[1]
Ruddigkeit, L.; Van Deursen, R.; Blum, L.C.; Reymond, J-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model., 2012, 52, 2864-2875.
[2]
Hansch, C.; Sammes, P.G.; Taylor, J.B.; Ramsden, C., Eds.; Comprehensive Medicinal Chemistry: Quantitative Drug Design.Vol. 4; Pergamon Press: New York, 1990.
[3]
Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Research Studies: Chichester, 1986.
[4]
Basak, S.C.; Restrepo, G.; Villaveces, J.L., Eds.; Advances in Mathematical Chemistry and Applications.d.; Vol 1-2 (Revised Edition);
[5]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3, 935-949.
[6]
Cramer, R.D. Topomer CoMFA: A design methodology for rapid lead optimization. J. Med. Chem., 2003, 46, 374-389.
[7]
Sun, H.; Tawa, G.; Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today, 2012, 17, 310-324.
[8]
Prathipati, P.; Ma, N.L.; Keller, T.H. Global bayesian models for the prioritization of antitubercular agents. J. Chem. Inf. Model., 2008, 48, 2362-2370.
[10]
Gálvez, J.; García-Domenech, R. On the contribution of molecular topology to drug design and discovery. Curr. Comput.-. Aided Drug Des., 2010, 6, 252-268.
[11]
Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 5.0, A molecular structure generator. Adv. Math. Chem. App., 2014, 1, 113-138.
[12]
Faulon, J-L.; Bender, A. Handbook of chemoinformatics algorithms; CRC press: Boca Raton, 2010.
[13]
Wong, W.W.; Burkowski, F.J. A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem. J. Cheminform., 2009, 1, 4.
[14]
Beyer, T.; Hedetniemi, S.M. Constant time generation of rooted trees. SIAM Journal on Computing, 1980, 9, 706-712.
[15]
Gibbs, N.E. A cycle generation algorithm for finite undirected linear graphs. J. A. C. M., 1969, 16, 564-568.
[16]
Klopman, G.; Raychaudhury, C. Vertex indexes of molecular graphs in structure-activity relationships: A study of the convulsant-anticonvulsant activity of barbiturates and the carcinogenicity of unsubstituted polycyclic aromatic hydrocarbons. J. Chem. Inf. Comput. Sci., 1990, 30, 12-19.
[17]
Raychaudhury, C.; Pal, D. Use of vertex index in structure-activity analysis and design of molecules. Curr. Comput.-. Aided Drug Des., 2012, 8, 128-134.
[18]
Raychaudhury, C.; Kandel, D.D.; Pal, D. Role of vertex index in substructure identification and activity prediction: A study on antitubercular activity of a series of acid alkyl ester derivatives. Croat. Chem. Acta,2014, 87, 39-47; (b) Pieroni, M.: Lilienkampf, A.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Synthesis, biological evaluation, and structure-activity relationships for 5-[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl ester derivatives as valuable antitubercular chemotypes. J. Med. Chem., 2009, 52, 6287-6296.
[19]
Günther, G. Multidrug-resistant and extensively drug-resistant tuberculosis: A review of current concepts and future challenges. Clin. Med. , 2014, 14, 279-285.
[20]
Raychaudhury, C.; Klopman, G. New Vertex Indices and their Applications in Evaluating Antileukemic Activity of 9‐Anilinoacridines and the Activity of 2′, 3′‐Dideoxy‐Nuclosides Against HIV. Bull. Soc. Chim. Belg., 1990, 99, 255-264.
[21]
Raychaudhury, C.; Dey, I.; Bag, P.; Biswas, G.; Das, B.; Roy, P.; Banerjee, A. Use of a rule based graph-theoretical system in evaluating the activity of a class of nucleoside analogues against human immunodeficiency virus. Arzneim.-Forsch. Drug Res., 1993, 43, 1122-1125.
[22]
Kandel, D.D.; Raychaudhury, C.; Pal, D. Two new atom centered fragment descriptors and scoring function enhance classification of antibacterial activity. J. Mol. Model., 2014, 20, 2164.
[23]
Moss, G. Extension and revision of the von Baeyer system for naming polycyclic compounds (including bicyclic compounds). Pure Appl. Chem., 1999, 71, 513-529.
[24]
Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci., 1989, 29, 97-101.
[25]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
[26]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62, 1220-1227.