Review Article

芦丁作为神经保护剂:从长凳到床头

卷 26, 期 27, 2019

页: [5152 - 5164] 页: 13

弟呕挨: 10.2174/0929867324666171003114154

价格: $65

conference banner
摘要

类黄酮是植物性食物的主要饮食成分,在植物界普遍存在,它们通常以大量存在。芦丁是一种黄酮醇型多酚,由黄酮醇槲皮素和二糖芸香糖组成。据报道,芦丁具有多种生物学作用,例如主要与抗氧化剂和抗炎活性有关的抗肿瘤和抗菌作用。精神,神经和行为障碍是发病率的重要且不断增长的原因。这些疾病大多数都具有较高的患病率,早期发作,进行性临床病程以及严重的脑功能受损,使其成为造成全球疾病负担的主要因素。在当前的工作中,综述了芦丁在神经退行性过程中的生物学,体外和体内作用以及潜在的治疗应用,以及它们的生物利用度和药代动力学,这对于更好地了解其生物学有效性至关重要。此外,本综述还概述了芦丁通过其发挥神经保护作用的分子机制。

关键词: 阿尔茨海默氏病,抗氧化剂,类黄酮,神经退行性疾病,多酚,芦丁。

[1]
Ahmed, T.; Gilani, A.U.; Abdollahi, M.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep., 2015, 67(5), 970-979.
[http://dx.doi.org/10.1016/j.pharep.2015.03.002] [PMID: 26398393]
[2]
Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Loizzo, M.R.; Sobarzo-Sánchez, E.; Nabavi, S.M. Flavonoids and dementia: an update. Curr. Med. Chem., 2015, 22(8), 1004-1015.
[http://dx.doi.org/10.2174/0929867322666141212122352] [PMID: 25515512]
[3]
Sánchez-Barceló, E.J.; Rueda, N.; Mediavilla, M.D.; Martínez-Cué, C.; Reiter, R.J. Clinical uses of melatonin in neurological diseases and mental and behavioural disorders. Curr. Med. Chem., 2017, 24(35), 3851-3878.
[http://dx.doi.org/10.2174/0929867324666170718105557] [PMID: 28721826]
[4]
Wolmarans, W.; Stein, D.J.; Harvey, B.H. A psycho-behavioral perspective on modelling obsessive-compulsive disorder (OCD) in animals: The role of context. Curr. Med. Chem., 2017, 25(41), 5662-5689.
[http://dx.doi.org/10.2174/0929867324666170523125256] [PMID: 28545371]
[5]
Barreto, G.E.; Avila-Rodriguez, M.; Foitzick, M.; Aliev, G.; Echeverria, V. Advances in medicinal plants with effects on anxiety behavior associated to mental and health conditions. Curr. Med. Chem., 2017, 24(4), 411-423.
[http://dx.doi.org/10.2174/0929867323666161101140908] [PMID: 27804869]
[6]
Hussain, Z.; Thu, H.E.; Shuid, A.N. New insight in improving therapeutic efficacy of antipsychotic agents: An overview of improved in vitro and in vivo performance, efficacy upgradation and future prospects Curr. Drug. Targets, 2016.https://www.ncbi.nlm.nih.gov/pubmed/27894237
[7]
Reitz, C.; Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[8]
Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M.G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; De Leo, D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gonzalez-Medina, D.; Gosselin, R.; Grainger, R.; Grant, B.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J.P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Laden, F.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Levinson, D.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Mensah, G.A.; Merriman, T.R.; Meyer, A.C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mock, C.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiebe, N.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Zaidi, A.K.; Zheng, Z.J.; Zonies, D.; Lopez, A.D.; AlMazroa, M.A.; Memish, Z.A. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2197-2223.
[http://dx.doi.org/10.1016/S0140-6736(12)61689-4] [PMID: 23245608]
[9]
Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement., 2013, 9(1), 63-75.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007]
[10]
Savitt, J.M.; Dawson, V.L.; Dawson, T.M. Diagnosis and treatment of parkinson disease: molecules to medicine. J. Clin. Invest., 2006, 116(7), 1744-1754.
[http://dx.doi.org/10.1172/JCI29178] [PMID: 16823471]
[11]
[12]
Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D. The prevalence of parkinson’s disease: a systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1583-1590.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[13]
Lu, M-F.; Xiao, Z-T.; Zhang, H-Y. Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem. Biophys. Res. Commun., 2013, 434(4), 701-704.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.035] [PMID: 23624504]
[14]
Pathak, L.; Agrawal, Y.; Dhir, A. Natural polyphenols in the management of major depression. Expert Opin. Investig. Drugs, 2013, 22(7), 863-880.
[http://dx.doi.org/10.1517/13543784.2013.794783] [PMID: 23642183]
[15]
Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drugs, 2013, 22(8), 1063-1079.
[http://dx.doi.org/10.1517/13543784.2013.805744] [PMID: 23795677]
[16]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[17]
Dajas, F.; Juan Andres, A-C.; Florencia, A.; Carolina, E.; Felicia, R-M. Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent. Nerv. Syst. Agents Med. Chem., 2013, 13(1), 30-35.
[18]
Couch, J.F.; Naghski, J.; Krewson, C.F. Buckwheat as a source of rutin. Science, 1946, 103(2668), 197.
[http://dx.doi.org/10.1126/science.103.2668.197]
[19]
Habtemariam, S. Rutin as a natural therapy for alzheimer’s disease: insights into its mechanisms of action. Curr. Med. Chem., 2016, 23(9), 860-873.
[http://dx.doi.org/10.2174/0929867323666160217124333] [PMID: 26898570]
[20]
Suzuki, T.; Morishita, T.; Kim, S-J.; Park, S-U.; Woo, S-h.; Noda, T.; Takigawa, S. Physiological Roles of Rutin in the Buckwheat Plant. Jpn. Agric. Res. Q., 2015, 49(1), 37-43.
[http://dx.doi.org/10.6090/jarq.49.37]
[21]
Suzuki, T.; Honda, Y.; Mukasa, Y. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci., 2005, 168(5), 1303-1307.
[http://dx.doi.org/10.1016/j.plantsci.2005.01.007]
[22]
Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol., 2013, 150(3), 805-817.
[http://dx.doi.org/10.1016/j.jep.2013.10.036] [PMID: 24184193]
[23]
Wang, J.; Zhao, L-L.; Sun, G-X.; Liang, Y.; Wu, F-A.; Chen, Z.; Cui, S. A comparison of acidic and enzymatic hydrolysis of rutin. Afr. J. Biotechnol., 2011, 10(8), 1460-1466.
[24]
You, H.J.; Ahn, H.J.; Ji, G.E. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J. Agric. Food Chem., 2010, 58(20), 10886-10892.
[http://dx.doi.org/10.1021/jf102871g] [PMID: 20886886]
[25]
Lukšič, L.; Bonafaccia, G.; Timoracka, M.; Vollmannova, A.; Trček, J.; Nyambe, T.K.; Melini, V.; Acquistucci, R.; Germ, M.; Kreft, I. Rutin and quercetin transformation during preparation of buckwheat sourdough bread. J. Cereal Sci., 2016, 69, 71-76.
[http://dx.doi.org/10.1016/j.jcs.2016.02.011]
[26]
Amaretti, A.; Raimondi, S.; Leonardi, A.; Quartieri, A.; Rossi, M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifido bacteria. Nutrients, 2015, 7(4), 2788-2800.
[http://dx.doi.org/10.3390/nu7042788] [PMID: 25875120]
[27]
Sofic, E.; Copra-Janicijevic, A.; Salihovic, M.; Tahirovic, I.; Kroyer, G. Screening of medicinal plant extracts for quercetin-3-rutinoside (rutin) in Bosnia and Herzegovina. in medicinal plants. Int. J. Phytomed. Relat. Indust., 2010, 2, 97.
[http://dx.doi.org/10.5958/j.0975-4261.2.2.015]
[28]
Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem., 2003, 51(22), 6452-6455.
[http://dx.doi.org/10.1021/jf034543e] [PMID: 14558761]
[29]
Jiang, P.; Burczynski, F.; Campbell, C.; Pierce, G.; Austria, J.; Briggs, C. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res. Int., 2007, 40(3), 356-364.
[http://dx.doi.org/10.1016/j.foodres.2006.10.009]
[30]
Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem., 2006, 98(3), 508-512.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.081]
[31]
Atanassova, M.; Bagdassarian, V. Rutin content in plant products. J. Univ. Chem. Technol. Metall., 2009, 44(2), 201-203.
[32]
Vollmannova, A.; Margitanova, E.; Toth, T.; Timoracka, M.; Urminska, D.; Bojnanska, T.; Cicova, I. Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech J. Food Sci., 2013, 31(6), 589-595.
[http://dx.doi.org/10.17221/452/2012-CJFS]
[33]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[34]
Hollman, P.C. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol, 2004, 42(sup1). , 74-83.
[35]
de Oliveira, M.R.; Nabavi, S.M.; Braidy, N.; Setzer, W.N.; Ahmed, T.; Nabavi, S.F. Quercetin and the mitochondria: A mechanistic view. Biotechnol. Adv., 2016, 34(5), 532-549.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.014] [PMID: 26740171]
[36]
Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol., 2001, 41(5), 492-499.
[http://dx.doi.org/10.1177/00912700122010366] [PMID: 11361045]
[37]
Gonzales, G.B.; Van Camp, J.; Smagghe, G.; Raes, K.; Mackie, A. Flavonoid–gastrointestinal mucus interaction and its potential role in regulating flavonoid bioavailability and mucosal biophysical properties. Food Res. Int., 2016, 88, 342-347.
[http://dx.doi.org/10.1016/j.foodres.2015.12.023]
[38]
Mascaraque, C.; López-Posadas, R.; Monte, M.J.; Romero-Calvo, I.; Daddaoua, A.; González, M.; Martínez-Plata, E.; Suárez, M.D.; González, R.; Marín, J.J.G. The small intestinal mucosa acts as a rutin reservoir to extend flavonoid anti-inflammatory activity in experimental ileitis and colitis. J. Funct. Foods, 2015, 13, 117-125.
[http://dx.doi.org/10.1016/j.jff.2014.12.041]
[39]
Andlauer, W.; Stumpf, C.; Fürst, P. Intestinal absorption of rutin in free and conjugated forms. Biochem. Pharmacol., 2001, 62(3), 369-374.
[http://dx.doi.org/10.1016/S0006-2952(01)00638-4] [PMID: 11434911]
[40]
Carbonaro, M.; Grant, G. Absorption of quercetin and rutin in rat small intestine. Ann. Nutr. Metab., 2005, 49(3), 178-182.
[http://dx.doi.org/10.1159/000086882] [PMID: 16006787]
[41]
Miyake, K.; Arima, H.; Hirayama, F.; Yamamoto, M.; Horikawa, T.; Sumiyoshi, H.; Noda, S.; Uekama, K. Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-β-cyclodextrin. Pharm. Dev. Technol., 2000, 5(3), 399-407.
[http://dx.doi.org/10.1081/PDT-100100556] [PMID: 10934740]
[42]
Mauludin, R.; Müller, R.H.; Keck, C.M. Development of an oral rutin nanocrystal formulation. Int. J. Pharm., 2009, 370(1-2), 202-209.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.029] [PMID: 19114097]
[43]
Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr., 1995, 62(6), 1276-1282.
[http://dx.doi.org/10.1093/ajcn/62.6.1276] [PMID: 7491892]
[44]
Zhang, M-Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488.
[http://dx.doi.org/10.1016/j.copbio.2007.10.005] [PMID: 18035532]
[45]
Masoodi, T.A.; Alhamdanz, A.H. Inhibitory effect of flavonoids on mutant H-Rasp protein. Bioinformation, 2010, 5(1), 11-15.
[http://dx.doi.org/10.6026/97320630005011] [PMID: 21346872]
[46]
Tamura, M.; Nakagawa, H.; Tsushida, T.; Hirayama, K.; Itoh, K. Effect of pectin enhancement on plasma quercetin and fecal flora in rutin-supplemented mice. J. Food Sci., 2007, 72(9), S648-S651.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00557.x] [PMID: 18034749]
[47]
Tenore, G.C.; Campiglia, P.; Ritieni, A.; Novellino, E. In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chem., 2013, 141(4), 3519-3524.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.051] [PMID: 23993515]
[48]
Ou-Yang, Z.; Cao, X.; Wei, Y.; Zhang, W-W-Q.; Zhao, M.; Duan, J-a. Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Rev. Bras. Farmacogn., 2013, 23(5), 776-782.
[http://dx.doi.org/10.1590/S0102-695X2013000500009]
[49]
Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr., 2010, 104(2), 198-203.
[http://dx.doi.org/10.1017/S000711451000053X] [PMID: 20230651]
[50]
Gohlke, A.; Ingelmann, C.J.; Nürnberg, G.; Starke, A.; Wolffram, S.; Metges, C.C. Bioavailability of quercetin from its aglycone and its glucorhamnoside rutin in lactating dairy cows after intraduodenal administration. J. Dairy Sci., 2013, 96(4), 2303-2313.
[http://dx.doi.org/10.3168/jds.2012-6234] [PMID: 23403185]
[51]
Maciej, J.; Schäff, C.T.; Kanitz, E.; Tuchscherer, A.; Bruckmaier, R.M.; Wolffram, S.; Hammon, H.M. Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin. J. Dairy Sci., 2015, 98(6), 3906-3917.
[http://dx.doi.org/10.3168/jds.2015-9361] [PMID: 25795488]
[52]
Kandale, V.V.; Mujawar, S.N.; Welasly, P.J.; Nimbalkar, J.M. Development of integrated database of Neurodegenerative Diseases (IDND) Rev. Res, 2013, 2(9)
[53]
Streissguth, A.P.; O’Malley, K. Neuropsychiatric implications and long-term consequences of fetal alcohol spectrum disorders. Semin. Clin. Neuropsychiatry, 2000, 5, 177-190.
[PMID: 11291013]
[54]
Song, K.; Na, J.Y.; Kim, S.; Kwon, J. Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells. J. Sci. Food Agric., 2015, 95(10), 2117-2123.
[http://dx.doi.org/10.1002/jsfa.6927] [PMID: 25251136]
[55]
Song, K.; Kim, S.; Na, J-Y.; Park, J-H.; Kim, J-K.; Kim, J-H.; Kwon, J. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2. Food Chem. Toxicol., 2014, 72, 228-233.
[http://dx.doi.org/10.1016/j.fct.2014.07.028] [PMID: 25084483]
[56]
Pourentezari, M.; Talebi, A.; Abbasi, A.; Khalili, M.A.; Mangoli, E.; Anvari, M.; Anvari, M. Effects of acrylamide on sperm parameters, chromatin quality, and the level of blood testosterone in mice. Iran. J. Reprod. Med., 2014, 12(5), 335-342.
[PMID: 25031578]
[57]
Motamedshariaty, V.S.; Amel Farzad, S.; Nassiri-Asl, M.; Hosseinzadeh, H. Effects of rutin on acrylamide-induced neurotoxicity. Daru, 2014, 22(1), 27.
[http://dx.doi.org/10.1186/2008-2231-22-27] [PMID: 24524427]
[58]
Machawal, L.; Kumar, A. Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice. Pharmacol. Rep., 2014, 66(1), 15-21.
[http://dx.doi.org/10.1016/j.pharep.2013.08.001] [PMID: 24905301]
[59]
Reijmer, Y.D.; van den Berg, E.; Ruis, C.; Kappelle, L.J.; Biessels, G.J. Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab. Res. Rev., 2010, 26(7), 507-519.
[http://dx.doi.org/10.1002/dmrr.1112] [PMID: 20799243]
[60]
Ola, M.S.; Ahmed, M.M.; Ahmad, R.; Abuohashish, H.M.; Al-Rejaie, S.S.; Alhomida, A.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J. Mol. Neurosci., 2015, 56(2), 440-448.
[http://dx.doi.org/10.1007/s12031-015-0561-2] [PMID: 25929832]
[61]
Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab. Brain Dis., 2017, 32(2), 471-481.
[http://dx.doi.org/10.1007/s11011-016-9929-4] [PMID: 27928694]
[62]
Trachootham, D.; Lu, W.; Ogasawara, M.A.; Nilsa, R.D.; Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal., 2008, 10(8), 1343-1374.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[63]
Dröge, W.; Schipper, H.M. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 2007, 6(3), 361-370.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00294.x] [PMID: 17517043]
[64]
Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J., 2012, 441(2), 523-540.
[http://dx.doi.org/10.1042/BJ20111451] [PMID: 22187934]
[65]
Rebrin, I.; Kamzalov, S.; Sohal, R.S. Effects of age and caloric restriction on glutathione redox state in mice. Free Radic. Biol. Med., 2003, 35(6), 626-635.
[http://dx.doi.org/10.1016/S0891-5849(03)00388-5] [PMID: 12957655]
[66]
Al-Rejaie, S.S.; Aleisa, A.M.; Sayed-Ahmed, M.M. AL-Shabanah, O.A.; Abuohashish, H.M.; Ahmed, M.M.; Al-Hosaini, K.A.; Hafez, M.M., Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat. BMC Complement. Altern. Med., 2013, 13(1), 1.
[http://dx.doi.org/10.1186/1472-6882-13-136]
[67]
Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci., 1999, 22(9), 391-397.
[http://dx.doi.org/10.1016/S0166-2236(99)01401-0] [PMID: 10441299]
[68]
Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab., 2001, 21(1), 2-14.
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[69]
Graham, S.H.; Chen, J. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab., 2001, 21(2), 99-109.
[http://dx.doi.org/10.1097/00004647-200102000-00001] [PMID: 11176275]
[70]
Jang, J-W.; Lee, J-K.; Hur, H.; Kim, T-W.; Joo, S-P.; Piao, M-S. Rutin improves functional outcome via reducing the elevated matrix metalloproteinase-9 level in a photothrombotic focal ischemic model of rats. J. Neurol. Sci., 2014, 339(1-2), 75-80.
[http://dx.doi.org/10.1016/j.jns.2014.01.024] [PMID: 24507948]
[71]
Annapurna, A.; Ansari, M.A.; Manjunath, P.M. Partial role of multiple pathways in infarct size limiting effect of quercetin and rutin against cerebral ischemia-reperfusion injury in rats. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(4), 491-500.
[PMID: 23467948]
[72]
Rodrigues, A.M.G. Marcilio, Fdos.S.; Frazão Muzitano, M.; Giraldi-Guimarães, A. Therapeutic potential of treatment with the flavonoid rutin after cortical focal ischemia in rats. Brain Res., 2013, 1503, 53-61.
[http://dx.doi.org/10.1016/j.brainres.2013.01.039] [PMID: 23370003]
[73]
Pu, F.; Mishima, K.; Irie, K.; Motohashi, K.; Tanaka, Y.; Orito, K.; Egawa, T.; Kitamura, Y.; Egashira, N.; Iwasaki, K.; Fujiwara, M. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci., 2007, 104(4), 329-334.
[http://dx.doi.org/10.1254/jphs.FP0070247] [PMID: 17666865]
[74]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int. J. Biol. Macromol., 2016, 91, 640-655.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.001] [PMID: 27264648]
[75]
Nassiri-Asl, M.; Zamansoltani, F.; Javadi, A.; Ganjvar, M. The effects of rutin on a passive avoidance test in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 204-207.
[http://dx.doi.org/10.1016/j.pnpbp.2009.11.006] [PMID: 19914327]
[76]
Kumar, A.; Rinwa, P.; Dhar, H. Possible nitric oxide modulation in the protective effects of rutin against experimental head trauma-induced cognitive deficits: behavioral, biochemical, and molecular correlates. J. Surg. Res., 2014, 188(1), 268-279.
[http://dx.doi.org/10.1016/j.jss.2013.12.028] [PMID: 24484907]
[77]
Pyrzanowska, J.; Piechal, A.; Blecharz-Klin, K.; Joniec-Maciejak, I.; Zobel, A.; Widy-Tyszkiewicz, E. Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacol. Rep., 2012, 64(4), 808-816.
[http://dx.doi.org/10.1016/S1734-1140(12)70876-9] [PMID: 23087133]
[78]
Zhang, L.; Zhao, Q.; Chen, C-H.; Qin, Q-Z.; Zhou, Z.; Yu, Z-P. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment. Nutr. Neurosci., 2014, 17(5), 222-229.
[http://dx.doi.org/10.1179/1476830513Y.0000000085] [PMID: 24001577]
[79]
Koda, T.; Kuroda, Y.; Imai, H. Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutr. Res., 2008, 28(9), 629-634.
[http://dx.doi.org/10.1016/j.nutres.2008.06.004] [PMID: 19083469]
[80]
Ramalingayya, G.V.; Nampoothiri, M.; Nayak, P.G.; Kishore, A.; Shenoy, R.R.; Mallikarjuna Rao, C.; Nandakumar, K. Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn. Mag., 2016, 12(Suppl. 1), S63-S70.
[http://dx.doi.org/10.4103/0973-1296.176104] [PMID: 27041861]
[81]
Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res., 2011, 217(1), 10-15.
[http://dx.doi.org/10.1016/j.bbr.2010.09.027] [PMID: 20888863]
[82]
Tongjaroenbuangam, W.; Ruksee, N.; Chantiratikul, P.; Pakdeenarong, N.; Kongbuntad, W.; Govitrapong, P. Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn) in dexamethasone-treated mice. Neurochem. Int., 2011, 59(5), 677-685.
[http://dx.doi.org/10.1016/j.neuint.2011.06.014] [PMID: 21740943]
[83]
Motamedi, G.K.; Meador, K.J. Antiepileptic drugs and memory. Epilepsy Behav., 2004, 5(4), 435-439.
[http://dx.doi.org/10.1016/j.yebeh.2004.03.006] [PMID: 15256178]
[84]
Dubey, S.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Protective effect of rutin on cognitive impairment caused by phenytoin. Indian J. Pharmacol., 2015, 47(6), 627-631.
[http://dx.doi.org/10.4103/0253-7613.169581] [PMID: 26729954]
[85]
Man, Y-G.; Zhou, R-G.; Zhao, B. Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int. J. Clin. Exp. Med., 2015, 8(8), 14397-14409.
[PMID: 26550427]
[86]
Marsh, N.V.; Ludbrook, M.R.; Gaffaney, L.C. Cognitive functioning following traumatic brain injury: A five-year follow-up. NeuroRehabilitation, 2016, 38(1), 71-78.
[http://dx.doi.org/10.3233/NRE-151297] [PMID: 26889800]
[87]
Ramalingayya, G.V.; Cheruku, S.P.; Nayak, P.G.; Kishore, A.; Shenoy, R.; Rao, C.M.; Krishnadas, N. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des. Devel. Ther., 2017, 11, 1011-1026.
[http://dx.doi.org/10.2147/DDDT.S103511] [PMID: 28408800]
[88]
Babri, S.; Mohaddes, G.; Feizi, I.; Mohammadnia, A.; Niapour, A.; Alihemmati, A.; Amani, M. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer׳s disease: an electrophysiological study. Eur. J. Pharmacol., 2014, 732, 19-25.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.018] [PMID: 24681055]
[89]
Choi, J.Y.; Lee, J.M.; Lee, D.G.; Cho, S.; Yoon, Y-H.; Cho, E.J.; Lee, S. The n-butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease. J. Med. Food, 2015, 18(6), 631-641.
[http://dx.doi.org/10.1089/jmf.2014.3292] [PMID: 25785882]
[90]
Xie, Z.; Tanzi, R.E. Alzheimer’s disease and post-operative cognitive dysfunction. Exp. Gerontol., 2006, 41(4), 346-359.
[http://dx.doi.org/10.1016/j.exger.2006.01.014] [PMID: 16564662]
[91]
Li, R-S.; Wang, X-B.; Hu, X-J.; Kong, L-Y. Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(9), 2636-2641.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.095] [PMID: 23511019]
[92]
Braidy, N.; Jugder, B-E.; Poljak, A.; Jayasena, T.; Mansour, H.; Nabavi, S.M.; Sachdev, P.; Grant, R. Resveratrol as a potential therapeutic candidate for the treatment and management of alzheimer’s disease. Curr. Top. Med. Chem., 2016, 16(17), 1951-1960.
[http://dx.doi.org/10.2174/1568026616666160204121431] [PMID: 26845555]
[93]
Kumar, A.; Dogra, S.; Prakash, A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food, 2010, 13(4), 976-984.
[http://dx.doi.org/10.1089/jmf.2009.1251] [PMID: 20673063]
[94]
Spencer, J.P. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr., 2007, 2(3), 257-273.
[http://dx.doi.org/10.1007/s12263-007-0056-z] [PMID: 18850181]
[95]
Wang, S.W.; Wang, Y-J.; Su, Y.J.; Zhou, W.W.; Yang, S.G.; Zhang, R.; Zhao, M.; Li, Y.N.; Zhang, Z.P.; Zhan, D.W.; Liu, R.T. Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology, 2012, 33(3), 482-490.
[http://dx.doi.org/10.1016/j.neuro.2012.03.003] [PMID: 22445961]
[96]
Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience, 2012, 210, 340-352.
[http://dx.doi.org/10.1016/j.neuroscience.2012.02.046] [PMID: 22441036]
[97]
Moghbelinejad, S.; Nassiri-Asl, M.; Farivar, T.N.; Abbasi, E.; Sheikhi, M.; Taghiloo, M.; Farsad, F.; Samimi, A.; Hajiali, F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol. Lett., 2014, 224(1), 108-113.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.010] [PMID: 24148604]
[98]
Xu, P.X.; Wang, S.W.; Yu, X.L.; Su, Y.J.; Wang, T.; Zhou, W.W.; Zhang, H.; Wang, Y.J.; Liu, R.T. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav. Brain Res., 2014, 264, 173-180.
[http://dx.doi.org/10.1016/j.bbr.2014.02.002] [PMID: 24512768]
[99]
Yu, X-L.; Li, Y-N.; Zhang, H.; Su, Y-J.; Zhou, W-W.; Zhang, Z-P.; Wang, S-W.; Xu, P-X.; Wang, Y-J.; Liu, R-T. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct., 2015, 6(10), 3296-3306.
[http://dx.doi.org/10.1039/C5FO00500K] [PMID: 26242245]
[100]
Khan, M.M.; Raza, S.S.; Javed, H.; Ahmad, A.; Khan, A.; Islam, F.; Safhi, M.M.; Islam, F. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox. Res., 2012, 22(1), 1-15.
[http://dx.doi.org/10.1007/s12640-011-9295-2] [PMID: 22194158]
[101]
Park, S-E.; Sapkota, K.; Choi, J-H.; Kim, M-K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H-N.; Kim, S-J.; Kim, S. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem. Res., 2014, 39(4), 707-718.
[http://dx.doi.org/10.1007/s11064-014-1259-5] [PMID: 24549762]
[102]
Magalingam, K.B.; Radhakrishnan, A.; Ramdas, P.; Haleagrahara, N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J. Mol. Neurosci., 2015, 55(3), 609-617.
[http://dx.doi.org/10.1007/s12031-014-0400-x] [PMID: 25129099]
[103]
Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int. J. Immunopathol. Pharmacol., 2016, 29(1), 30-39.
[http://dx.doi.org/10.1177/0394632015613039] [PMID: 26542606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy