[1]
Ellis, R.J. Protein misassembly: Macromolecular crowding and molecular chaperones. Adv. Exp. Med. Biol., 2007, 594, 1-13.
[2]
Jee, H. Size dependent classification of heat shock proteins: A mini-review. J. Exerc. Rehabil., 2016, 12(4), 255-259.
[3]
Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 2009, 14(1), 105-111.
[4]
Rüdiger, S.; Buchberger, A.; Bukau, B. Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol., 1997, 4(5), 342-349.
[5]
Vogel, M.; Mayer, M.P.; Bukau, B. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem., 2006, 281(50), 38705-38711.
[6]
Thériault, J.R.; Adachi, H.; Calderwood, S.K. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J. Immunol., 2006, 177(12), 8604-8611.
[7]
Lancaster, G.I.; Febbraio, M.A. Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. J. Biol. Chem., 2005, 280(24), 23349-23355.
[8]
De Maio, A.; Vazquez, D. Extracellular heat shock proteins: A new location, a new function. Shock, 2013, 40(4), 239-246.
[9]
Ghosh, J.G.; Houck, S.A.; Clark, J.I. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One, 2007, 2(6), e498.
[10]
Melkani, G.C.; Cammarato, A.; Bernstein, S.I. alphaB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress. J. Mol. Biol., 2006, 358(3), 635-645.
[11]
Rosenfeld, G.E.; Mercer, E.J.; Mason, C.E.; Evans, T. Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Dev. Biol., 2013, 381(2), 389-400.
[12]
Juo, L.Y.; Liao, W.C.; Shih, Y.L.; Yang, B.Y.; Liu, A.B.; Yan, Y.T. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J. Cell Sci., 2016, 129(8), 1661-1670.
[13]
Hennessy, F.; Nicoll, W.S.; Zimmermann, R.; Cheetham, M.E.; Blatch, G.L. Function and chemotypes of human Hsp70 chaperones. Curr. Top. Med. Chem., 2016, 16(25), 2812-2828.
[14]
Gupta, S.; Knowlton, A.A. HSP60, Bax, apoptosis and the heart. J. Cell. Mol. Med., 2005, 9(1), 51-58.
[15]
Shrestha, L.; Young, J.C. Function and Chemotypes of Human Hsp70 Chaperones. Curr. Top. Med. Chem., 2016, 16(25), 2812-2828.
[16]
Jackson, S.E. Hsp90: Structure and function. Top. Curr. Chem., 2013, 328, 155-240.
[17]
Easton, D.P.; Kaneko, Y.; Subjeck, J.R. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones, 2000, 5(4), 276-290.
[18]
Belli, F.; Testori, A.; Rivoltini, L.; Maio, M.; Andreola, G.; Sertoli, M.R.; Gallino, G.; Piris, A.; Cattelan, A.; Lazzari, I.; Carrabba, M.; Scita, G.; Santantonio, C.; Pilla, L.; Tragni, G.; Lombardo, C.; Arienti, F.; Marchianò, A.; Queirolo, P.; Bertolini, F.; Cova, A.; Lamaj, E.; Ascani, L.; Camerini, R.; Corsi, M.; Cascinelli, N.; Lewis, J.J.; Srivastava, P.; Parmiani, G. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: Clinical and immunologic findings. J. Clin. Oncol., 2002, 20(20), 4169-4180.
[19]
Rad-Malekshahi, M.; Fransen, M.F.; Krawczyk, M.; Mansourian, M.; Bourajjaj, M.; Chen, J.; Ossendorp, F.; Hennink, W.E.; Mastrobattista, E.; Amidi, M. Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Mol. Pharm., 2017, 14(5), 1482-1493.
[20]
Udono, H.; Srivastava, P.K. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med., 1993, 178(4), 1391-1396.
[21]
Blachere, N.E.; Li, Z.; Chandawarkar, R.Y.; Suto, R.; Jaikaria, N.S.; Basu, S.; Udono, H.; Srivastava, P.K. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med., 1997, 186(8), 1315-1322.
[22]
Tang, D.; Khaleque, M.A.; Jones, E.L.; Theriault, J.R.; Li, C.; Wong, W.H.; Stevenson, M.A.; Calderwood, S.K. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones, 2005, 10(1), 46-58.
[23]
Banerjee, S.; Lin, C.F.; Skinner, K.A.; Schiffhauer, L.M.; Peacock, J.; Hicks, D.G.; Redmond, E.M.; Morrow, D.; Huston, A.; Shayne, M.; Langstein, H.N.; Miller-Graziano, C.L.; Strickland, J.; O’Donoghue, L.; De, A.K. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res., 2011, 71(2), 318-327.
[24]
Calderwood, S.K.; Gong, J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem. Sci., 2016, 41(4), 311-323.
[25]
Stocki, P.; Morris, N.J.; Preisinger, C.; Wang, X.N.; Kolch, W.; Multhoff, G.; Dickinson, A.M. Identification of potential HLA class I and class II epitope precursors associated with heat shock protein 70 (HSPA). Cell Stress Chaperones, 2010, 15(5), 729-741.
[26]
Basu, S.; Binder, R.J.; Suto, R.; Anderson, K.M.; Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol., 2000, 12(11), 1539-1546.
[27]
Mambula, S.S.; Calderwood, S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J. Immunol., 2006, 177(11), 7849-7857.
[28]
Mambula, S.S.; Calderwood, S.K. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int. J. Hyperthermia, 2006, 22(7), 575-585.
[29]
Vega, V.L.; Rodríguez-Silva, M.; Frey, T.; Gehrmann, M.; Diaz, J.C.; Steinem, C.; Multhoff, G.; Arispe, N.; De Maio, A. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol., 2008, 180(6), 4299-4307.
[30]
Borges, T.J.; Wieten, L.; van Herwijnen, M.J.; Broere, F.; van der Zee, R.; Bonorino, C.; van Eden, W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol., 2012, 3, 95.
[31]
Pockley, A.G.; Muthana, M.; Calderwood, S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci., 2008, 33(2), 71-79.
[32]
Luo, X.; Zuo, X.; Zhou, Y.; Zhang, B.; Shi, Y.; Liu, M.; Wang, K.; McMillian, D.R.; Xiao, X. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Res. Ther., 2008, 10(2), R41.
[33]
Stocki, P.; Wang, X.N.; Dickinson, A.M. Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J. Biol. Chem., 2012, 287(15), 12387-12394.
[34]
Miller-Graziano, C.L.; De, A.; Laudanski, K.; Herrmann, T.; Bandyopadhyay, S. HSP27: An anti-inflammatory and immunomodulatory stress protein acting to dampen immune function. Novartis Found. Symp., 2008, 291, 196-208.
[35]
Rayner, K.; Chen, Y.X.; McNulty, M.; Simard, T.; Zhao, X.; Wells, D.J.; de Belleroche, J.; O’Brien, E.R. Extracellular re-lease of the atheroprotective heat shock protein 27 is mediat-ed by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ. Res; , 2008, 103, . (2),133-141
[36]
De, A.K.; Kodys, K.M.; Yeh, B.S.; Miller-Graziano, C. Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J. Immunol., 2000, 165(7), 3951-3958.
[37]
de Kleer, I.; Vercoulen, Y.; Klein, M.; Meerding, J.; Albani, S.; van der Zee, R.; Sawitzki, B.; Hamann, A.; Kuis, W.; Prakken, B. CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J. Immunol., 2010, 185(4), 2071-2079.
[38]
Aalberse, J.A.; Kapitein, B.; de Roock, S.; Klein, M.R.; de Jager, W.; van der Zee, R.; Hoekstra, M.O.; van Wijk, F.; Prakken, B.J. Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60). PLoS One, 2011, 6(9), e24119.
[39]
Cohen-Sfady, M.; Nussbaum, G.; Pevsner-Fischer, M.; Mor, F.; Carmi, P.; Zanin-Zhorov, A.; Lider, O.; Cohen, I.R. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J. Immunol., 2005, 175(6), 3594-3602.
[40]
Ueki, K.; Tabeta, K.; Yoshie, H.; Yamazaki, K. Self-heat shock protein 60 induces tumour necrosis factor-alpha in monocyte-derived macrophage: possible role in chronic inflammatory periodontal disease. Clin. Exp. Immunol., 2002, 127(1), 72-77.
[41]
Gastpar, R.; Gehrmann, M.; Bausero, M.A.; Asea, A.; Gross, C.; Schroeder, J.A.; Multhoff, G. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res., 2005, 65(12), 5238-5247.
[42]
Gehrmann, M.; Marienhagen, J.; Eichholtz-Wirth, H.; Fritz, E.; Ellwart, J.; Jäättelä, M.; Zilch, T.; Multhoff, G. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ., 2005, 12(1), 38-51.
[43]
Bausinger, H.; Lipsker, D.; Ziylan, U.; Manié, S.; Briand, J.P.; Cazenave, J.P.; Muller, S.; Haeuw, J.F.; Ravanat, C.; de la Salle, H.; Hanau, D. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol., 2002, 32(12), 3708-3713.
[44]
Facciponte, J.G.; Wang, X.Y.; Subjeck, J.R. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur. J. Immunol., 2007, 37(8), 2268-2279.
[45]
Tsai, Y.P.; Yang, M.H.; Huang, C.H.; Chang, S.Y.; Chen, P.M.; Liu, C.J.; Teng, S.C.; Wu, K.J. Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis, 2009, 30(6), 1049-1057.
[46]
Chalmin, F.; Ladoire, S.; Mignot, G.; Vincent, J.; Bruchard, M.; Remy-Martin, J.P.; Boireau, W.; Rouleau, A.; Simon, B.; Lanneau, D.; De Thonel, A.; Multhoff, G.; Hamman, A.; Martin, F.; Chauffert, B.; Solary, E.; Zitvogel, L.; Garrido, C.; Ryffel, B.; Borg, C.; Apetoh, L.; Rébé, C.; Ghiringhelli, F. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest., 2010, 120(2), 457-471.
[47]
Marigo, I.; Dolcetti, L.; Serafini, P.; Zanovello, P.; Bronte, V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev., 2008, 222, 162-179.
[48]
Srivastava, P.K.; DeLeo, A.B.; Old, L.J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl. Acad. Sci. USA, 1986, 83(10), 3407-3411.
[49]
Maki, R.G.; Old, L.J.; Srivastava, P.K. Human homologue of murine tumor rejection antigen gp96: 5′-regulatory and coding regions and relationship to stress-induced proteins. Proc. Natl. Acad. Sci. USA, 1990, 87(15), 5658-5662.
[50]
Blachere, N.E.; Udono, H.; Janetzki, S.; Li, Z.; Heike, M.; Srivastava, P.K. Heat shock protein vaccines against cancer. J. Immunother. Emphasis Tumor Immunol., 1993, 14(4), 352-356.
[51]
Ishii, T.; Udono, H.; Yamano, T.; Ohta, H.; Uenaka, A.; Ono, T.; Hizuta, A.; Tanaka, N.; Srivastava, P.K.; Nakayama, E. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol., 1999, 162(3), 1303-1309.
[52]
Tamura, Y.; Peng, P.; Liu, K.; Daou, M.; Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 1997, 278(5335), 117-120.
[53]
Noessner, E.; Gastpar, R.; Milani, V.; Brandl, A.; Hutzler, P.J.; Kuppner, M.C.; Roos, M.; Kremmer, E.; Asea, A.; Calderwood, S.K.; Issels, R.D. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol., 2002, 169(10), 5424-5432.
[54]
Mazzaferro, V.; Coppa, J.; Carrabba, M.G.; Rivoltini, L.; Schiavo, M.; Regalia, E.; Mariani, L.; Camerini, T.; Marchi-ano, A.; Andreola, S.; Camerini, R.; Corsi, M.; Lewis, J.J.; Srivastava, P.K.; Parmiani, G. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res., 2003, 9(9), 3235-3245.
[55]
Reitsma, D.J.; Combest, A.J. Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Hum. Vaccin. Immunother., 2012, 8(8), 1152-1155.
[56]
Randazzo, M.; Terness, P.; Opelz, G.; Kleist, C. Active-specific immunotherapy of human cancers with the heat shock protein Gp96-revisited. Int. J. Cancer, 2012, 130(10), 2219-2231.
[57]
Gancberg, D.; Di Leo, A.; Cardoso, F.; Rouas, G.; Pedrocchi, M.; Paesmans, M.; Verhest, A.; Bernard-Marty, C.; Piccart, M.J.; Larsimont, D. Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Ann. Oncol., 2002, 13(7), 1036-1043.
[58]
Ito, H.; Hatori, M.; Kinugasa, Y.; Irie, T.; Tachikawa, T.; Nagumo, M. Comparison of the expression profile of metastasis-associated genes between primary and circulating cancer cells in oral squamous cell carcinoma. Anticancer Res., 2003, 23(2B), 1425-1431.
[59]
Flynn, G.C.; Chappell, T.G.; Rothman, J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science, 1989, 245(4916), 385-390.
[60]
Savvateeva, L.V.; Schwartz, A.M.; Gorshkova, L.B.; Gorokhovets, N.V.; Makarov, V.A.; Reddy, V.P.; Aliev, G.; Zamyatnin, A.A., Jr Prophylactic admission of an in vitro reconstructed complexes of human recombinant heat shock proteins and melanoma antigenic peptides activates anti-melanoma responses in mice. Curr. Mol. Med., 2015, 15(5), 462-468.
[61]
Graziano, D.F.; Finn, O.J. Tumor antigens and tumor antigen discovery. Cancer Treat. Res., 2005, 123, 89-111.
[62]
Coulie, P.G.; Van den Eynde, B.J.; van der Bruggen, P.; Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer, 2014, 14(2), 135-146.
[63]
Huo, W.; Ye, J.; Liu, R.; Chen, J.; Li, Q. Vaccination with a chaperone complex based on PSCA and GRP170 adjuvant enhances the CTL response and inhibits the tumor growth in mice. Vaccine, 2010, 28(38), 6333-6337.
[64]
Wang, X.J.; Gu, K.; Xu, J.S.; Li, M.H.; Cao, R.Y.; Wu, J.; Li, T.M.; Liu, J.J. Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo. Cancer immunology, immunotherapy. CII, 2010, 59(12), 1859-1866.
[65]
Staib, F.; Distler, M.; Bethke, K.; Schmitt, U.; Galle, P.R.; Heike, M. Cross-presentation of human melanoma peptide antigen MART-1 to CTLs from in vitro reconstituted gp96/MART-1 complexes. Cancer Immun., 2004, 4, 3.
[66]
Hu, T.; Li, D.; Zhao, Y. Development of the hsp110-heparanase vaccine to enhance antitumor immunity using the chaperoning properties of hsp110. Mol. Immunol., 2009, 47(2-3), 298-301.
[67]
Zhou, L.; Zhu, T.; Ye, X.; Yang, L.; Wang, B.; Liang, X.; Lu, L.; Tsao, Y.P.; Chen, S.L.; Li, J.; Xiao, X. Long-term protection against human papillomavirus e7-positive tumor by a single vaccination of adeno-associated virus vectors encoding a fusion protein of inactivated e7 of human papillomavirus 16/18 and heat shock protein 70. Hum. Gene Ther., 2010, 21(1), 109-119.
[68]
Ren, F.; Xu, Y.; Mao, L.; Ou, R.; Ding, Z.; Zhang, X.; Tang, J.; Li, B.; Jia, Z.; Tian, Z.; Ni, B.; Wu, Y. Heat shock protein 110 improves the antitumor effects of the cytotoxic T lymphocyte epitope E7(49-57) in mice. Cancer Biol. Ther., 2010, 9(2), 134-141.
[69]
Susumu, S.; Nagata, Y.; Ito, S.; Matsuo, M.; Valmori, D.; Yui, K.; Udono, H.; Kanematsu, T. Cross-presentation of NY-ESO-1 cytotoxic T lymphocyte epitope fused to human heat shock cognate protein 70 by dendritic cells. Cancer Sci., 2008, 99(1), 107-112.
[70]
Wang, X.Y.; Sun, X.; Chen, X.; Facciponte, J.; Repasky, E.A.; Kane, J.; Subjeck, J.R. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J. Immunol., 2010, 184(11), 6309-6319.
[71]
Ge, W.; Hu, P.Z.; Huang, Y.; Wang, X.M.; Zhang, X.M.; Sun, Y.J.; Li, Z.S.; Si, S.Y.; Sui, Y.F. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol. Rep., 2009, 22(4), 915-920.
[72]
Jager, D.; Filonenko, V.; Gout, I.; Frosina, D.; Eastlake-Wade, S.; Castelli, S.; Varga, Z.; Moch, H.; Chen, Y.T.; Busam, K.J.; Seil, I.; Old, L.J.; Nissan, A.; Frei, C.; Gure, A.O.; Knuth, A.; Jungbluth, A.A. NY-BR-1 is a differentiation antigen of the mammary gland. Appl. Immunohistochem. Mol. Morphol., 2007, 15(1), 77-83.
[73]
Theurillat, J.P.; Zürrer-Härdi, U.; Varga, Z.; Storz, M.; Probst-Hensch, N.M.; Seifert, B.; Fehr, M.K.; Fink, D.; Ferrone, S.; Pestalozzi, B.; Jungbluth, A.A.; Chen, Y.T.; Jäger, D.; Knuth, A.; Moch, H. NY-BR-1 protein expression in breast carcinoma: A mammary gland differentiation antigen as target for cancer immunotherapy. Cancer Immunol. Immunother., 2007, 56(11), 1723-1731.
[74]
Godoy, H.; Mhawech-Fauceglia, P.; Beck, A.; Miliotto, A.; Miller, A.; Lele, S.; Odunsi, K. Developmentally restricted differentiation antigens are targets for immunotherapy in epithelial ovarian carcinoma. Int. J. Gynecol. Pathol., 2013, 32(6), 536-540.
[75]
Metcalf, R.A.; Monabati, A.; Vyas, M.; Roncador, G.; Gualco, G.; Bacchi, C.E.; Younes, S.F.; Natkunam, Y.; Freud, A.G. Myeloid cell nuclear differentiation antigen is expressed in a subset of marginal zone lymphomas and is useful in the differential diagnosis with follicular lymphoma. Hum. Pathol., 2014, 45(8), 1730-1736.
[76]
Brichard, V.; Van Pel, A.; Wölfel, T.; Wölfel, C.; De Plaen, E.; Lethé, B.; Coulie, P.; Boon, T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med., 1993, 178(2), 489-495.
[77]
Bakker, A.B.; Schreurs, M.W.; Tafazzul, G.; de Boer, A.J.; Kawakami, Y.; Adema, G.J.; Figdor, C.G. Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int. J. Cancer, 1995, 62(1), 97-102.
[78]
Coulie, P.G.; Brichard, V.; Van Pel, A.; Wölfel, T.; Schneider, J.; Traversari, C.; Mattei, S.; De Plaen, E.; Lurquin, C.; Szikora, J.P.; Renauld, J.C.; Boon, T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med., 1994, 180(1), 35-42.
[79]
Wang, W.; Epler, J.; Salazar, L.G.; Riddell, S.R. Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1. Cancer Res., 2006, 66(13), 6826-6833.
[80]
Fisk, B.; Savary, C.; Hudson, J.M.; O’Brian, C.A.; Murray, J.L.; Wharton, J.T.; Ioannides, C.G. Changes in an HER-2 peptide upregulating HLA-A2 expression affect both con-formational epitopes and CTL recognition: implications for optimization of antigen presentation and tumor-specific CTL induction. J. Immunother. Emphasis Tumor Immunol., 1995, 18(4), 197-209.
[81]
Peoples, G.E.; Goedegebuure, P.S.; Smith, R.; Linehan, D.C.; Yoshino, I.; Eberlein, T.J. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc. Natl. Acad. Sci. USA, 1995, 92(2), 432-436.
[82]
Gravalos, C.; Jimeno, A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann. Oncol., 2008, 19(9), 1523-1529.
[83]
Richman, S.D.; Southward, K.; Chambers, P.; Cross, D.; Barrett, J.; Hemmings, G.; Taylor, M.; Wood, H.; Hutchins, G.; Foster, J.M.; Oumie, A.; Spink, K.G.; Brown, S.R.; Jones, M.; Kerr, D.; Handley, K.; Gray, R.; Seymour, M.; Quirke, P. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J. Pathol., 2016, 238(4), 562-570.
[84]
Sotiropoulou, P.A.; Perez, S.A.; Voelter, V.; Echner, H.; Missitzis, I.; Tsavaris, N.B.; Papamichail, M.; Baxevanis, C.N. Natural CD8+ T-cell responses against MHC class I epitopes of the HER-2/ neu oncoprotein in patients with epithelial tumors. Cancer immunology, immunotherapy. CII, 2003, 52(12), 771-779.
[85]
Ladjemi, M.Z.; Jacot, W.; Pèlegrin, A.; Navarro-Teulon, I. [Anti-HER2 vaccines: The HER2 immunotargeting future?]. Pathol. Biol. (Paris), 2011, 59(3), 173-182.
[86]
Wölfel, T.; Hauer, M.; Schneider, J.; Serrano, M.; Wölfel, C.; Klehmann-Hieb, E.; De Plaen, E.; Hankeln, T.; Meyer zum Büschenfelde, K.H.; Beach, D.A. p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 1995, 269(5228), 1281-1284.
[87]
Robbins, P.F.; El-Gamil, M.; Li, Y.F.; Kawakami, Y.; Loftus, D.; Appella, E.; Rosenberg, S.A. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med., 1996, 183(3), 1185-1192.
[88]
Yanuck, M.; Carbone, D.P.; Pendleton, C.D.; Tsukui, T.; Winter, S.F.; Minna, J.D.; Berzofsky, J.A. A mutant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T-cells. Cancer Res., 1993, 53(14), 3257-3261.
[89]
Coulie, P.G.; Lehmann, F.; Lethé, B.; Herman, J.; Lurquin, C.; Andrawiss, M.; Boon, T. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. USA, 1995, 92(17), 7976-7980.
[90]
Avantaggiati, M.L.; Natoli, G.; Balsano, C.; Chirillo, P.; Artini, M.; De Marzio, E.; Collepardo, D.; Levrero, M. The hepatitis B virus (HBV) pX transactivates the c-fos promoter through multiple cis-acting elements. Oncogene, 1993, 8(6), 1567-1574.
[91]
Koutsky, L.A.; Ault, K.A.; Wheeler, C.M.; Brown, D.R.; Barr, E.; Alvarez, F.B.; Chiacchierini, L.M.; Jansen, K.U. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med., 2002, 347(21), 1645-1651.
[92]
van der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991, 254(5038), 1643-1647.
[93]
Fiszer, D.; Kurpisz, M. Major histocompatibility complex expression on human, male germ cells: A review. Am. J. Reprod. Immunol., 1998, 40(3), 172-176.
[94]
Bart, J.; Groen, H.J.; van der Graaf, W.T.; Hollema, H.; Hendrikse, N.H.; Vaalburg, W.; Sleijfer, D.T.; de Vries, E.G. An oncological view on the blood-testis barrier. Lancet Oncol., 2002, 3(6), 357-363.
[95]
Van Der Bruggen, P.; Zhang, Y.; Chaux, P.; Stroobant, V.; Panichelli, C.; Schultz, E.S.; Chapiro, J.; Van Den Eynde, B.J.; Brasseur, F.; Boon, T. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev., 2002, 188, 51-64.
[96]
Golovastova, M.O.; Bazhin, A.V.; Philippov, P.P. Cancer-retina antigens -- a new group of tumor antigens. Biochemistry (Mosc.), 2014, 79(8), 733-739.
[97]
Golovastova, M.O.; Korolev, D.O.; Tsoy, L.V.; Varshavsky, V.A.; Xu, W.H.; Vinarov, A.Z.; Zernii, E.Y.; Philippov, P.P.; Zamyatnin, A.A., Jr Biomarkers of renal tumors: The current state and clinical perspectives. Curr. Urol. Rep., 2017, 18(1), 3.
[98]
Huh, G.S.; Boulanger, L.M.; Du, H.; Riquelme, P.A.; Brotz, T.M.; Shatz, C.J. Functional requirement for class I MHC in CNS development and plasticity. Science, 2000, 290(5499), 2155-2159.
[99]
Engelhardt, B.; Coisne, C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS, 2011, 8(1), 4.
[100]
Sallusto, F.; Impellizzieri, D.; Basso, C.; Laroni, A.; Uccelli, A.; Lanzavecchia, A.; Engelhardt, B. T-cell trafficking in the central nervous system. Immunol. Rev., 2012, 248(1), 216-227.
[101]
Jacobson, D.M.; Thirkill, C.E.; Tipping, S.J. A clinical triad to diagnose paraneoplastic retinopathy. Ann. Neurol., 1990, 28(2), 162-167.
[102]
Rosenblum, M.K. Paraneoplasia and autoimmunologic injury of the nervous system: The anti-Hu syndrome. Brain Pathol., 1993, 3(3), 199-212.
[103]
Giometto, B.; Taraloto, B.; Graus, F. Autoimmunity in paraneoplastic neurological syndromes. Brain Pathol., 1999, 9(2), 261-273.
[104]
Bazhin, A.V.; Savchenko, M.S.; Shifrina, O.N.; Demoura, S.A.; Chikina, S.Y.; Jaques, G.; Kogan, E.A.; Chuchalin, A.G.; Philippov, P.P. Recoverin as a paraneoplastic antigen in lung cancer: the occurrence of anti-recoverin autoantibodies in sera and recoverin in tumors. Lung Cancer, 2004, 44(2), 193-198.
[105]
Eichmüller, S.B.; Bazhin, A.V. Onconeural versus paraneoplastic antigens? Curr. Med. Chem., 2007, 14(23), 2489-2494.
[106]
Bazhin, A.V.; Shifrina, O.N.; Savchenko, M.S.; Tikhomirova, N.K.; Goncharskaia, M.A.; Gorbunova, V.A.; Senin, I.I.; Chuchalin, A.G.; Philippov, P.P. Low titre autoantibodies against recoverin in sera of patients with small cell lung cancer but without a loss of vision. Lung Cancer, 2001, 34(1), 99-104.
[107]
Bazhin, A.V.; Schadendorf, D.; Philippov, P.P.; Eichmüller, S.B. Recoverin as a cancer-retina antigen. Cancer Immunol. Immunother., 2007, 56(1), 110-116.
[108]
Gromadzka, G.; Karlińska, A.G.; Łysiak, Z.; Błażejewska-Hyżorek, B.; Litwin, T.; Członkowska, A. Positivity of serum “classical” onconeural antibodies in a series of 2063 consecutive patients with suspicion of paraneoplastic neurological syndrome. J. Neuroimmunol., 2013, 259(1-2), 75-80.
[109]
Dalmau, J.; Furneaux, H.M.; Cordon-Cardo, C.; Posner, J.B. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am. J. Pathol., 1992, 141(4), 881-886.
[110]
Luque, F.A.; Furneaux, H.M.; Ferziger, R.; Rosenblum, M.K.; Wray, S.H.; Schold, S.C., Jr; Glantz, M.J.; Jaeckle, K.A.; Biran, H.; Lesser, M. Anti-Ri: An antibody associated with paraneoplastic opsoclonus and breast cancer. Ann. Neurol., 1991, 29(3), 241-251.
[111]
Peterson, K.; Rosenblum, M.K.; Kotanides, H.; Posner, J.B. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology, 1992, 42(10), 1931-1937.
[112]
Polans, A.S.; Buczyłko, J.; Crabb, J.; Palczewski, K. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J. Cell Biol., 1991, 112(5), 981-989.
[113]
Maeda, A.; Ohguro, H.; Maeda, T.; Wada, I.; Sato, N.; Kuroki, Y.; Nakagawa, T. Aberrant expression of photoreceptor-specific calcium-binding protein (recoverin) in cancer cell lines. Cancer Res., 2000, 60(7), 1914-1920.
[114]
Golovastova, M.O.; Tsoy, L.V.; Bocharnikova, A.V.; Korolev, D.O.; Gancharova, O.S.; Alekseeva, E.A.; Kuznetsova, E.B.; Savvateeva, L.V.; Skorikova, E.E.; Strelnikov, V.V.; Varshavsky, V.A.; Vinarov, A.Z.; Nikolenko, V.N.; Glybochko, P.V.; Zernii, E.Y.; Zamyatnin, A.A., Jr; Bazhin, A.V.; Philippov, P.P. The cancer-retina antigen recoverin as a potential biomarker for renal tumors. Tumour Biol., 2016, 37(7), 9899-9907.
[115]
Bazhin, A.V.; Schadendorf, D.; Willner, N.; De Smet, C.; Heinzelmann, A.; Tikhomirova, N.K.; Umansky, V.; Philippov, P.P.; Eichmüller, S.B. Photoreceptor proteins as cancer-retina antigens. Int. J. Cancer, 2007, 120(6), 1268-1276.
[116]
Matsuo, S.; Ohguro, H.; Ohguro, I.; Nakazawa, M. Clinicopathological roles of aberrantly expressed recoverin in malignant tumor cells. Ophthalmic Res., 2010, 43(3), 139-144.
[117]
Ohguro, H.; Odagiri, H.; Miyagawa, Y.; Ohguro, I.; Sasaki, M.; Nakazawa, M. Clinicopathological features of gastric cancer cases and aberrantly expressed recoverin. Tohoku J. Exp. Med., 2004, 202(3), 213-219.
[118]
Weber, J.; Salgaller, M.; Samid, D.; Johnson, B.; Herlyn, M.; Lassam, N.; Treisman, J.; Rosenberg, S.A. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res., 1994, 54(7), 1766-1771.
[119]
Bazhin, A.V.; De Smet, C.; Golovastova, M.O.; Schmidt, J.; Philippov, P.P. Aberrant demethylation of the recoverin gene is involved in the aberrant expression of recoverin in cancer cells. Exp. Dermatol., 2010, 19(11), 1023-1025.
[120]
Zhao, R.Y.; Mifsud, N.A.; Xiao, K.; Chan, K.F.; Oveissi, S.; Jackson, H.M.; Dimopoulos, N.; Guillaume, P.; Knights, A.J.; Lowen, T.; Robson, N.C.; Russell, S.E.; Scotet, E.; Davis, I.D.; Maraskovsky, E.; Cebon, J.; Luescher, I.F.; Chen, W. A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen. PLoS One, 2012, 7(9), e44707.
[121]
Ciupitu, A.M.; Petersson, M.; O’Donnell, C.L.; Williams, K.; Jindal, S.; Kiessling, R.; Welsh, R.M. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J. Exp. Med., 1998, 187(5), 685-691.
[122]
Moroi, Y.; Mayhew, M.; Trcka, J.; Hoe, M.H.; Takechi, Y.; Hartl, F.U.; Rothman, J.E.; Houghton, A.N. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3485-3490.
[123]
Flechtner, J.B.; Cohane, K.P.; Mehta, S.; Slusarewicz, P.; Leonard, A.K.; Barber, B.H.; Levey, D.L.; Andjelic, S. High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J. Immunol., 2006, 177(2), 1017-1027.
[124]
Javid, B.; MacAry, P.A.; Oehlmann, W.; Singh, M.; Lehner, P.J. Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses. Biochem. Soc. Trans., 2004, 32(Pt 4), 622-625.
[125]
Murshid, A.; Gong, J.; Stevenson, M.A.; Calderwood, S.K. Heat shock proteins and cancer vaccines: Developments in the past decade and chaperoning in the decade to come. Expert Rev. Vaccines, 2011, 10(11), 1553-1568.
[126]
Bystryn, J.C.; Zeleniuch-Jacquotte, A.; Oratz, R.; Shapiro, R.L.; Harris, M.N.; Roses, D.F. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin. Cancer Res., 2001, 7(7), 1882-1887.
[127]
Young, M.D.; Gooch, W.M., III; Zuckerman, A.J.; Du, W.; Dickson, B.; Maddrey, W.C. Comparison of a triple antigen and a single antigen recombinant vaccine for adult hepatitis B vaccination. J. Med. Virol., 2001, 64(3), 290-298.
[128]
Willadsen, P. Antigen cocktails: Valid hypothesis or unsub-stantiated hope? Trends Parasitol., 2008, 24(4), 164-167.
[129]
Suzue, K.; Zhou, X.; Eisen, H.N.; Young, R.A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 13146-13151.
[130]
Moré, S.; Breloer, M.; Fleischer, B.; von Bonin, A. Activation of cytotoxic T cells in vitro by recombinant gp96 fusion proteins irrespective of the ‘fused’ antigenic peptide sequence. Immunol. Lett., 1999, 69(2), 275-282.
[131]
Udono, H.; Yamano, T.; Kawabata, Y.; Ueda, M.; Yui, K. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int. Immunol., 2001, 13(10), 1233-1242.
[132]
Mizukami, S.; Kajiwara, C.; Ishikawa, H.; Katayama, I.; Yui, K.; Udono, H. Both CD4+ and CD8+ T cell epitopes fused to heat shock cognate protein 70 (hsc70) can function to eradicate tumors. Cancer Sci., 2008, 99(5), 1008-1015.
[133]
Takemoto, S.; Nishikawa, M.; Guan, X.; Ohno, Y.; Yata, T.; Takakura, Y. Enhanced generation of cytotoxic T lymphocytes by heat shock protein 70 fusion proteins harboring both CD8(+) T cell and CD4(+) T cell epitopes. Mol. Pharm., 2010, 7(5), 1715-1723.
[134]
Mo, X.Y.; Cascio, P.; Lemerise, K.; Goldberg, A.L.; Rock, K. Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J. Immunol., 1999, 163(11), 5851-5859.
[135]
Takemoto, S.; Nishikawa, M.; Otsuki, T.; Yamaoka, A.; Maeda, K.; Ota, A.; Takakura, Y. Enhanced generation of cytotoxic T lymphocytes by increased cytosolic delivery of MHC class I epitope fused to mouse heat shock protein 70 via polyhistidine conjugation. J. Control. Release, 2009, 135(1), 11-18.
[136]
Germeau, C.; Ma, W.; Schiavetti, F.; Lurquin, C.; Henry, E.; Vigneron, N.; Brasseur, F. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccina-tion with tumor antigens. J. Exp. Med., 2005, 201(2), 241-248.