; Ciardiello, F. Erlotinib: An EGF receptor tyrosine kinase inhibitor in non-small-cell lung cancer treatment. Expert Rev. Respir. Med., 2008, 2, 167-178.
[54]
Bryce, A.H.; Borad, M.J.; Egan, J.B.; Condjella, R.M.; Liang, W.S.; Fonseca, R.; McCullough, A.E.; Hunt, K.S.; Ritacca, N.R.; Barrett, M.T.; Patel, M.D.; Young, S.W.; Silva, A.C.; Ho, T.H.; Halfdanarson, T.R.; Stanton, M.L.; Cheville, J.; Swanson, S.; Schneider, D.E.; McWilliams, R.R.; Baker, A.; Aldrich, J.; Kurdoglu, A.; Izatt, T.; Christoforides, A.; Cherni, I.; Nasser, S.; Reiman, R.; Cuyugan, L.; McDonald, J.; Adkins, J.; Mastrian, S.D.; Von Hoff, D.D.; Craig, D.W.; Stewart, A.K.; Carpten, J.D. Comprehensive genomic analysis of metastatic mucinous urethral adenocarcinoma guides precision oncology treatment: Targetable EGFR amplification leading to successful treatment with erlotinib. Clin. Genitourin. Cancer, 2016.
[55]
Farley, K.; Mett, H.; McGlynn, E.; Murray, B.; Lydon, N.B. Development of solid-phase enzyme-linked immunosorbent assays for the determination of epidermal growth factor receptor and pp60c-src tyrosine protein kinase activity. Anal. Biochem., 1992, 203, 151-157.