Review Article

脂肪酸及其对肝脂肪变性的体内和体外模型的影响

卷 26, 期 19, 2019

页: [3439 - 3456] 页: 18

弟呕挨: 10.2174/0929867324666170518101334

价格: $65

conference banner
摘要

背景:脂肪肝或脂肪变性是肝脏中脂质过多积累的一种状况,主要是甘油三酸酯(TG)形式,这是非酒精性脂肪肝疾病(NAFLD)的标志。 NAFLD是全世界最常见的肝脏疾病,经常与肥胖,高脂血症和胰岛素抵抗相关。游离脂肪酸(FA)是肝脂肪变性的主要介质。 NAFLD患者的循环FA水平升高,与疾病的严重程度相关。 方法:脂肪变性是一种可逆的疾病,可以通过改变行为来解决,或者可以发展为更严重的肝脏损害,例如脂肪性肝炎(NASH),纤维化和肝硬化。在NAFLD中,外源或内源性FA积累在肝细胞中并引发肝损伤。过量的TG储存在胞质脂质滴(LDs)中,这些脂质是动态细胞器,充当脂质代谢的枢纽。 结果:在本综述的第一部分中,我们简要地假设了FA的主要类别及其化学分类是双键存在和数量,它们的代谢途径以及对人体健康的影响的函数。然后,我们总结了NAFLD的主要遗传和饮食诱导的动物模型,以及NAFLD的细胞模型。 结论:近年来,通过饮食诱导的NAFLD动物模型以及NAFLD的细胞模型在研究NAFLD涉及的机制方面都得到了越来越多的应用,我们谈到了它们的优缺点。

关键词: 脂肪酸,肝脂肪变性,非酒精性脂肪肝疾病(NAFLD),活性氧(ROS),脂肪酸氧化,脂质代谢,氧化应激,脂质滴(LDs)。

[1]
Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA, 2015, 313(22), 2263-2273.
[http://dx.doi.org/10.1001/jama.2015.5370] [PMID: 26057287]
[2]
Bradbury, M.W.; Berk, P.D. Lipid metabolism in hepatic steatosis. Clin. Liver Dis., 2004, 8(3), 639-671. xi. [xi]
[http://dx.doi.org/10.1016/j.cld.2004.04.005] [PMID: 15331068]
[3]
Brunt, E.M.; Wong, V.W.S.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Prim, 2004, 8(3), 639-671. xi.2015
[4]
Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 2010, 52(5), 1836-1846.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[5]
Nehra, V.; Angulo, P.; Buchman, A.L.; Lindor, K.D. Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig. Dis. Sci., 2001, 46(11), 2347-2352.
[http://dx.doi.org/10.1023/A:1012338828418] [PMID: 11713934]
[6]
Pohl, J.; Ring, A.; Ehehalt, R.; Herrmann, T.; Stremmel, W. New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc. Nutr. Soc., 2004, 63(2), 259-262.
[http://dx.doi.org/10.1079/PNS2004341] [PMID: 15294040]
[7]
Ehehalt, R.; Füllekrug, J.; Pohl, J.; Ring, A.; Herrmann, T.; Stremmel, W. Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins. Mol. Cell. Biochem., 2006, 284(1-2), 135-140.
[http://dx.doi.org/10.1007/s11010-005-9034-1] [PMID: 16477381]
[8]
Stremmel, W.; Pohl, L.; Ring, A.; Herrmann, T. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids, 2001, 36(9), 981-989.
[http://dx.doi.org/10.1007/s11745-001-0809-2] [PMID: 11724471]
[9]
Musso, G.; Gambino, R.; Cassader, M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res., 2009, 48(1), 1-26.
[http://dx.doi.org/10.1016/j.plipres.2008.08.001] [PMID: 18824034]
[10]
Fernández-Rojo, M.A.; Restall, C.; Ferguson, C.; Martel, N.; Martin, S.; Bosch, M.; Kassan, A.; Leong, G.M.; Martin, S.D.; McGee, S.L.; Muscat, G.E.; Anderson, R.L.; Enrich, C.; Pol, A.; Parton, R.G. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology, 2012, 55(5), 1574-1584.
[http://dx.doi.org/10.1002/hep.24810] [PMID: 22105343]
[11]
Hubbard, B.; Doege, H.; Punreddy, S.; Wu, H.; Huang, X.; Kaushik, V.K.; Mozell, R.L.; Byrnes, J.J.; Stricker-Krongrad, A.; Chou, C.J.; Tartaglia, L.A.; Lodish, H.F.; Stahl, A.; Gimeno, R.E. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology, 2006, 130(4), 1259-1269.
[http://dx.doi.org/10.1053/j.gastro.2006.02.012] [PMID: 16618417]
[12]
Koonen, D.P.; Jacobs, R.L.; Febbraio, M.; Young, M.E.; Soltys, C.L.; Ong, H.; Vance, D.E.; Dyck, J.R. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes, 2007, 56(12), 2863-2871.
[http://dx.doi.org/10.2337/db07-0907] [PMID: 17728375]
[13]
Zhou, J.; Febbraio, M.; Wada, T.; Zhai, Y.; Kuruba, R.; He, J.; Lee, J.H.; Khadem, S.; Ren, S.; Li, S.; Silverstein, R.L.; Xie, W. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology, 2008, 134(2), 556-567.
[http://dx.doi.org/10.1053/j.gastro.2007.11.037] [PMID: 18242221]
[14]
Makowski, L.; Hotamisligil, G.S. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol., 2005, 16(5), 543-548.
[http://dx.doi.org/10.1097/01.mol.0000180166.08196.07] [PMID: 16148539]
[15]
Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest., 2005, 115(5), 1343-1351.
[http://dx.doi.org/10.1172/JCI23621] [PMID: 15864352]
[16]
Thiele, C.; Spandl, J. Cell biology of lipid droplets. Curr. Opin. Cell Biol., 2008, 20(4), 378-385.
[http://dx.doi.org/10.1016/j.ceb.2008.05.009] [PMID: 18606534]
[17]
Reddy, J.K. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(6), G1333-G1339.
[http://dx.doi.org/10.1152/ajpgi.2001.281.6.G1333] [PMID: 11705737]
[18]
Macdonald, G.A.; Prins, J.B. Peroxisomal fatty acid metabolism, peroxisomal proliferator-activated receptors and non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2004, 19(12), 1335-1337.
[http://dx.doi.org/10.1111/j.1440-1746.2004.03562.x] [PMID: 15610304]
[19]
Mannaerts, G.P.; Van Veldhoven, P.P.; Casteels, M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem. Biophys., 2000, 32(Spring), 73-87.
[http://dx.doi.org/10.1385/CBB:32:1-3:73] [PMID: 11330072]
[20]
Hua, X.; Wu, J.; Goldstein, J.L.; Brown, M.S.; Hobbs, H.H. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics, 1995, 25(3), 667-673.
[http://dx.doi.org/10.1016/0888-7543(95)80009-B] [PMID: 7759101]
[21]
Azzout-Marniche, D.; Bécard, D.; Guichard, C.; Foretz, M.; Ferré, P.; Foufelle, F. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem. J., 2000, 350(Pt 2), 389-393.
[http://dx.doi.org/10.1042/bj3500389] [PMID: 10947952]
[22]
Foretz, M.; Pacot, C.; Dugail, I.; Lemarchand, P.; Guichard, C.; Le Lièpvre, X.; Berthelier-Lubrano, C.; Spiegelman, B.; Kim, J.B.; Ferré, P.; Foufelle, F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol., 1999, 19(5), 3760-3768.
[http://dx.doi.org/10.1128/MCB.19.5.3760] [PMID: 10207099]
[23]
Kohjima, M.; Higuchi, N.; Kato, M.; Kotoh, K.; Yoshimoto, T.; Fujino, T.; Yada, M.; Yada, R.; Harada, N.; Enjoji, M.; Takayanagi, R.; Nakamuta, M. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med., 2008, 21(4), 507-511.
[http://dx.doi.org/10.3892/ijmm.21.4.507] [PMID: 18360697]
[24]
Shimomura, I.; Bashmakov, Y.; Horton, J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem., 1999, 274(42), 30028-30032.
[http://dx.doi.org/10.1074/jbc.274.42.30028] [PMID: 10514488]
[25]
Horton, J.D.; Bashmakov, Y.; Shimomura, I.; Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 5987-5992.
[http://dx.doi.org/10.1073/pnas.95.11.5987] [PMID: 9600904]
[26]
Wang, D.; Wei, Y.; Pagliassotti, M.J. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology, 2006, 147(2), 943-951.
[http://dx.doi.org/10.1210/en.2005-0570] [PMID: 16269465]
[27]
Poulsen, Ll.; Siersbæk, M.; Mandrup, S. PPARs: fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol., 2012, 23(6), 631-639.
[http://dx.doi.org/10.1016/j.semcdb.2012.01.003] [PMID: 22273692]
[28]
Escher, P.; Braissant, O.; Basu-Modak, S.; Michalik, L.; Wahli, W.; Desvergne, B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology, 2001, 142(10), 4195-4202.
[http://dx.doi.org/10.1210/endo.142.10.8458] [PMID: 11564675]
[29]
Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta, 2011, 1812(8), 1007-1022.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.014] [PMID: 21382489]
[30]
Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res., 2008, 52(8), 885-897.
[http://dx.doi.org/10.1002/mnfr.200700289] [PMID: 18504706]
[31]
Simopoulos, A.P. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 2011, 44(2), 203-215.
[http://dx.doi.org/10.1007/s12035-010-8162-0] [PMID: 21279554]
[32]
Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. (Lond.), 2004, 106(6), 635-643.
[http://dx.doi.org/10.1042/CS20030326] [PMID: 14720121]
[33]
Tsantila, N.; Karantonis, H.C.; Perrea, D.N.; Theocharis, S.E.; Iliopoulos, D.G.; Antonopoulou, S.; Demopoulos, C.A. Antithrombotic and antiatherosclerotic properties of olive oil and olive pomace polar extracts in rabbits. Mediators Inflamm., 2007, 2007, 36204.
[http://dx.doi.org/10.1155/2007/36204] [PMID: 18253466]
[34]
Tvrzicka, E.; Vecka, M.; Stankova, B.; Zak, A. Analysis of fatty acids in plasma lipoproteins by gas chromatography-flame ionization detection: Quantitative aspects. Anal. Chim. Acta, 2002, 465, 337-350.
[http://dx.doi.org/10.1016/S0003-2670(02)00396-3]
[35]
Kitaura, Y.; Inoue, K.; Kato, N.; Matsushita, N.; Shimomura, Y. Enhanced oleate uptake and lipotoxicity associated with laurate. FEBS Open Bio, 2015, 5, 485-491.
[http://dx.doi.org/10.1016/j.fob.2015.05.008] [PMID: 26106523]
[36]
Mensink, R.P.; Katan, M.B. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb., 1992, 12(8), 911-919.
[http://dx.doi.org/10.1161/01.ATV.12.8.911] [PMID: 1386252]
[37]
Di Minno, M.N.; Russolillo, A.; Lupoli, R.; Ambrosino, P.; Di Minno, A.; Tarantino, G. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World J. Gastroenterol., 2012, 18(41), 5839-5847.
[http://dx.doi.org/10.3748/wjg.v18.i41.5839] [PMID: 23139599]
[38]
El-Badry, A.M.; Graf, R.; Clavien, P.A. Omega 3 - Omega 6: what is right for the liver? J. Hepatol., 2007, 47(5), 718-725.
[http://dx.doi.org/10.1016/j.jhep.2007.08.005] [PMID: 17869370]
[39]
Kolakowska, A.; Kolakowski, E.; Szczygielski, M. Winter season krill (Euphausia superba Dana) as a source of n-3 polyunsaturated fatty acids. Food/Nahrung, 2007, 38, 128-134. 1994
[40]
Ferramosca, A.; Conte, A.; Burri, L.; Berge, K.; De Nuccio, F.; Giudetti, A.M.; Zara, V. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS One, 2012, 7(6)e38797
[http://dx.doi.org/10.1371/journal.pone.0038797] [PMID: 22685607]
[41]
Bunea, R.; El Farrah, K.; Deutsch, L. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern. Med. Rev., 2004, 9(4), 420-428.
[PMID: 15656713]
[42]
Summers, L.K.; Fielding, B.A.; Bradshaw, H.A.; Ilic, V.; Beysen, C.; Clark, M.L.; Moore, N.R.; Frayn, K.N. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia, 2002, 45(3), 369-377.
[http://dx.doi.org/10.1007/s00125-001-0768-3] [PMID: 11914742]
[43]
Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med., 2010, 7(3)e1000252
[http://dx.doi.org/10.1371/journal.pmed.1000252] [PMID: 20351774]
[44]
Astrup, A.; Dyerberg, J.; Elwood, P.; Hermansen, K.; Hu, F.B.; Jakobsen, M.U.; Kok, F.J.; Krauss, R.M.; Lecerf, J.M.; LeGrand, P.; Nestel, P.; Risérus, U.; Sanders, T.; Sinclair, A.; Stender, S.; Tholstrup, T.; Willett, W.C. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am. J. Clin. Nutr., 2011, 93(4), 684-688.
[http://dx.doi.org/10.3945/ajcn.110.004622] [PMID: 21270379]
[45]
Risérus, U.; Willett, W.C.; Hu, F.B. Dietary fats and prevention of type 2 diabetes. Prog. Lipid Res., 2009, 48(1), 44-51.
[http://dx.doi.org/10.1016/j.plipres.2008.10.002] [PMID: 19032965]
[46]
Jump, D.B. Fatty acid regulation of hepatic lipid metabolism. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(2), 115-120.
[http://dx.doi.org/10.1097/MCO.0b013e328342991c] [PMID: 21178610]
[47]
Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Najima, Y.; Nakakuki, M.; Nagai, R.; Ishibashi, S.; Osuga, J.; Yamada, N.; Shimano, H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology, 2003, 38(6), 1529-1539.
[http://dx.doi.org/10.1053/jhep.2003.09028] [PMID: 14647064]
[48]
Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res., 2008, 47(2), 147-155.
[http://dx.doi.org/10.1016/j.plipres.2007.12.004] [PMID: 18198131]
[49]
Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol. Res. Pract., 2011.2011364040
[http://dx.doi.org/10.1155/2011/364040] [PMID: 21197079]
[50]
Leamy, A.K.; Egnatchik, R.A.; Young, J.D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res., 2013, 52(1), 165-174.
[http://dx.doi.org/10.1016/j.plipres.2012.10.004] [PMID: 23178552]
[51]
Santoro, N.; Caprio, S.; Giannini, C.; Kim, G.; Kursawe, R.; Pierpont, B.; Shaw, M.M.; Feldstein, A.E. Oxidized fatty acids: A potential pathogenic link between fatty liver and type 2 diabetes in obese adolescents? Antioxid. Redox Signal., 2014, 20(2), 383-389.
[http://dx.doi.org/10.1089/ars.2013.5466] [PMID: 23815500]
[52]
Masterton, G.S.; Plevris, J.N.; Hayes, P.C. Review article: omega-3 fatty acids - a promising novel therapy for non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2010, 31(7), 679-692.
[http://dx.doi.org/10.1111/j.1365-2036.2009.04230.x] [PMID: 20415840]
[53]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[54]
Morimoto, M.; Zern, M.A.; Hagbjörk, A.L.; Ingelman-Sundberg, M.; French, S.W. Fish oil, alcohol, and liver pathology: role of cytochrome P450 2E1. Proc. Soc. Exp. Biol. Med., 1994, 207(2), 197-205.
[http://dx.doi.org/10.3181/00379727-207-43807] [PMID: 7938050]
[55]
Nanji, A.A. Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease. Alcohol, 2004, 34(1), 21-25.
[http://dx.doi.org/10.1016/j.alcohol.2004.08.005] [PMID: 15670661]
[56]
Mayer, J.; Bates, M.W.; Dickie, M.M. Hereditary diabetes in genetically obese mice. Science, 1951, 113(2948), 746-747.
[http://dx.doi.org/10.1126/science.113.2948.746] [PMID: 14854871]
[57]
Brix, A.E.; Elgavish, A.; Nagy, T.R.; Gower, B.A.; Rhead, W.J.; Wood, P.A. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol. Genet. Metab., 2002, 75(3), 219-226.
[http://dx.doi.org/10.1006/mgme.2002.3298] [PMID: 11914033]
[58]
Wortham, M.; He, L.; Gyamfi, M.; Copple, B.L.; Wan, Y.J. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig. Dis. Sci., 2008, 53(10), 2761-2774.
[http://dx.doi.org/10.1007/s10620-007-0193-7] [PMID: 18299981]
[59]
Godbole, V.; York, D.A. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): role of hyperphagia and hyperinsulinaemia. Diabetologia, 1978, 14(3), 191-197.
[http://dx.doi.org/10.1007/BF00429780] [PMID: 566233]
[60]
Masaki, T.; Chiba, S.; Tatsukawa, H.; Yasuda, T.; Noguchi, H.; Seike, M.; Yoshimatsu, H. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology, 2004, 40(1), 177-184.
[http://dx.doi.org/10.1002/hep.20282] [PMID: 15239101]
[61]
Nakayama, H.; Otabe, S.; Ueno, T.; Hirota, N.; Yuan, X.; Fukutani, T.; Hashinaga, T.; Wada, N.; Yamada, K. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism, 2007, 56(4), 470-475.
[http://dx.doi.org/10.1016/j.metabol.2006.11.004] [PMID: 17379003]
[62]
Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S.H.; Giovanella, B.C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M.H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997, 275(5308), 1943-1947.
[http://dx.doi.org/10.1126/science.275.5308.1943] [PMID: 9072974]
[63]
Horie, Y.; Suzuki, A.; Kataoka, E.; Sasaki, T.; Hamada, K.; Sasaki, J.; Mizuno, K.; Hasegawa, G.; Kishimoto, H.; Iizuka, M.; Naito, M.; Enomoto, K.; Watanabe, S.; Mak, T.W.; Nakano, T. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest., 2004, 113(12), 1774-1783.
[http://dx.doi.org/10.1172/JCI20513] [PMID: 15199412]
[64]
Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; Christiansen, L.M.; Edelstein, E.; Choi, B.; Boss, O.; Aschkenasi, C.; Zhang, C.Y.; Mountjoy, K.; Kishi, T.; Elmquist, J.K.; Lowell, B.B. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell, 2005, 123(3), 493-505.
[http://dx.doi.org/10.1016/j.cell.2005.08.035] [PMID: 16269339]
[65]
Albarado, D.C.; McClaine, J.; Stephens, J.M.; Mynatt, R.L.; Ye, J.; Bannon, A.W.; Richards, W.G.; Butler, A.A. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice. Endocrinology, 2004, 145(1), 243-252.
[http://dx.doi.org/10.1210/en.2003-0452] [PMID: 14551222]
[66]
Rinella, M.E.; Green, R.M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol., 2004, 40(1), 47-51.
[http://dx.doi.org/10.1016/j.jhep.2003.09.020] [PMID: 14672613]
[67]
Anstee, Q.M.; Goldin, R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol., 2006, 87(1), 1-16.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00465.x] [PMID: 16436109]
[68]
Grasselli, E.; Canesi, L.; Voci, A.; De Matteis, R.; Demori, I.; Fugassa, E.; Vergani, L. Effects of 3,5-diiodo-L-thyronine administration on the liver of high fat diet-fed rats. Exp. Biol. Med. (Maywood), 2008, 233(5), 549-557.
[http://dx.doi.org/10.3181/0710-RM-266] [PMID: 18375830]
[69]
Bray, G.A.; Paeratakul, S.; Popkin, B.M. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol. Behav., 2004, 83(4), 549-555.
[http://dx.doi.org/10.1016/j.physbeh.2004.08.039] [PMID: 15621059]
[70]
Omagari, K.; Kato, S.; Tsuneyama, K.; Inohara, C.; Kuroda, Y.; Tsukuda, H.; Fukazawa, E.; Shiraishi, K.; Mune, M. Effects of a long-term high-fat diet and switching from a high-fat to low-fat, standard diet on hepatic fat accumulation in Sprague-Dawley rats. Dig. Dis. Sci., 2008, 53(12), 3206-3212.
[http://dx.doi.org/10.1007/s10620-008-0303-1] [PMID: 18465233]
[71]
Varela-Rey, M.; Embade, N.; Ariz, U.; Lu, S.C.; Mato, J.M.; Martínez-Chantar, M.L. Non-alcoholic steatohepatitis and animal models: understanding the human disease. Int. J. Biochem. Cell Biol., 2009, 41(5), 969-976.
[http://dx.doi.org/10.1016/j.biocel.2008.10.027] [PMID: 19027869]
[72]
Cong, W.N.; Tao, R.Y.; Tian, J.Y.; Liu, G.T.; Ye, F. The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sci., 2008, 82(19-20), 983-990.
[http://dx.doi.org/10.1016/j.lfs.2008.01.022] [PMID: 18417155]
[73]
Deng, Q.G.; She, H.; Cheng, J.H.; French, S.W.; Koop, D.R.; Xiong, S.; Tsukamoto, H. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology, 2005, 42(4), 905-914.
[http://dx.doi.org/10.1002/hep.20877] [PMID: 16175602]
[74]
Li, Z.; Soloski, M.J.; Diehl, A.M. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology, 2005, 42(4), 880-885.
[http://dx.doi.org/10.1002/hep.20826] [PMID: 16175608]
[75]
Tipoe, G.L.; Ho, C.T.; Liong, E.C.; Leung, T.M.; Lau, T.Y.; Fung, M.L.; Nanji, A.A. Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD). Histol. Histopathol., 2009, 24(9), 1161-1169. [NAFLD]
[PMID: 19609863]
[76]
Nishina, P.M.; Verstuyft, J.; Paigen, B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J. Lipid Res., 1990, 31(5), 859-869.
[PMID: 2380634]
[77]
Kumar, S.A.; Sudhahar, V.; Varalakshmi, P. Protective role of eicosapentaenoate-lipoate (EPA-LA) derivative in combating oxidative hepatocellular injury in hypercholesterolemic atherogenesis. Atherosclerosis, 2006, 189(1), 115-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.037] [PMID: 16458314]
[78]
Shockley, K.R.; Witmer, D.; Burgess-Herbert, S.L.; Paigen, B.; Churchill, G.A. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol. Genomics, 2009, 39(3), 172-182.
[http://dx.doi.org/10.1152/physiolgenomics.90350.2008] [PMID: 19671657]
[79]
Matsuzawa, N.; Takamura, T.; Kurita, S.; Misu, H.; Ota, T.; Ando, H.; Yokoyama, M.; Honda, M.; Zen, Y.; Nakanuma, Y.; Miyamoto, K.; Kaneko, S. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology, 2007, 46(5), 1392-1403.
[http://dx.doi.org/10.1002/hep.21874] [PMID: 17929294]
[80]
Spruss, A.; Bergheim, I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J. Nutr. Biochem., 2009, 20(9), 657-662.
[http://dx.doi.org/10.1016/j.jnutbio.2009.05.006] [PMID: 19679262]
[81]
Tappy, L.; Lê, K.A.; Tran, C.; Paquot, N. Fructose and metabolic diseases: new findings, new questions. Nutrition, 2010, 26(11-12), 1044-1049.
[http://dx.doi.org/10.1016/j.nut.2010.02.014] [PMID: 20471804]
[82]
Bergheim, I.; Weber, S.; Vos, M.; Krämer, S.; Volynets, V.; Kaserouni, S.; McClain, C.J.; Bischoff, S.C. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol., 2008, 48(6), 983-992.
[http://dx.doi.org/10.1016/j.jhep.2008.01.035] [PMID: 18395289]
[83]
Charlton, M.; Krishnan, A.; Viker, K.; Sanderson, S.; Cazanave, S.; McConico, A.; Masuoko, H.; Gores, G. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 301(5), G825-G834.
[http://dx.doi.org/10.1152/ajpgi.00145.2011] [PMID: 21836057]
[84]
Chavez-Tapia, N.C.; Rosso, N.; Tiribelli, C. In vitro models for the study of non-alcoholic fatty liver disease. Curr. Med. Chem., 2011, 18(7), 1079-1084.
[http://dx.doi.org/10.2174/092986711794940842] [PMID: 21254970]
[85]
Malhi, H.; Bronk, S.F.; Werneburg, N.W.; Gores, G.J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem., 2006, 281(17), 12093-12101.
[http://dx.doi.org/10.1074/jbc.M510660200] [PMID: 16505490]
[86]
Gómez-Lechón, M.J.; Donato, M.T.; Martínez-Romero, A.; Jiménez, N.; Castell, J.V.; O’Connor, J.E. A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact., 2007, 165(2), 106-116.
[http://dx.doi.org/10.1016/j.cbi.2006.11.004] [PMID: 17188672]
[87]
Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S.; Lonardo, A.; Carulli, N.; Loria, P. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol., 2009, 24(5), 830-840.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05733.x] [PMID: 19207680]
[88]
Okamoto, Y.; Tanaka, S.; Haga, Y. Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol. Res., 2002, 23(2), 138-144.
[http://dx.doi.org/10.1016/S1386-6346(01)00172-3] [PMID: 12048068]
[89]
Cui, W.; Chen, S.L.; Hu, K.Q. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am. J. Transl. Res., 2010, 2(1), 95-104.
[PMID: 20182586]
[90]
AlGhamdi, S.; Leoncikas, V.; Plant, K.E.; Plant, N.J. Synergistic interaction between lipid-loading and doxorubicin exposure in Huh7 hepatoma cells results in enhanced cytotoxicity and cellular oxidative stress: implications for acute and chronic care of obese cancer patients. Toxicol. Res. (Camb.), 2015, 4(6), 1479-1487.
[http://dx.doi.org/10.1039/C5TX00173K] [PMID: 26744621]
[91]
De Gottardi, A.; Vinciguerra, M.; Sgroi, A.; Moukil, M.; Ravier-Dall’Antonia, F.; Pazienza, V.; Pugnale, P.; Foti, M.; Hadengue, A. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab. Invest., 2007, 87(8), 792-806.
[http://dx.doi.org/10.1038/labinvest.3700590] [PMID: 17558421]
[92]
Grasselli, E.; Voci, A.; Canesi, L.; Goglia, F.; Ravera, S.; Panfoli, I.; Gallo, G.; Vergani, L. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol., 2011, 210(1), 59-69.
[http://dx.doi.org/10.1530/JOE-11-0074] [PMID: 21508094]
[93]
Grasselli, E.; Voci, A.; Canesi, L.; Salis, A.; Damonte, G.; Compalati, A.D.; Goglia, F.; Gallo, G.; Vergani, L. 3,5-diiodo-L-thyronine modifies the lipid droplet composition in a model of hepatosteatosis. Cell. Physiol. Biochem., 2014, 33(2), 344-356.
[http://dx.doi.org/10.1159/000356674] [PMID: 24525903]
[94]
Grasselli, E.; Voci, A.; Pesce, C.; Canesi, L.; Fugassa, E.; Gallo, G.; Vergani, L. PAT protein mRNA expression in primary rat hepatocytes: Effects of exposure to fatty acids. Int. J. Mol. Med., 2010, 25(4), 505-512.
[PMID: 20198297]
[95]
Grasselli, E.; Voci, A.; Canesi, L.; De Matteis, R.; Goglia, F.; Cioffi, F.; Fugassa, E.; Gallo, G.; Vergani, L. Direct effects of iodothyronines on excess fat storage in rat hepatocytes. J. Hepatol., 2011, 54(6), 1230-1236.
[http://dx.doi.org/10.1016/j.jhep.2010.09.027] [PMID: 21145833]
[96]
Wobser, H.; Dorn, C.; Weiss, T.S.; Amann, T.; Bollheimer, C.; Büttner, R.; Schölmerich, J.; Hellerbrand, C. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res., 2009, 19(8), 996-1005.
[http://dx.doi.org/10.1038/cr.2009.73] [PMID: 19546889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy