Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Novel Tryptanthrin Derivative D6 Induces Apoptosis and DNA Damage in Non-small-cell Lung Cancer Cells Through Regulating the EGFR Pathway

Author(s): Haitao Long, Guanglong Zhang, Yue Zhou, Liqing Qin, Danxue Zhu, Jiayi Chen, Bo Liu, Huayuan Tan, Danping Chen, Zhurui Li, Chengpeng Li* and Zhenchao Wang*

Volume 24, Issue 17, 2024

Published on: 18 July, 2024

Page: [1275 - 1287] Pages: 13

DOI: 10.2174/0118715206303721240715042526

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity.

Objective: This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative D6 on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) in vitro.

Methods: In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC- 1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed.

Results: We found that D6 inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that D6 reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by D6 involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei.

Conclusion: D6 demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that D6 exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.

Keywords: Non-small cell lung cancer, tryptanthrin derivatives, anti-cancer, apoptosis, proteomics, EGFR.

Graphical Abstract
[1]
Mao, J.J.; Pillai, G.G.; Andrade, C.J.; Ligibel, J.A.; Basu, P.; Cohen, L.; Khan, I.A.; Mustian, K.M.; Puthiyedath, R.; Dhiman, K.S.; Lao, L.; Ghelman, R.; Cáceres Guido, P.; Lopez, G.; Gallego-Perez, D.F.; Salicrup, L.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin., 2022, 72(2), 144-164.
[http://dx.doi.org/10.3322/caac.21706] [PMID: 34751943]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Oser, M.G.; Niederst, M.J.; Sequist, L.V.; Engelman, J.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol., 2015, 16(4), e165-e172.
[http://dx.doi.org/10.1016/S1470-2045(14)71180-5] [PMID: 25846096]
[5]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[6]
Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer: A review. JAMA, 2019, 322(8), 764-774.
[http://dx.doi.org/10.1001/jama.2019.11058] [PMID: 31454018]
[7]
Xiang, Y.C.; Shen, J.; Si, Y.; Liu, X.W.; Zhang, L.; Wen, J.; Zhang, T.; Yu, Q.Q.; Lu, J.F.; Xiang, K.; Liu, Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin. J. Nat. Med., 2021, 19(3), 195-204.
[http://dx.doi.org/10.1016/S1875-5364(21)60021-3] [PMID: 33781453]
[8]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201-249.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[9]
Mazumder, A.; Cerella, C.; Diederich, M. Natural scaffolds in anticancer therapy and precision medicine. Biotechnol. Adv., 2018, 36(6), 1563-1585.
[http://dx.doi.org/10.1016/j.biotechadv.2018.04.009] [PMID: 29729870]
[10]
Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol., 2016, 40-41, 1-3.
[http://dx.doi.org/10.1016/j.semcancer.2016.08.006] [PMID: 27565447]
[11]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G.K.; Braidy, N.; Bucar, F.; Cifuentes, A.; D’Onofrio, G.; Bodkin, M.; Diederich, M.; Dinkova-Kostova, A.T.; Efferth, T.; El Bairi, K.; Arkells, N.; Fan, T-P.; Fiebich, B.L.; Freissmuth, M.; Georgiev, M.I.; Gibbons, S.; Godfrey, K.M.; Gruber, C.W.; Heer, J.; Huber, L.A.; Ibanez, E.; Kijjoa, A.; Kiss, A.K.; Lu, A.; Macias, F.A.; Miller, M.J.S.; Mocan, A.; Müller, R.; Nicoletti, F.; Perry, G.; Pittalà, V.; Rastrelli, L.; Ristow, M.; Russo, G.L.; Silva, A.S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[12]
Du, J.; Liu, P.; Zhu, Y.; Wang, G.; Xing, S.; Liu, T.; Xia, J.; Dong, S.; Lv, N.; Li, Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur. J. Med. Chem., 2023, 246, 114956.
[http://dx.doi.org/10.1016/j.ejmech.2022.114956] [PMID: 36450214]
[13]
Shankar, G.M.; Alex, V.V.; Nisthul, A.A.; Bava, S.V.; Sundaram, S.; Retnakumari, A.P.; Chittalakkottu, S.; Anto, R.J. Pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif., 2020, 53(1), e12710.
[http://dx.doi.org/10.1111/cpr.12710] [PMID: 31663659]
[14]
Yu, S.; Chern, J.; Chen, T.; Chiu, Y.; Chen, H.; Chen, Y. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines. Acta Pharmacol. Sin., 2010, 31(2), 259-264.
[http://dx.doi.org/10.1038/aps.2009.198] [PMID: 20139909]
[15]
Zou, Y.; Zhang, G.; Li, C.; Long, H.; Chen, D.; Li, Z.; Ouyang, G.; Zhang, W.; Zhang, Y.; Wang, Z. Discovery of tryptanthrin and its derivatives and its activities against nsclc in vitrovia both apoptosis and autophagy pathways. Int. J. Mol. Sci., 2023, 24(2), 1450-1465.
[http://dx.doi.org/10.3390/ijms24021450] [PMID: 36674964]
[16]
Zhang, G.; Li, C.; Li, Y.; Chen, D.; Li, Z.; Wang, Z.; Ouyang, G. Design, synthesis, and mechanism of novel 9-aliphatic amine tryptanthrin derivatives against phytopathogenic bacteria. J. Agric. Food Chem., 2023, 71(39), 14232-14242.
[http://dx.doi.org/10.1021/acs.jafc.3c03738] [PMID: 37749804]
[17]
Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[18]
Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16.
[http://dx.doi.org/10.1016/j.jid.2016.11.020] [PMID: 28110712]
[19]
Fu, M.; Yan, Y.; Su, H.; Wang, J.; Shi, X.; Zhou, H.; Zhang, Q.; Xu, X. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J. Proteomics, 2021, 248, 104352.
[http://dx.doi.org/10.1016/j.jprot.2021.104352] [PMID: 34411763]
[20]
Stojic, L.; Lun, A.T.L.; Mascalchi, P.; Ernst, C.; Redmond, A.M.; Mangei, J.; Barr, A.R.; Bousgouni, V.; Bakal, C.; Marioni, J.C.; Odom, D.T.; Gergely, F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat. Commun., 2020, 11(1), 1851-1873.
[http://dx.doi.org/10.1038/s41467-020-14978-7] [PMID: 32296040]
[21]
Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep., 2020, 10(1), 19963.
[http://dx.doi.org/10.1038/s41598-020-77003-3] [PMID: 33203926]
[22]
Subastri, A.; Ramamurthy, C.H.; Suyavaran, A.; Mareeswaran, R.; Lokeswara Rao, P.; Harikrishna, M.; Suresh Kumar, M.; Sujatha, V.; Thirunavukkarasu, C. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA. Int. J. Biol. Macromol., 2015, 78, 122-129.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.036] [PMID: 25858879]
[23]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[24]
Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376.
[http://dx.doi.org/10.3389/fphar.2022.842376] [PMID: 36034846]
[25]
Willems, P.H.G.M.; Rossignol, R.; Dieteren, C.E.J.; Murphy, M.P.; Koopman, W.J.H. Redox homeostasis and mitochondrial dynamics. Cell Metab., 2015, 22(2), 207-218.
[http://dx.doi.org/10.1016/j.cmet.2015.06.006] [PMID: 26166745]
[26]
Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021, 11(4), 1845-1863.
[http://dx.doi.org/10.7150/thno.50905] [PMID: 33408785]
[27]
Diebold, L.; Chandel, N.S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med., 2016, 100, 86-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.198] [PMID: 27154978]
[28]
Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364.
[http://dx.doi.org/10.1038/s41422-019-0164-5] [PMID: 30948788]
[29]
Zhong, Y.; Zhang, Y.; Gu, Y.; Wu, S.; Shen, W.; Tan, M. Novel Fe(II) and Co(II) complexes of natural product tryptanthrin: Synthesis and binding with G-quadruplex DNA. Bioinorg. Chem. Appl., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/5075847] [PMID: 27698647]
[30]
Cuella-Martin, R.; Oliveira, C.; Lockstone, H.E.; Snellenberg, S.; Grolmusova, N.; Chapman, J.R. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell, 2016, 64(1), 51-64.
[http://dx.doi.org/10.1016/j.molcel.2016.08.002] [PMID: 27546791]
[31]
Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov. Today, 2020, 25(10), 1807-1821.
[http://dx.doi.org/10.1016/j.drudis.2020.07.024] [PMID: 32801051]
[32]
Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood, 2018, 131(5), 488-495.
[http://dx.doi.org/10.1182/blood-2017-07-746396] [PMID: 29141944]
[33]
Scott, E.C.; Baines, A.C.; Gong, Y.; Moore, R., Jr; Pamuk, G.E.; Saber, H.; Subedee, A.; Thompson, M.D.; Xiao, W.; Pazdur, R.; Rao, V.A.; Schneider, J.; Beaver, J.A. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov., 2023, 22(8), 625-640.
[http://dx.doi.org/10.1038/s41573-023-00723-4] [PMID: 37344568]
[34]
Zhang, S.; Qi, F.; Fang, X.; Yang, D.; Hu, H.; Huang, Q.; Kuang, C.; Yang, Q. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur. J. Med. Chem., 2018, 160, 133-145.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.017] [PMID: 30321802]
[35]
Chang, H.N.; Yeh, Y.C.; Chueh, H.Y.; Pang, J.H.S. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells. Phytomedicine, 2019, 58, 152879.
[http://dx.doi.org/10.1016/j.phymed.2019.152879] [PMID: 31005035]
[36]
Shabna, A.; Antony, J.; Vijayakurup, V.; Saikia, M.; Liju, V.B.; Retnakumari, A.P.; Amrutha, N.A.; Alex, V.V.; Swetha, M.; Aiswarya, S.U.; Jannet, S.; Unni, U.S.; Sundaram, S.; Sherin, D.R.; Anto, N.P.; Bava, S.V.; Chittalakkottu, S.; Ran, S.; Anto, R.J. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell. Mol. Life Sci., 2022, 79(9), 478-483.
[http://dx.doi.org/10.1007/s00018-022-04476-y] [PMID: 35948813]
[37]
Gao, J.Y.; Chang, C.S.; Lien, J.C.; Chen, T.W.; Hu, J.L.; Weng, J.R. Synthetic tryptanthrin derivatives induce cell cycle arrest and apoptosis via Akt and MAPKs in human hepatocellular carcinoma cells. Biomedicines, 2021, 9(11), 1527.
[http://dx.doi.org/10.3390/biomedicines9111527] [PMID: 34829756]
[38]
Li, F.N.; Zhang, Q.Y.; Li, O.; Liu, S.L.; Yang, Z.Y.; Pan, L.J.; Zhao, C.; Gong, W.; Shu, Y.J.; Dong, P. ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1. Int. J. Biol. Sci., 2021, 17(8), 1909-1924.
[http://dx.doi.org/10.7150/ijbs.57623] [PMID: 34131395]
[39]
Huang, F.Y.; Wong, D.K.H.; Seto, W.K.; Mak, L.Y.; Cheung, T.T.; Yuen, M.F. Tumor suppressive role of mitochondrial sirtuin 4 in induction of G2/M cell cycle arrest and apoptosis in hepatitis B virus-related hepatocellular carcinoma. Cell Death Discov., 2021, 7(1), 88.
[http://dx.doi.org/10.1038/s41420-021-00470-8] [PMID: 33931611]
[40]
Patil, S.M.; Kunda, N.K. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits non-small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture. Pharm. Res., 2022, 39(11), 2859-2870.
[http://dx.doi.org/10.1007/s11095-022-03220-2] [PMID: 35246758]
[41]
Newman, S.A.; Short, J.L.; Nicolazzo, J.A. Reduction in ABCG2 mRNA expression in human immortalised brain microvascular endothelial cells by ferric ammonium citrate is mediated by reactive oxygen species and activation of ERK1/2 signalling. Pharm. Res., 2023, 40(3), 651-660.
[http://dx.doi.org/10.1007/s11095-022-03458-w] [PMID: 36539667]
[42]
Wang, W.; Chen, Y.; Yin, Y.; Wang, X.; Ye, X.; Jiang, K.; Zhang, Y.; Zhang, J.; Zhang, W.; Zhuge, Y.; Chen, L.; Peng, C.; Xiong, A.; Yang, L.; Wang, Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch. Toxicol., 2022, 96(7), 2003-2019.
[http://dx.doi.org/10.1007/s00204-022-03281-7] [PMID: 35357534]
[43]
Harjes, U. EGFR is going circular. Nat. Rev. Cancer, 2021, 21(5), 280-293.
[http://dx.doi.org/10.1038/s41568-021-00350-4] [PMID: 33758414]
[44]
Levantini, E.; Maroni, G.; Del Re, M.; Tenen, D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol., 2022, 85, 253-275.
[http://dx.doi.org/10.1016/j.semcancer.2022.04.002] [PMID: 35427766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy