Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Contribution of Spinal Cord Oligodendrocytes to Neuroinflammatory Diseases and Pain

Author(s): Sergio M. Borghi , Victor Fattori , Miriam S.N. Hohmann and Waldiceu A. Verri*

Volume 26, Issue 31, 2019

Page: [5781 - 5810] Pages: 30

DOI: 10.2174/0929867325666180522112441

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Neuroinflammatory diseases that affect spinal cord or associated spinal nerves represent challenging conditions for management in current medicine because of their complex pathology, poor prognosis, and high morbidity, which strikingly reduces the quality of life of patients. In this sense, a better understanding of the cellular and molecular mechanisms of spinal cord neuroinflammation might contribute to the development of novel therapies. Oligodendrocytes have unique and vital biological properties in central nervous system (CNS) homeostasis and physiology. A growing body of experimental evidence demonstrates that these glial cells are involved in the pathophysiological mechanisms underlying many chronic, neurodegenerative, and incapacitating CNS disorders. These cells also have important implications for the development and maintenance of neural plasticity and chronic pain states. On the other hand, evidence indicates that oligodendrocytes and their products may act in favor of CNS promoting beneficial effects orchestrating CNS tissue repair after injury.

Objective: The present review aims to explore the multi-faceted actions of spinal cord oligodendrocyte progenitors cells (OPCs) and mature oligodendrocytes in CNS inflammation and pathology, addressing their roles in experimental and clinical settings. A major focus was given to spinal cord amyotrophic lateral sclerosis, multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE), traumatic injury and pain processing.

Methods: This review analyses and discusses published original research articles regarding the role of OPCs/oligodendrocytes in spinal cord inflammation and pain processing.

Results and Conclusion: Findings from a number of clinical and experimental paradigms suggest spinal cord OPCs/oligodendrocytes are a potential therapeutic target for the control of neuroinflammation.

Keywords: OPCs, oligodendrocytes, myelin, spinal cord, neuroinflammation, central sensitization.

[1]
Rowitch, D.H.; Kriegstein, A.R. Developmental genetics of vertebrate glial-cell specification. Nature, 2010, 468(7321), 214-222.
[http://dx.doi.org/10.1038/nature09611] [PMID: 21068830]
[2]
Bradl, M.; Lassmann, H. Oligodendrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53.
[http://dx.doi.org/10.1007/s00401-009-0601-5] [PMID: 19847447]
[3]
Bergles, D.E.; Richardson, W.D. Oligodendrocyte Development and Plasticity. Cold Spring Harb. Perspect. Biol., 2015, 8(2)a020453
[http://dx.doi.org/10.1101/cshperspect.a020453] [PMID: 26492571]
[4]
Raff, M.C.; Miller, R.H.; Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 1983, 303(5916), 390-396.
[http://dx.doi.org/10.1038/303390a0] [PMID: 6304520]
[5]
Zarpelon, A.C.; Rodrigues, F.C.; Lopes, A.H.; Souza, G.R.; Carvalho, T.T.; Pinto, L.G.; Xu, D.; Ferreira, S.H.; Alves-Filho, J.C.; McInnes, I.B.; Ryffel, B.; Quesniaux, V.F.; Reverchon, F.; Mortaud, S.; Menuet, A.; Liew, F.Y.; Cunha, F.Q.; Cunha, T.M.; Verri, W.A. Jr. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J., 2016, 30(1), 54-65.
[http://dx.doi.org/10.1096/fj.14-267146] [PMID: 26310268]
[6]
Kawaguchi, M.; Satoh, Y.; Otsubo, Y.; Kazama, T. Molecular hydrogen attenuates neuropathic pain in mice. PLoS One, 2014, 9(6)e100352
[http://dx.doi.org/10.1371/journal.pone.0100352] [PMID: 24941001]
[7]
Shi, Y.; Shu, J.; Liang, Z.; Yuan, S.; Tang, S.J. EXPRESS: Oligodendrocytes in HIV-associated pain pathogenesis. Mol. Pain, 2016, 12, 12.
[http://dx.doi.org/10.1177/1744806916656845] [PMID: 27306410]
[8]
Polito, A.; Reynolds, R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J. Anat., 2005, 207(6), 707-716.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00454.x] [PMID: 16367798]
[9]
Liu, Z.; Hu, X.; Cai, J.; Liu, B.; Peng, X.; Wegner, M.; Qiu, M. Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev. Biol., 2007, 302(2), 683-693.
[http://dx.doi.org/10.1016/j.ydbio.2006.10.007] [PMID: 17098222]
[10]
Zhu, Q.; Zhao, X.; Zheng, K.; Li, H.; Huang, H.; Zhang, Z.; Mastracci, T.; Wegner, M.; Chen, Y.; Sussel, L.; Qiu, M. Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development, 2014, 141(3), 548-555.
[http://dx.doi.org/10.1242/dev.095323] [PMID: 24449836]
[11]
Fogarty, M.; Richardson, W.D.; Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development, 2005, 132(8), 1951-1959.
[http://dx.doi.org/10.1242/dev.01777] [PMID: 15790969]
[12]
Tripathi, R.B.; Clarke, L.E.; Burzomato, V.; Kessaris, N.; Anderson, P.N.; Attwell, D.; Richardson, W.D. Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J. Neurosci., 2011, 31(18), 6809-6819.
[http://dx.doi.org/10.1523/JNEUROSCI.6474-10.2011] [PMID: 21543611]
[13]
Shimizu, T.; Kagawa, T.; Wada, T.; Muroyama, Y.; Takada, S.; Ikenaka, K. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev. Biol., 2005, 282(2), 397-410.
[http://dx.doi.org/10.1016/j.ydbio.2005.03.020] [PMID: 15950605]
[14]
Rivers, L.E.; Young, K.M.; Rizzi, M.; Jamen, F.; Psachoulia, K.; Wade, A.; Kessaris, N.; Richardson, W.D. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci., 2008, 11(12), 1392-1401.
[http://dx.doi.org/10.1038/nn.2220] [PMID: 18849983]
[15]
Reynolds, J.; Logan, A.; Berry, M.; Dent, R.G.; Gonzales, A.M.; Toescu, E.C. Age-dependent changes in Fibroblast growth factor 2 (FGF-2) expression in mouse cerebellar neurons. J. Cell. Mol. Med., 2005, 9(2), 398-406.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00365.x] [PMID: 15963259]
[16]
Zhou, Q.; Anderson, D.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell, 2002, 109(1), 61-73.
[http://dx.doi.org/10.1016/S0092-8674(02)00677-3] [PMID: 11955447]
[17]
Vue, T.Y.; Kim, E.J.; Parras, C.M.; Guillemot, F.; Johnson, J.E. Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development, 2014, 141(19), 3721-3731.
[http://dx.doi.org/10.1242/dev.105270] [PMID: 25249462]
[18]
Vartanian, T.; Goodearl, A.; Viehöver, A.; Fischbach, G. Axonal neuregulin signals cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. J. Cell Biol., 1997, 137(1), 211-220.
[http://dx.doi.org/10.1083/jcb.137.1.211] [PMID: 9105049]
[19]
Vartanian, T.; Fischbach, G.; Miller, R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc. Natl. Acad. Sci. USA, 1999, 96(2), 731-735.
[http://dx.doi.org/10.1073/pnas.96.2.731] [PMID: 9892702]
[20]
Kataria, H.; Alizadeh, A.; Shahriary, G.M.; Saboktakin Rizi, S.; Henrie, R.; Santhosh, K.T.; Thliveris, J.A.; Karimi-Abdolrezaee, S. Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia, 2017.
[http://dx.doi.org/10.1002/glia.23264] [PMID: 29148104]
[21]
Tao, F.; Li, Q.; Liu, S.; Wu, H.; Skinner, J.; Hurtado, A.; Belegu, V.; Furmanski, O.; Yang, Y.; McDonald, J.W.; Johns, R.A. Role of neuregulin-1/ErbB signaling in stem cell therapy for spinal cord injury-induced chronic neuropathic pain. Stem Cells, 2013, 31(1), 83-91.
[http://dx.doi.org/10.1002/stem.1258] [PMID: 23097328]
[22]
Brinkmann, B.G.; Agarwal, A.; Sereda, M.W.; Garratt, A.N.; Müller, T.; Wende, H.; Stassart, R.M.; Nawaz, S.; Humml, C.; Velanac, V.; Radyushkin, K.; Goebbels, S.; Fischer, T.M.; Franklin, R.J.; Lai, C.; Ehrenreich, H.; Birchmeier, C.; Schwab, M.H.; Nave, K.A. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron, 2008, 59(4), 581-595.
[http://dx.doi.org/10.1016/j.neuron.2008.06.028] [PMID: 18760695]
[23]
Dougherty, K.D.; Dreyfus, C.F.; Black, I.B. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol. Dis., 2000, 7(6 Pt B), 574-585.
[http://dx.doi.org/10.1006/nbdi.2000.0318] [PMID: 11114257]
[24]
Du, Y.; Dreyfus, C.F. Oligodendrocytes as providers of growth factors. J. Neurosci. Res., 2002, 68(6), 647-654.
[http://dx.doi.org/10.1002/jnr.10245] [PMID: 12111826]
[25]
Bsibsi, M.; Nomden, A.; van Noort, J.M.; Baron, W. Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation. J. Neurosci. Res., 2012, 90(2), 388-398.
[http://dx.doi.org/10.1002/jnr.22767] [PMID: 21971760]
[26]
Sloane, E.; Ledeboer, A.; Seibert, W.; Coats, B.; van Strien, M.; Maier, S.F.; Johnson, K.W.; Chavez, R.; Watkins, L.R.; Leinwand, L.; Milligan, E.D.; Van Dam, A.M. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental multiple sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav. Immun., 2009, 23(1), 92-100.
[http://dx.doi.org/10.1016/j.bbi.2008.09.004] [PMID: 18835435]
[27]
Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 2014, 141(3), 302-313.
[http://dx.doi.org/10.1111/imm.12163] [PMID: 23981039]
[28]
Gomez, O.; Sanchez-Rodriguez, A.; Le, M.; Sanchez-Caro, C.; Molina-Holgado, F.; Molina-Holgado, E. Cannabinoid receptor agonists modulate oligodendrocyte differentiation by activating PI3K/Akt and the mammalian target of rapamycin (mTOR) pathways. Br. J. Pharmacol., 2011, 163(7), 1520-1532.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01414.x] [PMID: 21480865]
[29]
Massa, P.T.; Ozato, K.; McFarlin, D.E. Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia, 1993, 8(3), 201-207.
[http://dx.doi.org/10.1002/glia.440080307] [PMID: 8225560]
[30]
Bergsteindottir, K.; Brennan, A.; Jessen, K.R.; Mirsky, R. In the presence of dexamethasone, gamma interferon induces rat oligodendrocytes to express major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA, 1992, 89(19), 9054-9058.
[http://dx.doi.org/10.1073/pnas.89.19.9054] [PMID: 1409602]
[31]
Höftberger, R.; Aboul-Enein, F.; Brueck, W.; Lucchinetti, C.; Rodriguez, M.; Schmidbauer, M.; Jellinger, K.; Lassmann, H. Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol., 2004, 14(1), 43-50.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00496.x] [PMID: 14997936]
[32]
Madsen, P.M.; Motti, D.; Karmally, S.; Szymkowski, D.E.; Lambertsen, K.L.; Bethea, J.R.; Brambilla, R. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J. Neurosci., 2016, 36(18), 5128-5143.
[http://dx.doi.org/10.1523/JNEUROSCI.0211-16.2016] [PMID: 27147664]
[33]
Williams, J.L.; Patel, J.R.; Daniels, B.P.; Klein, R.S. Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. J. Exp. Med., 2014, 211(5), 791-799.
[http://dx.doi.org/10.1084/jem.20131224] [PMID: 24733828]
[34]
Li, Y.; Tang, G.; Liu, Y.; He, X.; Huang, J.; Lin, X.; Zhang, Z.; Yang, G.Y.; Wang, Y. CXCL12 gene therapy ameliorates ischemia-induced white matter injury in mouse brain. Stem Cells Transl. Med., 2015, 4(10), 1122-1130.
[http://dx.doi.org/10.5966/sctm.2015-0074] [PMID: 26253714]
[35]
Omari, K.M.; John, G.R.; Sealfon, S.C.; Raine, C.S. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain, 2005, 128(Pt 5), 1003-1015.
[http://dx.doi.org/10.1093/brain/awh479] [PMID: 15774504]
[36]
Hosking, M.P.; Tirotta, E.; Ransohoff, R.M.; Lane, T.E. CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination. PLoS One, 2010, 5(6)e11340
[http://dx.doi.org/10.1371/journal.pone.0011340] [PMID: 20596532]
[37]
Alizadeh, A.; Karimi-Abdolrezaee, S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J. Physiol., 2016, 594(13), 3539-3552.
[http://dx.doi.org/10.1113/JP270895] [PMID: 26857216]
[38]
Hausmann, O.N. Post-traumatic inflammation following spinal cord injury. Spinal Cord, 2003, 41(7), 369-378.
[http://dx.doi.org/10.1038/sj.sc.3101483] [PMID: 12815368]
[39]
McTigue, D.M.; Tripathi, R.B. The life, death, and replacement of oligodendrocytes in the adult CNS. J. Neurochem., 2008, 107(1), 1-19.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05570.x] [PMID: 18643793]
[40]
Connor, J.R.; Menzies, S.L. Relationship of iron to oligodendrocytes and myelination. Glia, 1996, 17(2), 83-93.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199606)17:2<83:AID-GLIA1>3.0.CO;2-7] [PMID: 8776576]
[41]
Thorburne, S.K.; Juurlink, B.H. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem., 1996, 67(3), 1014-1022.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67031014.x] [PMID: 8752107]
[42]
Juurlink, B.H. Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci. Biobehav. Rev., 1997, 21(2), 151-166.
[http://dx.doi.org/10.1016/S0149-7634(96)00005-X] [PMID: 9062938]
[43]
Baumann, N.; Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev., 2001, 81(2), 871-927.
[http://dx.doi.org/10.1152/physrev.2001.81.2.871] [PMID: 11274346]
[44]
Griot, C.; Bürge, T.; Vandevelde, M.; Peterhans, E. Antibody-induced generation of reactive oxygen radicals by brain macrophages in canine distemper encephalitis: a mechanism for bystander demyelination. Acta Neuropathol., 1989, 78(4), 396-403.
[http://dx.doi.org/10.1007/BF00688176] [PMID: 2782050]
[45]
Almad, A.; Sahinkaya, F.R.; McTigue, D.M. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics, 2011, 8(2), 262-273.
[http://dx.doi.org/10.1007/s13311-011-0033-5] [PMID: 21404073]
[46]
Li, N.; Leung, G.K. Oligodendrocyte precursor cells in spinal cord injury: a review and update. BioMed Res. Int., 2015.2015235195
[http://dx.doi.org/10.1155/2015/235195] [PMID: 26491661]
[47]
Matute, C. Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 10229-10234.
[http://dx.doi.org/10.1073/pnas.95.17.10229] [PMID: 9707629]
[48]
Pitt, D.; Werner, P.; Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med., 2000, 6(1), 67-70.
[http://dx.doi.org/10.1038/71555] [PMID: 10613826]
[49]
Horiuchi, M.; Suzuki-Horiuchi, Y.; Akiyama, T.; Itoh, A.; Pleasure, D.; Carstens, E.; Itoh, T. Differing intrinsic biological properties between forebrain and spinal oligodendroglial lineage cells. J. Neurochem., 2017, 142(3), 378-391.
[http://dx.doi.org/10.1111/jnc.14074] [PMID: 28512742]
[50]
Garcia, E.; Aguilar-Cevallos, J.; Silva-Garcia, R.; Ibarra, A. Cytokine and growth factor activation in vivo and in vitro after spinal cord injury. Mediators Inflamm., 2016, 20169476020
[http://dx.doi.org/10.1155/2016/9476020] [PMID: 27418745]
[51]
Han, J.; Liu, H.; Liu, C.; Jin, H.; Perlmutter, J.S.; Egan, T.M.; Tu, Z. Pharmacologic characterizations of a P2X7 receptor-specific radioligand, [11C]GSK1482160 for neuroinflammatory response. Nucl. Med. Commun., 2017, 38(5), 372-382.
[http://dx.doi.org/10.1097/MNM.0000000000000660] [PMID: 28338530]
[52]
Fumagalli, M.; Lecca, D.; Abbracchio, M.P. CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology, 2016, 104, 82-93.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.005] [PMID: 26453964]
[53]
Wang, X.; Arcuino, G.; Takano, T.; Lin, J.; Peng, W.G.; Wan, P.; Li, P.; Xu, Q.; Liu, Q.S.; Goldman, S.A.; Nedergaard, M. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med., 2004, 10(8), 821-827.
[http://dx.doi.org/10.1038/nm1082] [PMID: 15258577]
[54]
Matute, C.; Torre, I.; Pérez-Cerdá, F.; Pérez-Samartín, A.; Alberdi, E.; Etxebarria, E.; Arranz, A.M.; Ravid, R.; Rodríguez-Antigüedad, A.; Sánchez-Gómez, M.; Domercq, M. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci., 2007, 27(35), 9525-9533.
[http://dx.doi.org/10.1523/JNEUROSCI.0579-07.2007] [PMID: 17728465]
[55]
Domercq, M.; Perez-Samartin, A.; Aparicio, D.; Alberdi, E.; Pampliega, O.; Matute, C. P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia, 2010, 58(6), 730-740.
[http://dx.doi.org/10.1002/glia.20958] [PMID: 20029962]
[56]
Butt, A.M. Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia, 2006, 54(7), 666-675.
[http://dx.doi.org/10.1002/glia.20424] [PMID: 17006895]
[57]
van Noort, J.M.; van Sechel, A.C.; Bajramovic, J.J.; el Ouagmiri, M.; Polman, C.H.; Lassmann, H.; Ravid, R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature, 1995, 375(6534), 798-801.
[http://dx.doi.org/10.1038/375798a0] [PMID: 7596414]
[58]
Bogdanowicz, E. [The course of bipolar disorder before the manifestation of the first manic stage] Psychiatr. Pol., 1991, 25(3-4), 70-75.
[PMID: 1821981]
[59]
Cossins, J.A.; Clements, J.M.; Ford, J.; Miller, K.M.; Pigott, R.; Vos, W.; Van der Valk, P.; De Groot, C.J. Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathol., 1997, 94(6), 590-598.
[http://dx.doi.org/10.1007/s004010050754] [PMID: 9444361]
[60]
Chandler, S.; Coates, R.; Gearing, A.; Lury, J.; Wells, G.; Bone, E. Matrix metalloproteinases degrade myelin basic protein. Neurosci. Lett., 1995, 201(3), 223-226.
[http://dx.doi.org/10.1016/0304-3940(95)12173-0] [PMID: 8786845]
[61]
Rodriguez, M.; Leibowitz, J.L.; Lampert, P.W. Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Ann. Neurol., 1983, 13(4), 426-433.
[http://dx.doi.org/10.1002/ana.410130409] [PMID: 6340596]
[62]
Popovich, P.G.; Guan, Z.; McGaughy, V.; Fisher, L.; Hickey, W.F.; Basso, D.M. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol., 2002, 61(7), 623-633.
[http://dx.doi.org/10.1093/jnen/61.7.623] [PMID: 12125741]
[63]
Heppner, F.L.; Greter, M.; Marino, D.; Falsig, J.; Raivich, G.; Hövelmeyer, N.; Waisman, A.; Rülicke, T.; Prinz, M.; Priller, J.; Becher, B.; Aguzzi, A. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med., 2005, 11(2), 146-152.
[http://dx.doi.org/10.1038/nm1177] [PMID: 15665833]
[64]
Goldstein, E.Z.; Church, J.S.; Hesp, Z.C.; Popovich, P.G.; McTigue, D.M. A silver lining of neuroinflammation: Beneficial effects on myelination. Experimental neurology, 2016. 283(Pt B), 550-559.
[65]
Boillée, S.; Vande Velde, C.; Cleveland, D.W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1), 39-59.
[http://dx.doi.org/10.1016/j.neuron.2006.09.018] [PMID: 17015226]
[66]
Ajroud-Driss, S.; Siddique, T. Sporadic and hereditary Amyotrophic Lateral Sclerosis (ALS). Biochim. Biophys. Acta, 2015, 1852(4), 679-684.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.010] [PMID: 25193032]
[67]
Seilhean, D.; Cazeneuve, C.; Thuriès, V.; Russaouen, O.; Millecamps, S.; Salachas, F.; Meininger, V.; Leguern, E.; Duyckaerts, C. Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol., 2009, 118(4), 561-573.
[http://dx.doi.org/10.1007/s00401-009-0545-9] [PMID: 19449021]
[68]
Mackenzie, I.R.; Ansorge, O.; Strong, M.; Bilbao, J.; Zinman, L.; Ang, L.C.; Baker, M.; Stewart, H.; Eisen, A.; Rademakers, R.; Neumann, M. Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathol., 2011, 122(1), 87-98.
[http://dx.doi.org/10.1007/s00401-011-0838-7] [PMID: 21604077]
[69]
Ferraiuolo, L.; Meyer, K.; Sherwood, T.W.; Vick, J.; Likhite, S.; Frakes, A.; Miranda, C.J.; Braun, L.; Heath, P.R.; Pineda, R.; Beattie, C.E.; Shaw, P.J.; Askwith, C.C.; McTigue, D.; Kaspar, B.K. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2016, 113(42), E6496-E6505.
[http://dx.doi.org/10.1073/pnas.1607496113] [PMID: 27688759]
[70]
Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579.
[http://dx.doi.org/10.1038/nn.3357] [PMID: 23542689]
[71]
Philips, T.; Bento-Abreu, A.; Nonneman, A.; Haeck, W.; Staats, K.; Geelen, V.; Hersmus, N.; Küsters, B.; Van Den Bosch, L.; Van Damme, P.; Richardson, W.D.; Robberecht, W. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain, 2013, 136(Pt 2), 471-482.
[http://dx.doi.org/10.1093/brain/aws339] [PMID: 23378219]
[72]
Niebroj-Dobosz, I.; Rafałowska, J.; Fidziańska, A.; Gadamski, R.; Grieb, P. Myelin composition of spinal cord in a model of amyotrophic lateral sclerosis (ALS) in SOD1G93A transgenic rats. Folia Neuropathol., 2007, 45(4), 236-241.
[PMID: 18176898]
[73]
Neumann, M.; Kwong, L.K.; Truax, A.C.; Vanmassenhove, B.; Kretzschmar, H.A.; Van Deerlin, V.M.; Clark, C.M.; Grossman, M.; Miller, B.L.; Trojanowski, J.Q.; Lee, V.M. TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J. Neuropathol. Exp. Neurol., 2007, 66(3), 177-183.
[http://dx.doi.org/10.1097/01.jnen.0000248554.45456.58] [PMID: 17356379]
[74]
Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.W.; Pellerin, L.; Magistretti, P.J.; Rothstein, J.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408), 443-448.
[http://dx.doi.org/10.1038/nature11314] [PMID: 22801498]
[75]
Rohan, Z.; Matej, R.; Rusina, R.; Kovacs, G.G. Oligodendroglial response in the spinal cord in TDP-43 proteinopathy with motor neuron involvement. Neurodegener. Dis., 2014, 14(3), 117-124.
[http://dx.doi.org/10.1159/000362929] [PMID: 25115814]
[76]
Peterson, L.K.; Fujinami, R.S. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J. Neuroimmunol., 2007, 184(1-2), 37-44.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.015] [PMID: 17196667]
[77]
Kassmann, C.M.; Lappe-Siefke, C.; Baes, M.; Brügger, B.; Mildner, A.; Werner, H.B.; Natt, O.; Michaelis, T.; Prinz, M.; Frahm, J.; Nave, K.A. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet., 2007, 39(8), 969-976.
[http://dx.doi.org/10.1038/ng2070] [PMID: 17643102]
[78]
Hickey, W.F.; Hsu, B.L.; Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res., 1991, 28(2), 254-260.
[http://dx.doi.org/10.1002/jnr.490280213] [PMID: 2033653]
[79]
Wekerle, H.; Sun, D.; Oropeza-Wekerle, R.L.; Meyermann, R. Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J. Exp. Biol., 1987, 132, 43-57.
[PMID: 3323405]
[80]
von Herrath, M.G.; Fujinami, R.S.; Whitton, J.L. Microorganisms and autoimmunity: making the barren field fertile? Nat. Rev. Microbiol., 2003, 1(2), 151-157.
[http://dx.doi.org/10.1038/nrmicro754] [PMID: 15035044]
[81]
Vanderlugt, C.L.; Miller, S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol., 2002, 2(2), 85-95.
[http://dx.doi.org/10.1038/nri724] [PMID: 11910899]
[82]
Cusick, M.F.; Libbey, J.E.; Fujinami, R.S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol., 2012, 42(1), 102-111.
[http://dx.doi.org/10.1007/s12016-011-8294-7] [PMID: 22095454]
[83]
Sheremata, W.; Tornes, L. Multiple sclerosis and the spinal cord. Neurol. Clin., 2013, 31(1), 55-77.
[http://dx.doi.org/10.1016/j.ncl.2012.09.007] [PMID: 23186896]
[84]
Kearney, H.; Miller, D.H.; Ciccarelli, O. Spinal cord MRI in multiple sclerosis--diagnostic, prognostic and clinical value. Nat. Rev. Neurol., 2015, 11(6), 327-338.
[http://dx.doi.org/10.1038/nrneurol.2015.80] [PMID: 26009002]
[85]
Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain, 2002, 125(Pt 2), 338-349.
[http://dx.doi.org/10.1093/brain/awf031] [PMID: 11844734]
[86]
Watzlawik, J.; Warrington, A.E.; Rodriguez, M. Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev. Neurother., 2010, 10(3), 441-457.
[http://dx.doi.org/10.1586/ern.10.13] [PMID: 20187865]
[87]
Patani, R.; Balaratnam, M.; Vora, A.; Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol., 2007, 33(3), 277-287.
[http://dx.doi.org/10.1111/j.1365-2990.2007.00805.x] [PMID: 17442065]
[88]
Patrikios, P.; Stadelmann, C.; Kutzelnigg, A.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Brück, W.; Lucchinetti, C.; Lassmann, H. Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 2006, 129(Pt 12), 3165-3172.
[http://dx.doi.org/10.1093/brain/awl217] [PMID: 16921173]
[89]
Traka, M.; Podojil, J.R.; McCarthy, D.P.; Miller, S.D.; Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci., 2016, 19(1), 65-74.
[http://dx.doi.org/10.1038/nn.4193] [PMID: 26656646]
[90]
Bando, Y.; Hagiwara, Y.; Suzuki, Y.; Yoshida, K.; Aburakawa, Y.; Kimura, T.; Murakami, C.; Ono, M.; Tanaka, T.; Jiang, Y.P.; Mitrovi, B.; Bochimoto, H.; Yahara, O.; Yoshida, S. Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune encephalomyelitis. Glia, 2018, 66(2), 359-378.
[http://dx.doi.org/10.1002/glia.23249] [PMID: 29086442]
[91]
Yamanaka, H.; He, X.; Matsumoto, K.; Shiosaka, S.; Yoshida, S. Protease M/neurosin mRNA is expressed in mature oligodendrocytes. Brain Res. Mol. Brain Res., 1999, 71(2), 217-224.
[http://dx.doi.org/10.1016/S0169-328X(99)00187-4] [PMID: 10521576]
[92]
Terayama, R.; Bando, Y.; Jiang, Y.P.; Mitrovic, B.; Yoshida, S. Differential expression of protease M/neurosin in oligodendrocytes and their progenitors in an animal model of multiple sclerosis. Neurosci. Lett., 2005, 382(1-2), 82-87.
[http://dx.doi.org/10.1016/j.neulet.2005.03.022] [PMID: 15911126]
[93]
Burda, J.E.; Radulovic, M.; Yoon, H.; Scarisbrick, I.A. Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia, 2013, 61(9), 1456-1470.
[http://dx.doi.org/10.1002/glia.22534] [PMID: 23832758]
[94]
Kerlero de Rosbo, N.; Honegger, P.; Lassmann, H.; Matthieu, J.M. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J. Neurochem., 1990, 55(2), 583-587.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb04173.x] [PMID: 1695240]
[95]
Linington, C.; Bradl, M.; Lassmann, H.; Brunner, C.; Vass, K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol., 1988, 130(3), 443-454.
[PMID: 2450462]
[96]
Stefferl, A.; Brehm, U.; Storch, M.; Lambracht-Washington, D.; Bourquin, C.; Wonigeit, K.; Lassmann, H.; Linington, C. Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. J. Immunol., 1999, 163(1), 40-49.
[PMID: 10384097]
[97]
Brunner, C.; Lassmann, H.; Waehneldt, T.V.; Matthieu, J.M.; Linington, C. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats. J. Neurochem., 1989, 52(1), 296-304.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb10930.x] [PMID: 2462020]
[98]
Berger, T.; Rubner, P.; Schautzer, F.; Egg, R.; Ulmer, H.; Mayringer, I.; Dilitz, E.; Deisenhammer, F.; Reindl, M. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med., 2003, 349(2), 139-145.
[http://dx.doi.org/10.1056/NEJMoa022328] [PMID: 12853586]
[99]
Choi, B.Y.; Kim, I.Y.; Kim, J.H.; Kho, A.R.; Lee, S.H.; Lee, B.E.; Sohn, M.; Koh, J.Y.; Suh, S.W. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model. Neurobiol. Dis., 2016, 94, 205-212.
[http://dx.doi.org/10.1016/j.nbd.2016.06.018] [PMID: 27370228]
[100]
Johns, T.G.; Bernard, C.C. The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem., 1999, 72(1), 1-9.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720001.x] [PMID: 9886048]
[101]
Dias, A.T.; De Castro, S.B.; Alves, C.C.; Mesquita, F.P.; De Figueiredo, N.S.; Evangelista, M.G.; Castañon, M.C.; Juliano, M.A.; Ferreira, A.P. Different MOG(35-55) concentrations induce distinguishable inflammation through early regulatory response by IL-10 and TGF-β in mice CNS despite unchanged clinical course. Cell. Immunol., 2015, 293(2), 87-94.
[http://dx.doi.org/10.1016/j.cellimm.2014.12.009] [PMID: 25585346]
[102]
Mayer, M.C.; Meinl, E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther. Adv. Neurol. Disorder., 2012, 5(3), 147-159.
[http://dx.doi.org/10.1177/1756285611433772] [PMID: 22590479]
[103]
Giacoppo, S.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia, 2017, 116, 77-84.
[http://dx.doi.org/10.1016/j.fitote.2016.11.010] [PMID: 27890794]
[104]
Kozela, E.; Lev, N.; Kaushansky, N.; Eilam, R.; Rimmerman, N.; Levy, R.; Ben-Nun, A.; Juknat, A.; Vogel, Z. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br. J. Pharmacol., 2011, 163(7), 1507-1519.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01379.x] [PMID: 21449980]
[105]
Rahimi, A.; Faizi, M.; Talebi, F.; Noorbakhsh, F.; Kahrizi, F.; Naderi, N. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience, 2015, 290, 279-287.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.030] [PMID: 25637488]
[106]
Carrillo-Salinas, F.J.; Navarrete, C.; Mecha, M.; Feliú, A.; Collado, J.A.; Cantarero, I.; Bellido, M.L.; Muñoz, E.; Guaza, C. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis. PLoS One, 2014, 9(4)e94733
[http://dx.doi.org/10.1371/journal.pone.0094733] [PMID: 24727978]
[107]
Ribeiro, R.; Yu, F.; Wen, J.; Vana, A.; Zhang, Y. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis. Neuroscience, 2013, 254, 427-442.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.005] [PMID: 24036373]
[108]
O’Sullivan, S.A.; Velasco-Estevez, M.; Dev, K.K. Demyelination induced by oxidative stress is regulated by sphingosine 1-phosphate receptors. Glia, 2017, 65(7), 1119-1136.
[http://dx.doi.org/10.1002/glia.23148] [PMID: 28375547]
[109]
Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[110]
Choi, B.Y.; Kim, J.H.; Kho, A.R.; Kim, I.Y.; Lee, S.H.; Lee, B.E.; Choi, E.; Sohn, M.; Stevenson, M.; Chung, T.N.; Kauppinen, T.M.; Suh, S.W. Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J. Neuroinflammation, 2015, 12, 104.
[http://dx.doi.org/10.1186/s12974-015-0325-5] [PMID: 26017142]
[111]
Khalaj, A.J.; Hasselmann, J.; Augello, C.; Moore, S.; Tiwari-Woodruff, S.K. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J. Steroid Biochem. Mol. Biol., 2016, 160, 43-52.
[http://dx.doi.org/10.1016/j.jsbmb.2016.01.006] [PMID: 26776441]
[112]
Khalaj, A.J.; Yoon, J.; Nakai, J.; Winchester, Z.; Moore, S.M.; Yoo, T.; Martinez-Torres, L.; Kumar, S.; Itoh, N.; Tiwari-Woodruff, S.K. Estrogen receptor (ER) β expression in oligodendrocytes is required for attenuation of clinical disease by an ERβ ligand. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19125-19130.
[http://dx.doi.org/10.1073/pnas.1311763110] [PMID: 24191028]
[113]
Loram, L.C.; Strand, K.A.; Taylor, F.R.; Sloane, E.; Van Dam, A.M.; Rieger, J.; Maier, S.F.; Watkins, L.R. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats. Brain Behav. Immun., 2015, 46, 50-54.
[http://dx.doi.org/10.1016/j.bbi.2015.01.014] [PMID: 25653191]
[114]
Yao, S.Q.; Li, Z.Z.; Huang, Q.Y.; Li, F.; Wang, Z.W.; Augusto, E.; He, J.C.; Wang, X.T.; Chen, J.F.; Zheng, R.Y. Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J. Neurochem., 2012, 123(1), 100-112.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07807.x] [PMID: 22639925]
[115]
Heiman, A.; Pallottie, A.; Heary, R.F.; Elkabes, S. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav. Immun., 2014, 42, 232-245.
[http://dx.doi.org/10.1016/j.bbi.2014.06.203] [PMID: 25063708]
[116]
Ousman, S.S.; Tomooka, B.H.; van Noort, J.M.; Wawrousek, E.F.; O’Connor, K.C.; Hafler, D.A.; Sobel, R.A.; Robinson, W.H.; Steinman, L. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature, 2007, 448(7152), 474-479.
[http://dx.doi.org/10.1038/nature05935] [PMID: 17568699]
[117]
Brambilla, R.; Morton, P.D.; Ashbaugh, J.J.; Karmally, S.; Lambertsen, K.L.; Bethea, J.R. Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia, 2014, 62(3), 452-467.
[http://dx.doi.org/10.1002/glia.22616] [PMID: 24357067]
[118]
Brambilla, R.; Persaud, T.; Hu, X.; Karmally, S.; Shestopalov, V.I.; Dvoriantchikova, G.; Ivanov, D.; Nathanson, L.; Barnum, S.R.; Bethea, J.R. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J. Immunol., 2009, 182(5), 2628-2640.
[http://dx.doi.org/10.4049/jimmunol.0802954] [PMID: 19234157]
[119]
Kawanokuchi, J.; Mizuno, T.; Takeuchi, H.; Kato, H.; Wang, J.; Mitsuma, N.; Suzumura, A. Production of interferon-gamma by microglia. Mult. Scler., 2006, 12(5), 558-564.
[http://dx.doi.org/10.1177/1352458506070763] [PMID: 17086900]
[120]
Lin, W.; Kemper, A.; Dupree, J.L.; Harding, H.P.; Ron, D.; Popko, B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain, 2006, 129(Pt 5), 1306-1318.
[http://dx.doi.org/10.1093/brain/awl044] [PMID: 16504972]
[121]
Lin, W.; Lin, Y. Interferon-γ inhibits central nervous system myelination through both STAT1-dependent and STAT1-independent pathways. J. Neurosci. Res., 2010, 88(12), 2569-2577.
[http://dx.doi.org/10.1002/jnr.22425] [PMID: 20648647]
[122]
Buntinx, M.; Gielen, E.; Van Hummelen, P.; Raus, J.; Ameloot, M.; Steels, P.; Stinissen, P. Cytokine-induced cell death in human oligodendroglial cell lines. II: Alterations in gene expression induced by interferon-gamma and tumor necrosis factor-alpha. J. Neurosci. Res., 2004, 76(6), 846-861.
[http://dx.doi.org/10.1002/jnr.20117] [PMID: 15160396]
[123]
Balabanov, R.; Strand, K.; Goswami, R.; McMahon, E.; Begolka, W.; Miller, S.D.; Popko, B. Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J. Neurosci., 2007, 27(8), 2013-2024.
[http://dx.doi.org/10.1523/JNEUROSCI.4689-06.2007] [PMID: 17314297]
[124]
Arnett, H.A.; Mason, J.; Marino, M.; Suzuki, K.; Matsushima, G.K.; Ting, J.P. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci., 2001, 4(11), 1116-1122.
[http://dx.doi.org/10.1038/nn738] [PMID: 11600888]
[125]
Boghozian, R.; McKenzie, B.A.; Saito, L.B.; Mehta, N.; Branton, W.G.; Lu, J.; Baker, G.B.; Noorbakhsh, F.; Power, C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia, 2017, 65(10), 1590-1606.
[http://dx.doi.org/10.1002/glia.23179] [PMID: 28707358]
[126]
Naughton, M.C.; McMahon, J.M.; FitzGerald, U.F. The role of the unfolded protein response in myelination. Neural Regen. Res., 2016, 11(3), 394-395.
[http://dx.doi.org/10.4103/1673-5374.179036] [PMID: 27127465]
[127]
Lin, W.; Lin, Y.; Li, J.; Fenstermaker, A.G.; Way, S.W.; Clayton, B.; Jamison, S.; Harding, H.P.; Ron, D.; Popko, B. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J. Neurosci., 2013, 33(14), 5980-5991.
[http://dx.doi.org/10.1523/JNEUROSCI.1636-12.2013] [PMID: 23554479]
[128]
Lin, W.; Bailey, S.L.; Ho, H.; Harding, H.P.; Ron, D.; Miller, S.D.; Popko, B. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest., 2007, 117(2), 448-456.
[http://dx.doi.org/10.1172/JCI29571] [PMID: 17273557]
[129]
Eugster, H.P.; Frei, K.; Bachmann, R.; Bluethmann, H.; Lassmann, H.; Fontana, A. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol., 1999, 29(2), 626-632.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199902)29:02<626:AID-IMMU626>3.0.CO;2-A] [PMID: 10064079]
[130]
Yang, J.; Jiang, Z.; Fitzgerald, D.C.; Ma, C.; Yu, S.; Li, H.; Zhao, Z.; Li, Y.; Ciric, B.; Curtis, M.; Rostami, A.; Zhang, G.X. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J. Clin. Invest., 2009, 119(12), 3678-3691.
[http://dx.doi.org/10.1172/JCI37914] [PMID: 19884657]
[131]
Lin, C.C.; Edelson, B.T. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol., 2017, 198(12), 4553-4560.
[http://dx.doi.org/10.4049/jimmunol.1700263] [PMID: 28583987]
[132]
Paré, A.; Mailhot, B.; Lévesque, S.A.; Lacroix, S. Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain Behav. Immun., 2017, 62, 1-8.
[http://dx.doi.org/10.1016/j.bbi.2016.07.146] [PMID: 27432634]
[133]
Jiang, H.R.; Milovanović, M.; Allan, D.; Niedbala, W.; Besnard, A.G.; Fukada, S.Y.; Alves-Filho, J.C.; Togbe, D.; Goodyear, C.S.; Linington, C.; Xu, D.; Lukic, M.L.; Liew, F.Y. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur. J. Immunol., 2012, 42(7), 1804-1814.
[http://dx.doi.org/10.1002/eji.201141947] [PMID: 22585447]
[134]
Milovanovic, M.; Volarevic, V.; Ljujic, B.; Radosavljevic, G.; Jovanovic, I.; Arsenijevic, N.; Lukic, M.L. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One, 2012, 7(9)e45225
[http://dx.doi.org/10.1371/journal.pone.0045225] [PMID: 23028861]
[135]
Mangalam, A.K.; Rattan, R.; Suhail, H.; Singh, J.; Hoda, M.N.; Deshpande, M.; Fulzele, S.; Denic, A.; Shridhar, V.; Kumar, A.; Viollet, B.; Rodriguez, M.; Giri, S. AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage-Th17 Axis. J. Immunol., 2016, 197(3), 747-760.
[http://dx.doi.org/10.4049/jimmunol.1501549] [PMID: 27354217]
[136]
Kaufmann, U.; Shaw, P.J.; Kozhaya, L.; Subramanian, R.; Gaida, K.; Unutmaz, D.; McBride, H.J.; Feske, S. Selective ORAI1 Inhibition Ameliorates Autoimmune Central Nervous System Inflammation by Suppressing Effector but Not Regulatory T Cell Function. J. Immunol., 2016, 196(2), 573-585.
[http://dx.doi.org/10.4049/jimmunol.1501406] [PMID: 26673135]
[137]
Xue, H.; Ren, H.; Zhang, L.; Sun, X.; Wang, W.; Zhang, S.; Zhao, J.; Ming, L. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells. Iran. J. Basic Med. Sci., 2016, 19(5), 561-566.
[PMID: 27403263]
[138]
Makar, T.K.; Nimmagadda, V.K.; Singh, I.S.; Lam, K.; Mubariz, F.; Judge, S.I.; Trisler, D.; Bever, C.T. Jr TrkB agonist, 7,8-dihydroxyflavone, reduces the clinical and pathological severity of a murine model of multiple sclerosis. J. Neuroimmunol., 2016, 292, 9-20.
[http://dx.doi.org/10.1016/j.jneuroim.2016.01.002] [PMID: 26943953]
[139]
Benedek, G.; Meza-Romero, R.; Andrew, S.; Leng, L.; Burrows, G.G.; Bourdette, D.; Offner, H.; Bucala, R.; Vandenbark, A.A. Partial MHC class II constructs inhibit MIF/CD74 binding and downstream effects. Eur. J. Immunol., 2013, 43(5), 1309-1321.
[http://dx.doi.org/10.1002/eji.201243162] [PMID: 23576302]
[140]
Benedek, G.; Meza-Romero, R.; Jordan, K.; Keenlyside, L.; Offner, H.; Vandenbark, A.A. HLA-DRα1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS inflammation, enhances M2 macrophage frequency, and promotes neuroprotection. J. Neuroinflammation, 2015, 12, 123.
[http://dx.doi.org/10.1186/s12974-015-0342-4] [PMID: 26104759]
[141]
Miron, V.E.; Boyd, A.; Zhao, J.W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M.; Ffrench-Constant, C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci., 2013, 16(9), 1211-1218.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[142]
Kim, Y.H.; Ha, K.Y.; Kim, S.I. Spinal Cord Injury and Related Clinical Trials. Clin. Orthop. Surg., 2017, 9(1), 1-9.
[http://dx.doi.org/10.4055/cios.2017.9.1.1] [PMID: 28261421]
[143]
Fleming, J.C.; Norenberg, M.D.; Ramsay, D.A.; Dekaban, G.A.; Marcillo, A.E.; Saenz, A.D.; Pasquale-Styles, M.; Dietrich, W.D.; Weaver, L.C. The cellular inflammatory response in human spinal cords after injury. Brain, 2006, 129(Pt 12), 3249-3269.
[http://dx.doi.org/10.1093/brain/awl296] [PMID: 17071951]
[144]
Chen, K.Y.; Tsai, T.Y.; Chang, C.F.; Tsai, Y.R.; Ou, J.C.; Ma, H.P.; Tsai, S.H.; Chiu, W.T.; Lin, J.W.; Liao, K.H.; Lin, C.M.; Wu, J.C.; Chiang, Y.H. Worsening of dizziness impairment is associated with BMX level in patients after mild traumatic brain injury. J. Neurotrauma, 2015.
[http://dx.doi.org/10.1089/neu.2014.3691] [PMID: 25747875]
[145]
Salinas-González, R.S.; Rodríguez-Sánchez, L.; Pelayo-Vergara, R.A.; Benito-Penalva, J. Multiple sclerosis following a spinal cord injury: a rare and unfortunate case. Spinal Cord Ser. Cases, 2016, 2, 15027.
[http://dx.doi.org/10.1038/scsandc.2015.27] [PMID: 28053730]
[146]
Gensel, J.C.; Zhang, B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res., 2015, 1619, 1-11.
[http://dx.doi.org/10.1016/j.brainres.2014.12.045] [PMID: 25578260]
[147]
Sakalidou, M.; Leibig, N.; Boyle, V.; Koulaxouzidis, G.; Penna, V. Interleukin-10 and regeneration in an end-to-side nerve repair model of the rat. J. Peripher. Nerv. Syst., 2011, 16(4), 334-340.
[http://dx.doi.org/10.1111/j.1529-8027.2011.00368.x] [PMID: 22176148]
[148]
Gadani, S.P.; Walsh, J.T.; Smirnov, I.; Zheng, J.; Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron, 2015, 85(4), 703-709.
[http://dx.doi.org/10.1016/j.neuron.2015.01.013] [PMID: 25661185]
[149]
Verri, W.A., Jr; Souto, F.O.; Vieira, S.M.; Almeida, S.C.; Fukada, S.Y.; Xu, D.; Alves-Filho, J.C.; Cunha, T.M.; Guerrero, A.T.; Mattos-Guimaraes, R.B.; Oliveira, F.R.; Teixeira, M.M.; Silva, J.S.; McInnes, I.B.; Ferreira, S.H.; Louzada-Junior, P.; Liew, F.Y.; Cunha, F.Q. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann. Rheum. Dis., 2010, 69(9), 1697-1703.
[http://dx.doi.org/10.1136/ard.2009.122655] [PMID: 20472598]
[150]
Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; Rhyner, C.; Ouaked, N.; Schaffartzik, A.; Van De Veen, W.; Zeller, S.; Zimmermann, M.; Akdis, C.A. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. The Journal of allergy and clinical immunology, 2011, 127(3), e701-e770.
[151]
Chackerian, A.A.; Oldham, E.R.; Murphy, E.E.; Schmitz, J.; Pflanz, S.; Kastelein, R.A. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol., 2007, 179(4), 2551-2555.
[http://dx.doi.org/10.4049/jimmunol.179.4.2551] [PMID: 17675517]
[152]
Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; Gorman, D.M.; Bazan, J.F.; Kastelein, R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, 23(5), 479-490.
[http://dx.doi.org/10.1016/j.immuni.2005.09.015] [PMID: 16286016]
[153]
Pomeshchik, Y.; Kidin, I.; Korhonen, P.; Savchenko, E.; Jaronen, M.; Lehtonen, S.; Wojciechowski, S.; Kanninen, K.; Koistinaho, J.; Malm, T. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav. Immun., 2015, 44, 68-81.
[http://dx.doi.org/10.1016/j.bbi.2014.08.002] [PMID: 25153903]
[154]
Alizadeh, A.; Dyck, S.M.; Kataria, H.; Shahriary, G.M.; Nguyen, D.H.; Santhosh, K.T.; Karimi-Abdolrezaee, S. Neuregulin-1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia, 2017, 65(7), 1152-1175.
[http://dx.doi.org/10.1002/glia.23150] [PMID: 28456012]
[155]
Bastien, D.; Bellver Landete, V.; Lessard, M.; Vallières, N.; Champagne, M.; Takashima, A.; Tremblay, M.E.; Doyon, Y.; Lacroix, S. IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3. J. Neurosci., 2015, 35(30), 10715-10730.
[http://dx.doi.org/10.1523/JNEUROSCI.0498-15.2015] [PMID: 26224856]
[156]
Inukai, T.; Uchida, K.; Nakajima, H.; Yayama, T.; Kobayashi, S.; Mwaka, E.S.; Guerrero, A.R.; Baba, H. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine, 2009, 34(26), 2848-2857.
[http://dx.doi.org/10.1097/BRS.0b013e3181b0d078] [PMID: 19949368]
[157]
Akassoglou, K.; Bauer, J.; Kassiotis, G.; Pasparakis, M.; Lassmann, H.; Kollias, G.; Probert, L. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol., 1998, 153(3), 801-813.
[http://dx.doi.org/10.1016/S0002-9440(10)65622-2] [PMID: 9736029]
[158]
Shuman, S.L.; Bresnahan, J.C.; Beattie, M.S. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J. Neurosci. Res., 1997, 50(5), 798-808.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19971201)50:5<798:AID-JNR16>3.0.CO;2-Y] [PMID: 9418967]
[159]
Yong, C.; Arnold, P.M.; Zoubine, M.N.; Citron, B.A.; Watanabe, I.; Berman, N.E.; Festoff, B.W. Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J. Neurotrauma, 1998, 15(7), 459-472.
[http://dx.doi.org/10.1089/neu.1998.15.459] [PMID: 9674550]
[160]
Casha, S.; Yu, W.R.; Fehlings, M.G. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience, 2001, 103(1), 203-218.
[http://dx.doi.org/10.1016/S0306-4522(00)00538-8] [PMID: 11311801]
[161]
Yune, T.Y.; Lee, J.Y.; Jung, G.Y.; Kim, S.J.; Jiang, M.H.; Kim, Y.C.; Oh, Y.J.; Markelonis, G.J.; Oh, T.H. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J. Neurosci., 2007, 27(29), 7751-7761.
[http://dx.doi.org/10.1523/JNEUROSCI.1661-07.2007] [PMID: 17634369]
[162]
Yeo, J.E.; Kim, J.H.; Kang, S.K. Selenium attenuates ROSmediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction in vitro and in vivo study. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2008. 21(1-3), 225-238.
[163]
Whitaker, C.M.; Beaumont, E.; Wells, M.J.; Magnuson, D.S.; Hetman, M.; Onifer, S.M. Rolipram attenuates acute oligodendrocyte death in the adult rat ventrolateral funiculus following contusive cervical spinal cord injury. Neurosci. Lett., 2008, 438(2), 200-204.
[http://dx.doi.org/10.1016/j.neulet.2008.03.087] [PMID: 18455876]
[164]
Jiang, M.H.; Lim, J.E.; Chi, G.F.; Ahn, W.; Zhang, M.; Chung, E.; Son, Y. Substance P reduces apoptotic cell death possibly by modulating the immune response at the early stage after spinal cord injury. Neuroreport, 2013, 24(15), 846-851.
[http://dx.doi.org/10.1097/WNR.0b013e3283650e3d] [PMID: 23995292]
[165]
Moon, Y.J.; Lee, J.Y.; Oh, M.S.; Pak, Y.K.; Park, K.S.; Oh, T.H.; Yune, T.Y. Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. J. Neurosci. Res., 2012, 90(1), 243-256.
[http://dx.doi.org/10.1002/jnr.22734] [PMID: 21922518]
[166]
Yune, T.Y.; Lee, J.Y.; Cui, C.M.; Kim, H.C.; Oh, T.H. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats. J. Neurochem., 2009, 110(4), 1276-1287.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06214.x] [PMID: 19519665]
[167]
Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci., 2017, 18(5)E1028
[http://dx.doi.org/10.3390/ijms18051028] [PMID: 28492466]
[168]
McMahon, S.B. NGF as a mediator of inflammatory pain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1338), 431-440.
[http://dx.doi.org/10.1098/rstb.1996.0039] [PMID: 8730782]
[169]
Woolf, C.J.; Allchorne, A.; Safieh-Garabedian, B.; Poole, S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br. J. Pharmacol., 1997, 121(3), 417-424.
[http://dx.doi.org/10.1038/sj.bjp.0701148] [PMID: 9179382]
[170]
Tep, C.; Lim, T.H.; Ko, P.O.; Getahun, S.; Ryu, J.C.; Goettl, V.M.; Massa, S.M.; Basso, M.; Longo, F.M.; Yoon, S.O. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci., 2013, 33(2), 397-410.
[http://dx.doi.org/10.1523/JNEUROSCI.0399-12.2013] [PMID: 23303920]
[171]
Beattie, M.S.; Harrington, A.W.; Lee, R.; Kim, J.Y.; Boyce, S.L.; Longo, F.M.; Bresnahan, J.C.; Hempstead, B.L.; Yoon, S.O. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 2002, 36(3), 375-386.
[http://dx.doi.org/10.1016/S0896-6273(02)01005-X] [PMID: 12408842]
[172]
Lee, H.L.; Oh, J.; Yun, Y.; Lee, H.Y.; You, Y.; Che, L.; Lee, M.; Kim, K.N.; Ha, Y. Vascular endothelial growth factor-expressing neural stem cell for the treatment of neuropathic pain. Neuroreport, 2015, 26(7), 399-404.
[http://dx.doi.org/10.1097/WNR.0000000000000359] [PMID: 25793634]
[173]
Liu, H.; Hu, Q.; D’ercole, A.J.; Ye, P. Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia, 2009, 57(1), 1-12.
[http://dx.doi.org/10.1002/glia.20729] [PMID: 18627006]
[174]
Marin-Husstege, M.; Muggironi, M.; Liu, A.; Casaccia-Bonnefil, P. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J. Neurosci., 2002, 22(23), 10333-10345.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10333.2002] [PMID: 12451133]
[175]
Shen, S.; Sandoval, J.; Swiss, V.A.; Li, J.; Dupree, J.; Franklin, R.J.; Casaccia-Bonnefil, P. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci., 2008, 11(9), 1024-1034.
[http://dx.doi.org/10.1038/nn.2172] [PMID: 19160500]
[176]
Dincman, T.A.; Beare, J.E.; Ohri, S.S.; Gallo, V.; Hetman, M.; Whittemore, S.R. Histone deacetylase inhibition is cytotoxic to oligodendrocyte precursor cells in vitro and in vivo. Int. J. Dev. Neurosci., 2016, 54, 53-61.
[http://dx.doi.org/10.1016/j.ijdevneu.2016.08.006] [PMID: 27587342]
[177]
Shen, S.; Casaccia-Bonnefil, P. Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. Journal of molecular neuroscience: MN, 2008. 35, (1), 13-22.
[http://dx.doi.org/10.1007/s12031-007-9014-x]
[178]
Conway, G.D.; O’Bara, M.A.; Vedia, B.H.; Pol, S.U.; Sim, F.J. Histone deacetylase activity is required for human oligodendrocyte progenitor differentiation. Glia, 2012, 60(12), 1944-1953.
[http://dx.doi.org/10.1002/glia.22410] [PMID: 22927334]
[179]
Genovese, T.; Melani, A.; Esposito, E.; Mazzon, E.; Di Paola, R.; Bramanti, P.; Pedata, F.; Cuzzocrea, S. The selective adenosine A2A receptor agonist CGS 21680 reduces JNK MAPK activation in oligodendrocytes in injured spinal cord. Shock, 2009, 32(6), 578-585.
[http://dx.doi.org/10.1097/SHK.0b013e3181a20792] [PMID: 19295488]
[180]
Yang, C.C.; Jou, I.M. Caffeine treatment aggravates secondary degeneration after spinal cord injury. Brain Res., 2016, 1634, 75-82.
[http://dx.doi.org/10.1016/j.brainres.2015.12.053] [PMID: 26746340]
[181]
Kigerl, K.A.; Lai, W.; Rivest, S.; Hart, R.P.; Satoskar, A.R.; Popovich, P.G. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J. Neurochem., 2007, 102(1), 37-50.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04524.x] [PMID: 17403033]
[182]
Santos-Nogueira, E.; López-Serrano, C.; Hernández, J.; Lago, N.; Astudillo, A.M.; Balsinde, J.; Estivill-Torrús, G.; de Fonseca, F.R.; Chun, J.; López-Vales, R. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J. Neurosci., 2015, 35(28), 10224-10235.
[http://dx.doi.org/10.1523/JNEUROSCI.4703-14.2015] [PMID: 26180199]
[183]
Wu, J.; Sabirzhanov, B.; Stoica, B.A.; Lipinski, M.M.; Zhao, Z.; Zhao, S.; Ward, N.; Yang, D.; Faden, A.I. Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Cell Cycle, 2015, 14(23), 3698-3712.
[http://dx.doi.org/10.1080/15384101.2015.1104436] [PMID: 26505089]
[184]
Guennoun, R.; Labombarda, F.; Gonzalez Deniselle, M.C.; Liere, P.; De Nicola, A.F.; Schumacher, M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J. Steroid Biochem. Mol. Biol., 2015, 146, 48-61.
[http://dx.doi.org/10.1016/j.jsbmb.2014.09.001] [PMID: 25196185]
[185]
Labombarda, F.; Jure, I.; Gonzalez, S.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J. Steroid Biochem. Mol. Biol., 2015, 154, 274-284.
[http://dx.doi.org/10.1016/j.jsbmb.2015.09.011] [PMID: 26369614]
[186]
Garcia-Ovejero, D.; González, S.; Paniagua-Torija, B.; Lima, A.; Molina-Holgado, E.; De Nicola, A.F.; Labombarda, F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J. Neurotrauma, 2014, 31(9), 857-871.
[http://dx.doi.org/10.1089/neu.2013.3162] [PMID: 24460450]
[187]
Labombarda, F.; González, S.L.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; de Nicola, A.F. Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia, 2009, 57(8), 884-897.
[http://dx.doi.org/10.1002/glia.20814] [PMID: 19053058]
[188]
Labombarda, F.; González Deniselle, M.C.; De Nicola, A.F.; González, S.L. Progesterone and the spinal cord: good friends in bad times. Neuroimmunomodulation, 2010, 17(3), 146-149.
[http://dx.doi.org/10.1159/000258709] [PMID: 20134188]
[189]
El-Etr, M.; Rame, M.; Boucher, C.; Ghoumari, A.M.; Kumar, N.; Liere, P.; Pianos, A.; Schumacher, M.; Sitruk-Ware, R. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia, 2015, 63(1), 104-117.
[http://dx.doi.org/10.1002/glia.22736] [PMID: 25092805]
[190]
Brambilla, R.; Bracchi-Ricard, V.; Hu, W.H.; Frydel, B.; Bramwell, A.; Karmally, S.; Green, E.J.; Bethea, J.R. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med., 2005, 202(1), 145-156.
[http://dx.doi.org/10.1084/jem.20041918] [PMID: 15998793]
[191]
Bracchi-Ricard, V.; Lambertsen, K.L.; Ricard, J.; Nathanson, L.; Karmally, S.; Johnstone, J.; Ellman, D.G.; Frydel, B.; McTigue, D.M.; Bethea, J.R. Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury. J. Neuroinflammation, 2013, 10, 92.
[http://dx.doi.org/10.1186/1742-2094-10-92] [PMID: 23880092]
[192]
Kumar, S.; Patel, R.; Moore, S.; Crawford, D.K.; Suwanna, N.; Mangiardi, M.; Tiwari-Woodruff, S.K. Estrogen receptor β ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol. Dis., 2013, 56, 131-144.
[http://dx.doi.org/10.1016/j.nbd.2013.04.005] [PMID: 23603111]
[193]
Hussain, R.; Ghoumari, A.M.; Bielecki, B.; Steibel, J.; Boehm, N.; Liere, P.; Macklin, W.B.; Kumar, N.; Habert, R.; Mhaouty-Kodja, S.; Tronche, F.; Sitruk-Ware, R.; Schumacher, M.; Ghandour, M.S. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain, 2013, 136(Pt 1), 132-146.
[http://dx.doi.org/10.1093/brain/aws284] [PMID: 23365095]
[194]
Fernández-Martos, C.M.; González, P.; Rodriguez, F.J. Acute leptin treatment enhances functional recovery after spinal cord injury. PLoS One, 2012, 7(4)e35594
[http://dx.doi.org/10.1371/journal.pone.0035594] [PMID: 22536415]
[195]
Li, Q.; Houdayer, T.; Liu, S.; Belegu, V. Induced neural activity promotes an oligodendroglia regenerative response in the injured spinal cord and improves motor function after spinal cord injury. J. Neurotrauma, 2017, 34(24), 3351-3361.
[http://dx.doi.org/10.1089/neu.2016.4913] [PMID: 28474539]
[196]
Luessi, F.; Kuhlmann, T.; Zipp, F. Remyelinating strategies in multiple sclerosis. Expert Rev. Neurother., 2014, 14(11), 1315-1334.
[http://dx.doi.org/10.1586/14737175.2014.969241] [PMID: 25331418]
[197]
Pinho-Ribeiro, F.A.; Verri, W.A. Jr.; Chiu, I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001] [PMID: 27793571]
[198]
Gao, Y.J.; Ji, R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther., 2010, 126(1), 56-68.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.002] [PMID: 20117131]
[199]
Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577.
[http://dx.doi.org/10.1126/science.aaf8924] [PMID: 27811267]
[200]
Ji, R.R.; Berta, T.; Nedergaard, M. Glia and pain: is chronic pain a gliopathy? Pain, 2013, 154(Suppl. 1), S10-S28.
[http://dx.doi.org/10.1016/j.pain.2013.06.022] [PMID: 23792284]
[201]
Echeverry, S.; Shi, X.Q.; Zhang, J. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain, 2008, 135(1-2), 37-47.
[http://dx.doi.org/10.1016/j.pain.2007.05.002] [PMID: 17560721]
[202]
Liu, B.; Tai, Y.; Achanta, S.; Kaelberer, M.M.; Caceres, A.I.; Shao, X.; Fang, J.; Jordt, S.E. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7572-E7579.
[http://dx.doi.org/10.1073/pnas.1606608113] [PMID: 27821781]
[203]
Abraham, K.E.; McGinty, J.F.; Brewer, K.L. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury. Neuroscience, 2001, 104(3), 863-874.
[http://dx.doi.org/10.1016/S0306-4522(01)00134-8] [PMID: 11440816]
[204]
Bergles, D.E.; Roberts, J.D.; Somogyi, P.; Jahr, C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 2000, 405(6783), 187-191.
[http://dx.doi.org/10.1038/35012083] [PMID: 10821275]
[205]
Choi, J.I.; Svensson, C.I.; Koehrn, F.J.; Bhuskute, A.; Sorkin, L.S. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain, 2010, 149(2), 243-253.
[http://dx.doi.org/10.1016/j.pain.2010.02.008] [PMID: 20202754]
[206]
Schäfers, M.; Sorkin, L. Effect of cytokines on neuronal excitability. Neurosci. Lett., 2008, 437(3), 188-193.
[http://dx.doi.org/10.1016/j.neulet.2008.03.052] [PMID: 18420346]
[207]
Jin, X.; Gereau, R.W. IV Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci., 2006, 26(1), 246-255.
[http://dx.doi.org/10.1523/JNEUROSCI.3858-05.2006] [PMID: 16399694]
[208]
Plunkett, J.A.; Yu, C.G.; Easton, J.M.; Bethea, J.R.; Yezierski, R.P. Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp. Neurol., 2001, 168(1), 144-154.
[http://dx.doi.org/10.1006/exnr.2000.7604] [PMID: 11170729]
[209]
Borghi, S.M.; Pinho-Ribeiro, F.A.; Fattori, V.; Bussmann, A.J.; Vignoli, J.A.; Camilios-Neto, D.; Casagrande, R.; Verri, W.A. Jr Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice. PLoS One, 2016, 11(9)e0162267
[http://dx.doi.org/10.1371/journal.pone.0162267] [PMID: 27583449]
[210]
Naito, Y.; Takagi, T.; Higashimura, Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys., 2014, 564, 83-88.
[http://dx.doi.org/10.1016/j.abb.2014.09.005] [PMID: 25241054]
[211]
Tochiki, K.K.; Cunningham, J.; Hunt, S.P.; Géranton, S.M. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol. Pain, 2012, 8, 14.
[http://dx.doi.org/10.1186/1744-8069-8-14] [PMID: 22369085]
[212]
Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393(6683), 386-389.
[http://dx.doi.org/10.1038/30764] [PMID: 9620804]
[213]
Géranton, S.M.; Morenilla-Palao, C.; Hunt, S.P. A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J. Neurosci., 2007, 27(23), 6163-6173.
[http://dx.doi.org/10.1523/JNEUROSCI.1306-07.2007] [PMID: 17553988]
[214]
Park, S.W.; Yi, J.H.; Miranpuri, G.; Satriotomo, I.; Bowen, K.; Resnick, D.K.; Vemuganti, R. Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J. Pharmacol. Exp. Ther., 2007, 320(3), 1002-1012.
[http://dx.doi.org/10.1124/jpet.106.113472] [PMID: 17167171]
[215]
Gritsch, S.; Lu, J.; Thilemann, S.; Wörtge, S.; Möbius, W.; Bruttger, J.; Karram, K.; Ruhwedel, T.; Blanfeld, M.; Vardeh, D.; Waisman, A.; Nave, K.A.; Kuner, R. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice. Nat. Commun., 2014, 5, 5472.
[http://dx.doi.org/10.1038/ncomms6472] [PMID: 25434649]
[216]
von Büdingen, H.C.; Mei, F.; Greenfield, A.; Jahn, S.; Shen, Y.A.; Reid, H.H.; McKemy, D.D.; Chan, J.R. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry. J. Cell Biol., 2015, 210(6), 891-898.
[http://dx.doi.org/10.1083/jcb.201504106] [PMID: 26347141]
[217]
Brown, A.; Ricci, M.J.; Weaver, L.C. NGF message and protein distribution in the injured rat spinal cord. Exp. Neurol., 2004, 188(1), 115-127.
[http://dx.doi.org/10.1016/j.expneurol.2004.03.017] [PMID: 15191808]
[218]
Pezet, S.; McMahon, S.B. Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci., 2006, 29, 507-538.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112929] [PMID: 16776595]
[219]
Duffy, S.S.; Perera, C.J.; Makker, P.G.; Lees, J.G.; Carrive, P.; Moalem-Taylor, G. Peripheral and central neuroinflam-matory changes and pain behaviors in an animal model of multiple sclerosis. Front. Immunol., 2016, 7, 369.
[http://dx.doi.org/10.3389/fimmu.2016.00369] [PMID: 27713744]
[220]
Calvo, M.; Zhu, N.; Grist, J.; Ma, Z.; Loeb, J.A.; Bennett, D.L. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia, 2011, 59(4), 554-568.
[http://dx.doi.org/10.1002/glia.21124] [PMID: 21319222]
[221]
Poole, S.; Cunha, F.Q.; Selkirk, S.; Lorenzetti, B.B.; Ferreira, S.H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br. J. Pharmacol., 1995, 115(4), 684-688.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb14987.x] [PMID: 7582491]
[222]
Gauthier, M.K.; Kosciuczyk, K.; Tapley, L.; Karimi-Abdolrezaee, S. Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur. J. Neurosci., 2013, 38(5), 2693-2715.
[http://dx.doi.org/10.1111/ejn.12268] [PMID: 23758598]
[223]
Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev., 2001, 53(4), 597-652.
[PMID: 11734620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy