Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

In silico, In vitro, and In vivo Evaluation of the Anti-alzheimer’s Activity of Berberine

Author(s): Louise T. Theunis*, Junie B. Billones, Chung-Der Hsiao, Oliver B. Villaflores and Agnes L. Llamasares-Castillo*

Volume 20, Issue 3, 2024

Published on: 31 July, 2024

Page: [199 - 215] Pages: 17

DOI: 10.2174/0115734080306283240719110244

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Alzheimer’s disease (AD), a progressive neurodegenerative disease for which there is no effective cure is among the leading causes of death worldwide.

Objectives: To investigate the potential anti-AD activity of berberine (BBR).

Methods: In silico assessment included molecular docking and ADMET prediction. BBR’s in vitro inhibitory activity of the target selected from docking results was assessed via colorimetric inhibitor screening assay. BBR’s LC50 in adult zebrafish was determined via an Acute Toxicity Study. ZnCl2 concentration for AD induction was determined via toxicity study and T-maze test. Finally, zebrafish were treated with ZnCl2 alone or simultaneously with either BBR or donepezil and assessed via the inhibitory avoidance task, followed by ELISA of AD-related biomarker levels in brain tissue.

Results: The in silico assessment showed BBR’s desirable drug properties and binding affinity on selected AD-related targets, which was the greatest docking score with AChE. The in vitro IC50 on AChE was 3.45 μM. The LC50 in adult zebrafish was calculated at 366 ppm. In the T-maze test, ZnCl2 at 2.5 ppm caused the greatest cognitive impairment accompanied by moderate freezing. In the inhibitory avoidance test, fish treated with either 100 ppm BBR or 2.5 ppm donepezil had significantly better performance than ZnCl2-treated fish. ZnCl2-treated zebrafish brain tissue had the highest Aβ levels and AChE activity of all groups, but these were significantly lower in donepeziland BBR-treated fish. ZnCl2- and donepezil-treated fish had similar TNF-α levels, whereas BBR treatment significantly lowered them close to those of untreated fish.

Conclusion: BBR showed anti-amyloidogenic, anti-AChE, and anti-inflammatory effects, which support its potential use in AD therapy.

Keywords: Acetylcholinesterase inhibition, Alzheimer’s disease, berberine, inhibitory avoidance, tumor necrosis factor-alpha inhibition, zebrafish, beta-amyloid, autodock vina.

Graphical Abstract
[1]
WHO. The top 10 causes of death. 2020. Available From: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2]
WHO. Dementia. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/dementia
[3]
Alzheimer’s Disease International. World Alzheimer Report 2015. 2015. Available From: https://www.alz.co.uk/research/world-report-2015
[4]
NIA. How Is Alzheimer’s Disease Treated? 2023. Available From: https://www.nia.nih.gov/health/how-alzheimers-disease-treated
[5]
Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci., 2017, 24(1), 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[6]
Parihar, M.S.; Hemnani, T. Alzheimer’s disease pathogenesis and therapeutic interventions. J. Clin. Neurosci., 2004, 11(5), 456-467.
[http://dx.doi.org/10.1016/j.jocn.2003.12.007] [PMID: 15177383]
[7]
Wollen, K.A. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern. Med. Rev., 2010, 15(3), 223-244.
[PMID: 21155625]
[8]
Cicero, A.F.G.; Baggioni, A. Berberine and its role in chronic disease.Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, 2016, pp. 27-45.
[http://dx.doi.org/10.1007/978-3-319-41334-1_2]
[9]
Neag, M.A.; Mocan, A.; Echeverría, J. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9(557), 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[10]
Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: A potential phytochemical with multispectrum therapeutic activities. Expert Opin. Investig. Drugs, 2010, 19(10), 1297-1307.
[http://dx.doi.org/10.1517/13543784.2010.517745] [PMID: 20836620]
[11]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[12]
Durairajan, S.S.K.; Liu, L.F.; Lu, J.H. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.016] [PMID: 22459600]
[13]
Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670] [PMID: 31810131]
[14]
National Center for Biotechnology Information. Berberine. 2016. Availalbe From: https://pubchem.ncbi.nlm.nih.gov/compound/Berberine
[15]
Dallakyan, S; Olson, A Small-molecule library screening by docking with PyRx. Methods Mol Biol, 2015, 1263, 243-50.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[16]
Trott, O; Olson, AJ AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31(2), 455-61.
[http://dx.doi.org/10.1002/jcc.21334]
[17]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[http://dx.doi.org/10.1021/jm0203783] [PMID: 12773034]
[18]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[19]
OECD. Test No 203: Fish, acute toxicity test. 2019. Available From: https://read.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en#page1
[20]
Avdesh, A.; Chen, M.; Martin-Iverson, M.T. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. J. Vis. Exp., 2012, (69), e4196.
[http://dx.doi.org/10.3791/4196] [PMID: 23183629]
[21]
Ngoc Hieu, B.T.; Ngoc Anh, N.T.; Audira, G. Development of a modified three-day T-maze protocol for evaluating learning and memory capacity of adult zebrafish. Int. J. Mol. Sci., 2020, 21(4), 1464.
[http://dx.doi.org/10.3390/ijms21041464] [PMID: 32098080]
[22]
Audira, G.; Lee, J.S.; Siregar, P. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches. Environ. Pollut., 2021, 278(116907), 116907.
[http://dx.doi.org/10.1016/j.envpol.2021.116907] [PMID: 33744786]
[23]
Blank, M.; Guerim, L.D.; Cordeiro, R.F.; Vianna, M.R.M. A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiol. Learn. Mem., 2009, 92(4), 529-534.
[http://dx.doi.org/10.1016/j.nlm.2009.07.001] [PMID: 19591953]
[24]
Wang, K.; Feng, X.; Chai, L.; Cao, S.; Qiu, F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev., 2017, 49(2), 139-157.
[http://dx.doi.org/10.1080/03602532.2017.1306544] [PMID: 28290706]
[25]
Feng, R.; Shou, J.W.; Zhao, Z.X. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep., 2015, 5(1), 12155.
[http://dx.doi.org/10.1038/srep12155] [PMID: 26174047]
[26]
Wiesner, J.; Kříž, Z.; Kuča, K.; Jun, D.; Koča, J. Acetylcholinesterases – the structural similarities and differences. J. Enzyme Inhib. Med. Chem., 2007, 22(4), 417-424.
[http://dx.doi.org/10.1080/14756360701421294] [PMID: 17847707]
[27]
Branduardi, D.; Gervasio, F.L.; Cavalli, A.; Recanatini, M.; Parrinello, M. The role of the peripheral anionic site and cation-π interactions in the ligand penetration of the human AChE gorge. J. Am. Chem. Soc., 2005, 127(25), 9147-9155.
[http://dx.doi.org/10.1021/ja0512780] [PMID: 15969593]
[28]
Zhou, Y.; Wang, S.; Zhang, Y. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations. J. Phys. Chem. B, 2010, 114(26), 8817-8825.
[http://dx.doi.org/10.1021/jp104258d] [PMID: 20550161]
[29]
Taylor, P.; Radic, Z.; Hosea, N.A.; Camp, S.; Marchot, P.; Berman, H.A. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol. Lett., 1995, 82-83, 453-458.
[http://dx.doi.org/10.1016/0378-4274(95)03575-3] [PMID: 8597093]
[30]
He, M.M.; Smith, A.S.; Oslob, J.D. Small-molecule inhibition of TNF-α. Science, 2005, 310(5750), 1022-1025.
[http://dx.doi.org/10.1126/science.1116304] [PMID: 16284179]
[31]
Du, X.; Li, Y.; Xia, Y.L. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci., 2016, 17(2), 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[32]
Colangelo, C.; Shichkova, P.; Keller, D.; Markram, H.; Ramaswamy, S. Cellular, synaptic and network effects of acetylcholine in the neocortex. Front. Neural Circuits, 2019, 13, 24.
[http://dx.doi.org/10.3389/fncir.2019.00024] [PMID: 31031601]
[33]
Kandimalla, R.; Reddy, P.H. Therapeutics of neurotransmitters in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1049-1069.
[http://dx.doi.org/10.3233/JAD-161118] [PMID: 28211810]
[34]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[35]
Carvajal, F.J.; Inestrosa, N.C. Interactions of AChE with A? Aggregates in Alzheimer?s Brain: Therapeutic relevance of IDN 5706. Front. Mol. Neurosci., 2011, 4, 19.
[http://dx.doi.org/10.3389/fnmol.2011.00019] [PMID: 21949501]
[36]
Cavalli, A.; Bottegoni, G.; Raco, C.; De Vivo, M.; Recanatini, M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem., 2004, 47(16), 3991-3999.
[http://dx.doi.org/10.1021/jm040787u] [PMID: 15267237]
[37]
Honorio, P.; Sainimnuan, S.; Hannongbua, S.; Saparpakorn, P. Binding interaction of protoberberine alkaloids against acetylcholinesterase (AChE) using molecular dynamics simulations and QM/MM calculations. Chem. Biol. Interact., 2021, 344(109523), 109523.
[http://dx.doi.org/10.1016/j.cbi.2021.109523] [PMID: 34033838]
[38]
Bui, J.M.; Henchman, R.H.; McCammon, J.A. The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys. J., 2003, 85(4), 2267-2272.
[http://dx.doi.org/10.1016/S0006-3495(03)74651-7] [PMID: 14507691]
[39]
Campos-Pea, V; Antonio, M. Alzheimer disease: The role of Aβ in the glutamatergic system.Neurochemistry. London: InTechOpen, 2014.
[http://dx.doi.org/10.5772/57367]
[40]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[41]
Ge, Y.; Wang, Y.T. GluN2B-containing NMDARs in the mammalian brain: Pharmacology, physiology, and pathology. Front. Mol. Neurosci., 2023, 16, 1190324.
[http://dx.doi.org/10.3389/fnmol.2023.1190324] [PMID: 37324591]
[42]
Gallagher, M.J.; Huang, H.; Pritchett, D.B.; Lynch, D.R. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem., 1996, 271(16), 9603-9611.
[http://dx.doi.org/10.1074/jbc.271.16.9603] [PMID: 8621635]
[43]
Stroebel, D.; Buhl, D.L.; Knafels, J.D. A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Mol. Pharmacol., 2016, 89(5), 541-551.
[http://dx.doi.org/10.1124/mol.115.103036] [PMID: 26912815]
[44]
Waqar, M.; Batool, S. In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer’s disease. J. Venom. Anim. Toxins Incl. Trop. Dis., 2017, 23(1), 42.
[http://dx.doi.org/10.1186/s40409-017-0132-9] [PMID: 28943883]
[45]
Monaghan, D.T.; Jane, D.E. Pharmacology of NMDA Receptors. Biology of the NMDA Receptor; CRC Press/Taylor & Francis: Boca Raton, FL, 2009.
[46]
Karakas, E.; Simorowski, N.; Furukawa, H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature, 2011, 475(7355), 249-253.
[http://dx.doi.org/10.1038/nature10180] [PMID: 21677647]
[47]
Ng, F.M.; Geballe, M.T.; Snyder, J.P.; Traynelis, S.F.; Low, C.M. Structural insights into phenylethanolamines high-affinity binding site in NR2B from binding and molecular modeling studies. Mol. Brain, 2008, 1(1), 16.
[http://dx.doi.org/10.1186/1756-6606-1-16] [PMID: 19017396]
[48]
Sanacora, G.; Smith, M.A.; Pathak, S. Lanicemine: A low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol. Psychiatry, 2014, 19(9), 978-985.
[http://dx.doi.org/10.1038/mp.2013.130] [PMID: 24126931]
[49]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4(1), 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[50]
Chang, R.; Yee, K.L.; Sumbria, R.K. Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J. Cent. Nerv. Syst. Dis., 2017, 9.
[http://dx.doi.org/10.1177/1179573517709278] [PMID: 28579870]
[51]
Decourt, B.; Lahiri, D.K.; Sabbagh, M.N. Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(4), 412-425.
[http://dx.doi.org/10.2174/1567205013666160930110551] [PMID: 27697064]
[52]
Saddala, M.S.; Huang, H. Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches. J. Transl. Med., 2019, 17(1), 215.
[http://dx.doi.org/10.1186/s12967-019-1965-5] [PMID: 31266509]
[53]
Gerriets, V.; Goyal, A.; Khaddour, K. Tumor necrosis factor inhibitors.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[54]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[55]
Schneider, G. Prediction of drug-like properties.Madame Curie Bioscience Database. 2000, 13.
[56]
Pollastri, M.P. Overview on the rule of five. Curr. Protocols Pharmacol., 2010, 49(1), 12.
[http://dx.doi.org/10.1002/0471141755.ph0912s49] [PMID: 22294375]
[57]
Ai, X.; Yu, P.; Peng, L. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front. Pharmacol., 2021, 12, 762654.
[http://dx.doi.org/10.3389/fphar.2021.762654] [PMID: 35370628]
[58]
Tan, X.S.; Ma, J.Y.; Feng, R. Tissue distribution of berberine and its metabolites after oral administration in rats. PLoS One, 2013, 8(10), e77969.
[http://dx.doi.org/10.1371/journal.pone.0077969] [PMID: 24205048]
[59]
Pan, G.; Wang, G.J.; Liu, X.D.; Fawcett, J.P.; Xie, Y.Y. The involvement of P-glycoprotein in berberine absorption. Pharmacol. Toxicol., 2002, 91(4), 193-197.
[http://dx.doi.org/10.1034/j.1600-0773.2002.t01-1-910403.x] [PMID: 12530470]
[60]
Kwon, M.; Lim, D.Y.; Lee, C.H.; Jeon, J.H.; Choi, M.K.; Song, I.S. Enhanced intestinal absorption and pharmacokinetic modulation of berberine and its metabolites through the inhibition of P-Glycoprotein and intestinal metabolism in rats using a berberine mixed micelle formulation. Pharmaceutics, 2020, 12(9), 882.
[http://dx.doi.org/10.3390/pharmaceutics12090882] [PMID: 32957491]
[61]
Wang, L.; Sheng, W.; Tan, Z. Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 249(109151), 109151.
[http://dx.doi.org/10.1016/j.cbpc.2021.109151] [PMID: 34343700]
[62]
Wang, X.; Wang, R.; Xing, D. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci., 2005, 77(24), 3058-3067.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[63]
Kelder, J.; Grootenhuis, P.D.J.; Bayada, D.M.; Delbressine, L.P.C.; Ploemen, J.P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res., 1999, 16(10), 1514-1519.
[http://dx.doi.org/10.1023/A:1015040217741] [PMID: 10554091]
[64]
Norinder, U.; Haeberlein, M. Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Deliv. Rev., 2002, 54(3), 291-313.
[http://dx.doi.org/10.1016/S0169-409X(02)00005-4] [PMID: 11922949]
[65]
McDonald, M.G.; Tian, D.D.; Thummel, K.E.; Paine, M.F.; Rettie, A.E. Modulation of major human liver microsomal cytochromes P450 by component alkaloids of goldenseal: Time-dependent inhibition and allosteric effects. Drug Metab. Dispos., 2020, 48(10), 1018-1027.
[http://dx.doi.org/10.1124/dmd.120.091041] [PMID: 32591416]
[66]
Guo, Y.; Chen, Y.; Tan, Z.; Klaassen, C.D.; Zhou, H. Repeated administration of berberine inhibits cytochromes P450 in humans. Eur. J. Clin. Pharmacol., 2012, 68(2), 213-217.
[http://dx.doi.org/10.1007/s00228-011-1108-2] [PMID: 21870106]
[67]
Sakya, S.; Karki, K. Donepezil, rivastigmine and galantamine: Cholinesterase inhibitors for alzheimer’s disease.Modern Drug Synthesis; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2010, pp. 249-274.
[http://dx.doi.org/10.1002/9780470768594.ch17]
[68]
Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[69]
Brenk, R.; Schipani, A.; James, D. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[70]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform., 2009, 1(1), 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]
[71]
Ingkaninan, K.; Phengpa, P.; Yuenyongsawad, S.; Khorana, N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J. Pharm. Pharmacol., 2010, 58(5), 695-700.
[http://dx.doi.org/10.1211/jpp.58.5.0015] [PMID: 16640839]
[72]
Jung, H.A.; Min, B.S.; Yokozawa, T.; Lee, J.H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 2009, 32(8), 1433-1438.
[http://dx.doi.org/10.1248/bpb.32.1433] [PMID: 19652386]
[73]
Xiang, J.; Yu, C.; Yang, F.; Yang, L.; Ding, H. Conformation-activity studies on the interaction of berberine with acetylcholinesterase: Physical chemistry approach. Prog. Nat. Sci., 2009, 19(12), 1721-1725.
[http://dx.doi.org/10.1016/j.pnsc.2009.07.010]
[74]
Kim, D.K.; Lee, K.T.; Baek, N.I. Acetylcholinesterase inhibitors from the aerial parts ofCorydalis speciosa. Arch. Pharm. Res., 2004, 27(11), 1127-1131.
[http://dx.doi.org/10.1007/BF02975117] [PMID: 15595415]
[75]
Cho, K.M.; Yoo, I.D.; Kim, W.G. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L. Biol. Pharm. Bull., 2006, 29(11), 2317-2320.
[http://dx.doi.org/10.1248/bpb.29.2317] [PMID: 17077538]
[76]
Sağlık, B.N.; Osmaniye, D.; Acar Çevik, U. Design, Synthesis, and Structure–Activity Relationships of Thiazole Analogs as Anticholinesterase Agents for Alzheimer’s Disease. Molecules, 2020, 25(18), 4312.
[http://dx.doi.org/10.3390/molecules25184312] [PMID: 32962239]
[77]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol., 2000, 22(8), 609-613.
[http://dx.doi.org/10.1358/mf.2000.22.8.701373] [PMID: 11256231]
[78]
Hussien, H.M.; Abd-Elmegied, A.; Ghareeb, D.A.; Hafez, H.S.; Ahmed, H.E.A.; El-moneam, N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol., 2018, 111, 432-444.
[http://dx.doi.org/10.1016/j.fct.2017.11.025] [PMID: 29170048]
[79]
Sarasamma, S.; Audira, G.; Juniardi, S. Zinc chloride exposure inhibits brain acetylcholine levels, produces neurotoxic signatures, and diminishes memory and motor activities in adult zebrafish. Int. J. Mol. Sci., 2018, 19(10), 3195.
[http://dx.doi.org/10.3390/ijms19103195] [PMID: 30332818]
[80]
Takada-Takatori, Y.; Nakagawa, S.; Kimata, R. Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci. Rep., 2019, 9(1), 11922.
[http://dx.doi.org/10.1038/s41598-019-47462-4] [PMID: 31417133]
[81]
Dong, H.; Yuede, C.M.; Coughlan, C.A.; Murphy, K.M.; Csernansky, J.G. Effects of donepezil on amyloid-β and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res., 2009, 1303, 169-178.
[http://dx.doi.org/10.1016/j.brainres.2009.09.097] [PMID: 19799879]
[82]
Ma, Y.; Ji, J.; Li, G.; Yang, S.; Pan, S. Effects of donepezil on cognitive functions and the expression level of β-amyloid in peripheral blood of patients with Alzheimer’s disease. Exp. Ther. Med., 2017, 15(2), 1875-1878.
[http://dx.doi.org/10.3892/etm.2017.5613] [PMID: 29434777]
[83]
Giacomini, A.C.V.V.; Bueno, B.W.; Marcon, L. An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. J. Psychopharmacol., 2020, 34(12), 1449-1456.
[http://dx.doi.org/10.1177/0269881120944155] [PMID: 32854587]
[84]
Audira, G.; Ngoc Anh, N.T.; Ngoc Hieu, B.T. Evaluation of the adverse effects of chronic exposure to donepezil (an acetylcholinesterase inhibitor) in adult zebrafish by behavioral and biochemical assessments. Biomolecules, 2020, 10(9), 1340.
[http://dx.doi.org/10.3390/biom10091340] [PMID: 32962160]
[85]
Kim, J.; Lee, H.; Park, S.K. Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling. Int. J. Mol. Sci., 2021, 22(19), 10637.
[http://dx.doi.org/10.3390/ijms221910637] [PMID: 34638977]
[86]
He, W.; Wang, C.; Chen, Y.; He, Y.; Cai, Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol. Rep., 2017, 69(6), 1341-1348.
[http://dx.doi.org/10.1016/j.pharep.2017.06.006] [PMID: 29132092]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy