[1]
Hartman, T.K.; Rogerson, S.J.; Fischer, P.R. The impact of maternal malaria on newborns. Annal. Trop. Paediatr., 2010, 30, 271-282.
[2]
Baird, J.K. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinic. microbial., 2013, 26, 36-57.
[3]
Gething, P.W.; Casey, D.C.; Weiss, D.J.; Donal, B.; Samir, B.; Ewan, C.; Katherine, E.B.; Ursula, D.; Jennifer, R.; Puja, C.R.; Michael, J.K.; Ryan, M.B.; Chantal, H.; Katya, A.S.; Matthew, M.C.; Grant, N.; Maya, S.F.; Rachel, K.; Haidong, W.; Mohsen, N.; David, L.S.; Christopher, J.L.M.; Simon, I.H.; Stephen, S.L. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N. Engl. J. Med., 2016, 375, 2435-2445.
[4]
WHO, World malaria report 2015. Geneva: WHO, 2015. World Health Organization. Global technical strategy for malaria 2016- 2030. Geneva: WHO.2015; , 2015, 11, pp. S81-S91.
[5]
Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; Cornaby, L. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388, 1545-1602.
[6]
Feigin, V. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388, 1459-1544.
[7]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415, 680-685.
[8]
Mirjam, G.; Hannah, S.F.; Luzia, V.; Albert, L.; Michael, R. A systematic review of the clinical presentation, treatment and relapse characteristics of human Plasmodium ovale malaria. Malaria . J., 2017, 16, 112.
[9]
Athar, M.; Lone, M.Y.; Khedkar, V.M.; Jha, P.C. Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. J. Biomole. Struct. Dynam., 2016, 34, 1282-1297.
[10]
Athar, M.; Lone, M.Y.; Jha, P.C. Designing of calixarene based drug carrier for dasatinib, lapatinib and nilotinib using multilevel molecular docking and dynamics simulations. J. Incl. Phenomena . Macrocyc. Chem., 2018, 90, 157-169.
[11]
Lone, M.Y.; Athar, M. 1.; Gupta, V.K.; Jha, P.C. Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochem. biophysic. Res. Commun., 2017, 491, 1105-1111.
[12]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life sci., 2005, 78, 431-441.
[13]
Rollinger, J.M.; Stuppner, H.; Langer, T. Virtual screening for the discovery of bioactive natural products. Nat. Comp. Drugs., 2008, 1, 211-249.
[14]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Virtual screening of Chinese herbs with random forest. J. Chem. Info. Model., 2007, 47, 264-278.
[15]
Ehrman, T.; Barlow, D.; Hylands, P. Phytochemical informatics and virtual screening of herbs used in Chinese medicine. Curr. Pharmaceut. Design., 2010, 16, 1785-1798.
[16]
Harvey, A.L. Natural products in drug discovery. Drug dis. today, 2008, 13, 894-901.
[17]
Foote, S.J.; Kyle, D.E.; Martin, R.K.; Oduola, A.M.; Forsyth, K.; Kemp, D.J.; Cowman, A.F. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature, 1990, 345(6272), 255-258.
[18]
Van Es, H.; Karcz, S.; Chu, F.; Cowman, A.F.; Vidal, S.; Gros, P.; Schurr, E. Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine. Mole. Cellular Boil., 1994, 14, 2419-2428.
[19]
Leimanis, M.L. Characterization of ABC Transporters in Both Mammalian Cells (ABCG2, ABCC2) and Plasmodium Falciparum (Pgh1).2008 McGill University.
[20]
Sanchez, C.P.; Rotmann, A.; Stein, W.D.; Lanzer, M. Polymorphisms within PfMDR1 alter the substrate specificity for anti‐malarial drugs in Plasmodium falciparum. Mol. Microbiol., 2008, 70, 786-798.
[21]
Wilson, C.; Serrano, A.E.; Wasley, A.; Bogenschutz, M.P.; Shankar, A.H.; Wirth, D.F. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science, 1989, 244, 1184-1186.
[22]
Patel, S.K.; George, L.B.; Kumar, S.P.; Highland, H.N.; Jasrai, Y.T.; Pandya, H.A.; Desai, K.R. A computational approach towards the understanding of Plasmodium falciparum multidrug resistance protein 1. ISRN Bioinform 2013, 2013.
[23]
Rameshkumar, S.; Eswaran, K. Ecology, utilization and coastal management of salt tolerant plants (halophytes and mangroves) of Mypad coastal regions, Andhra Pradesh, India. Int. J. Environ. Biol., 2013, 3, 1-8.
[24]
Ganguly, T.; Badheka, L.; Sainis, K. Immunomodulatory effect of Tylophora indica on Con A induced lymphoproliferation. Phytomedicine, 2001, 8, 431-437.
[25]
Gopalkrishan, C.; Shankaranarayanan, D.; Nazimudeen, S.K.; Kameswaran, L. Studies of pharmacological effects of extracts and total alkaloids of Tylophora indica. Indian J. med. Res., 1980, 71, 940-948.
[26]
Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. PubChem: Integrated platform of small molecules and biological activities. Annu. Annual rep. comput.Chem, 2008, 4, 217-241.
[27]
Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy functions: Force‐field parameterization in crystal space. Prot. Struct. Funct. Bioinform., 2004, 57, 678-683.
[28]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J. Comput. Chem., 2003, 24, 1999-2012.
[29]
Patel, S.K.; Jha, P.C.; Jasrai, Y.; Pandya, H.A.; George, L. 200 Structural insights into the theoretical model of Plasmodium falciparum multi drug resistance 1 protein (PfMDR1) and its interaction with phytochemicals as efficacious antimalarial drugs: An in silico and in vitro approach. J. Biomole. Struct. Dynamic., 2015, 33, 132-134.
[30]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[31]
Bowers, K.J.; Dror, R.O.; Shaw, D.E. The midpoint method for parallelization of particle simulations. J. Chem. physics., 2006, 124, 184109.
[32]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A. Scalable algorithms for molecular dynamics simulations on commodity clusters in SC 2006 Conference, Proceedings of the ACM/IEEE. , 2006. IEEE
[33]
Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W.L. OPLS all‐atom force field for carbohydrates. J. Comput. Chem., 1997, 18, 1955-1970.
[34]
Price, D.J., and; C.L., Brooks Detailed considerations for a balanced and broadly applicable force field: A study of substituted benzenes modeled with OPLS‐AA. J. Comput. Chem., 2005, 26, 1529-1541.
[35]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceed. Nation. Acad. Sci. U.S.A., 2005, 102, 6665-6670.
[36]
Wu, Y.; Tepper, H.L.; Voth, G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Physics., 2006, 124, 024503.
[37]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Physics., 1993, 98, 10089-10092.
[38]
Hoover, W.G. Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 1985, 31, 1695.
[39]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193, 673-675.
[40]
Philippe, G.; Angenot, L.; De Mol, P.; Goffin, E.; Hayette, M.P. Tits, M.; Frédérich, M. In vitro screening of some Strychnos species for antiplasmodial activity. J. Ethnopharmacol., 2005, 97, 535-539.
[41]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Dis., 2005, 4, 727-740.
[42]
Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435, 519-522.
[43]
Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness–what are we missing? Drug dis. today, 2008, 13, 285-294.
[44]
Athar, M.; Lone, M.Y.; Jha, P.C. First protein drug target’s appraisal of lead-likeness descriptors to unfold the intervening chemical space. J. Mol. Mole. Graphics., 2017, 72, 272-282.