Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Pharmacological Mechanism of Herbal Interventions for Bipolar Disorder

Author(s): Abhinav Singh, Maryam Sarwat* and Sangeetha Gupta*

Volume 30, Issue 24, 2024

Published on: 05 June, 2024

Page: [1867 - 1879] Pages: 13

DOI: 10.2174/0113816128312442240519184440

Price: $65

Open Access Journals Promotions 2
Abstract

Bipolar disorder is a neuropsychiatric disease characterized by an abundance of undesired ideas and thoughts associated with recurrent episodes of mania or hypomania and depression. Alterations in the circuits, including the prefrontal cortex, striatum, and limbic system, regulate mood and cause variation in several crucial neurotransmitters, including serotonin, dopamine, GABA, and glutamate. Imbalances in dopamine levels have been implicated in the manic phase, while variance in serotonin is linked to depressive episodes. The precise pathophysiology of bipolar disorder is still unknown. Though different treatments are available, like lithium, risperidone, valproic acid, etc., which are widely used, they come with certain limitations, including narrow therapeutic index, hypothyroidism, weight gain, extrapyramidal symptoms, etc. The interest in herbal- based treatments for bipolar disorder arises from the desire for alternative, potentially more natural, and holistic approaches with fewer side effects. The current review focuses on the potential effects of herbal drugs and their derivatives to alleviate the symptoms of bipolar disorder.

Keywords: Bipolar disorder, herbal drugs, neurotransmitters, pharmacological mechanisms, depression, anxiety.

Next »
[1]
Vieta E, Berk M, Schulze TG, et al. Bipolar disorders. Nat Rev Dis Primers 2018; 4(1): 18008.
[http://dx.doi.org/10.1038/nrdp.2018.8] [PMID: 29516993]
[2]
Wartchow KM, Scaini G, Quevedo J. Glial-neuronal interaction in synapses: A possible mechanism of the pathophysiology of bipolar disorder. Adv Exp Med Biol 2023; 1411: 191-208.
[http://dx.doi.org/10.1007/978-981-19-7376-5_9] [PMID: 36949311]
[3]
Carvalho AF, Firth J, Vieta E. Bipolar disorder. N Engl J Med 2020; 383(1): 58-66.
[http://dx.doi.org/10.1056/NEJMra1906193] [PMID: 32609982]
[4]
Schiweck C, Henriquez AG, Aichholzer M, et al. Comorbidity of ADHD and adult bipolar disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 124: 100-23.
[http://dx.doi.org/10.1016/j.neubiorev.2021.01.017] [PMID: 33515607]
[5]
Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 2018; 44(1): 75-83.
[http://dx.doi.org/10.1093/schbul/sbx035] [PMID: 28338954]
[6]
Benedetti F, Poletti S, Hoogenboezem TA, et al. Inflammatory cytokines influence measures of white matter integrity in bipolar disorder. J Affect Disord 2016; 202: 1-9.
[http://dx.doi.org/10.1016/j.jad.2016.05.047] [PMID: 27253210]
[7]
Giridharan VV, Sayana P, Pinjari OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: A systematic review. Mol Psychiatry 2020; 25(1): 94-113.
[http://dx.doi.org/10.1038/s41380-019-0448-7] [PMID: 31249382]
[8]
McGrath JJ, Hamzawi AA, Alonso J, et al. Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from 29 countries. Lancet Psychiatry 2023; 10(9): 668-81.
[http://dx.doi.org/10.1016/S2215-0366(23)00193-1] [PMID: 37531964]
[9]
Nierenberg AA, Agustini B, Forsberg KO, et al. Diagnosis and treatment of bipolar disorder. JAMA 2023; 330(14): 1370-80.
[http://dx.doi.org/10.1001/jama.2023.18588] [PMID: 37815563]
[10]
Nowrouzi B, McIntyre RS, MacQueen G, et al. Admixture analysis of age at onset in first episode bipolar disorder. J Affect Disord 2016; 201: 88-94.
[http://dx.doi.org/10.1016/j.jad.2016.04.006] [PMID: 27182964]
[11]
National Institute of Mental Health. Bipolar disorder. 2023. Available from: https://www. nimh.nih.gov/health/statistics/bipolar-disorder
[12]
Madireddy S, Madireddy S. Therapeutic interventions to mitigate mitochondrial dysfunction and oxidative stress–induced damage in patients with bipolar disorder. Int J Mol Sci 2022; 23(3): 1844.
[http://dx.doi.org/10.3390/ijms23031844] [PMID: 35163764]
[13]
Jain A. Bipolar disorder: Diagnosis, pathophysiology and therapy. E C Neurology 2020; 12: 136-49.
[14]
Tu EN, Manley H, Saunders KEA, Creswell C. Systematic review and meta-analysis: Risks of anxiety disorders in offspring of parents with mood disorders. J Am Acad Child Adolesc Psychiatry 2023; 63(4): 407-21.
[PMID: 37453607]
[15]
Axelson D, Goldstein B, Goldstein T, et al. Diagnostic precursors to bipolar disorder in offspring of parents with bipolar disorder: A longitudinal study. Am J Psychiatry 2015; 172(7): 638-46.
[http://dx.doi.org/10.1176/appi.ajp.2014.14010035] [PMID: 25734353]
[16]
Ayano G. Bipolar disorder: A concise overview of etiology, epidemiology diagnosis and management: Review of Literatures. SOJ Psychol 2016; 3(1): 1-8.
[http://dx.doi.org/10.15226/2374-6874/3/2/00131]
[17]
O’Connell KS, Coombes BJ. Genetic contributions to bipolar disorder: Current status and future directions. Psychol Med 2021; 51(13): 2156-67.
[http://dx.doi.org/10.1017/S0033291721001252] [PMID: 33879273]
[18]
Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM. Neuromolecular etiology of bipolar disorder: Possible therapeutic targets of mood stabilizers. Clin Psychopharmacol Neurosci 2022; 20(2): 228-39.
[http://dx.doi.org/10.9758/cpn.2022.20.2.228] [PMID: 35466094]
[19]
Illesca-Matus R, Ardiles NM, Munoz F, Moya PR. Implications of physical exercise on episodic memory and anxiety: The role of the serotonergic system. Int J Mol Sci 2023; 24(14): 11372.
[http://dx.doi.org/10.3390/ijms241411372] [PMID: 37511128]
[20]
Onyeka IN, Høegh CM, Eien NEM, Nwaru BI, Melle I. Comorbidity of physical disorders among patients with severe mental illness with and without substance use disorders: A systematic review and meta-analysis. J Dual Diagn 2019; 15(3): 192-206.
[http://dx.doi.org/10.1080/15504263.2019.1619007] [PMID: 31164045]
[21]
McElroy SL, Winham SJ, Barboza CAB, et al. Bipolar disorder with binge eating behavior: A genome-wide association study implicates PRR5-ARHGAP8. Transl Psychiatry 2018; 8(1): 40.
[http://dx.doi.org/10.1038/s41398-017-0085-3] [PMID: 29391396]
[22]
Jayamohananan H, Kumar MMK, T P A. 5-HIAA as a potential biological marker for neurological and psychiatric disorders. Adv Pharm Bull 2019; 9(3): 374-81.
[http://dx.doi.org/10.15171/apb.2019.044] [PMID: 31592064]
[23]
Berk M, Dodd S, Sant’Anna KM, et al. Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand 2007; 116(s434): 41-9.
[http://dx.doi.org/10.1111/j.1600-0447.2007.01058.x] [PMID: 17688462]
[24]
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018; 235(8): 2195-220.
[http://dx.doi.org/10.1007/s00213-018-4950-4] [PMID: 29961124]
[25]
Hsueh YS, Lin CY, Chiu NT, Yang YK, Chen PS, Chang HH. Changes in striatal dopamine transporters in bipolar disorder and valproate treatment. Eur Psychiatry 2021; 64(1): e9.
[http://dx.doi.org/10.1192/j.eurpsy.2021.1] [PMID: 33413711]
[26]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: The state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[27]
Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord 2009; 11(8): 787-806.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00760.x] [PMID: 19922550]
[28]
Kotzaeroglou A, Tsamesidis I. The role of equilibrium between free radicals and antioxidants in depression and bipolar disorder. Medicines 2022; 9(11): 57.
[http://dx.doi.org/10.3390/medicines9110057] [PMID: 36422118]
[29]
Pålsson E, Sellgren C, Pelanis A, Zetterberg H, Blennow K, Landén M. Altered brain dopamine metabolism is a trait marker for bipolar disorder. Biomark Neuropsychiatr 2023; 9: 100078.
[http://dx.doi.org/10.1016/j.bionps.2023.100078]
[30]
D’Cruz M, Andrade C. Potential clinical applications of Ashwagandha (Withania somnifera) in medicine and neuropsychiatry. Expert Rev Clin Pharmacol 2022; 15(9): 1067-80.
[http://dx.doi.org/10.1080/17512433.2022.2121699] [PMID: 36062480]
[31]
Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. J Ethnopharmacol 2020; 257: 112876.
[http://dx.doi.org/10.1016/j.jep.2020.112876] [PMID: 32305638]
[32]
Chengappa RKN, Gannon JM, Acharya L, Rai A. The potential utility of Ashwagandha for improving cognitive dysfunction in persons with bipolar or other neurocognitive disorders. Science of Ashwagandha: Preventive and Therapeutic Potentials. Cham: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-59192-6_17]
[33]
Gupta M, Kaur G. Withania somnifera as a potential anxiolytic and anti-inflammatory candidate against systemic lipopolysaccharide-induced neuroinflammation. Neuromolecular Med 2018; 20(3): 343-62.
[http://dx.doi.org/10.1007/s12017-018-8497-7] [PMID: 29846872]
[34]
Khattak ZF, Ansari B, Jamal M, Awan AA, Sherkheli MA, ul Haq R. Anticonvulsant activity of methanolic extract of Withania cogulans in mice. Metab Brain Dis 2021; 36(8): 2437-43.
[http://dx.doi.org/10.1007/s11011-021-00850-0] [PMID: 34618296]
[35]
Rai M, Jogee PS, Agarkar G, Santos CA. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm Biol 2016; 54(2): 189-97.
[http://dx.doi.org/10.3109/13880209.2015.1027778] [PMID: 25845640]
[36]
Nile SH, Nile A, Gansukh E, Baskar V, Kai G. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera L.) and their biological activities. Food Chem Toxicol 2019; 132: 110659.
[http://dx.doi.org/10.1016/j.fct.2019.110659] [PMID: 31276745]
[37]
Tiwari R, Chakrabort S, Saminathan M, Dhama K, Singh SV. Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J Biol Sci 2014; 14(2): 77-94.
[http://dx.doi.org/10.3923/jbs.2014.77.94]
[38]
Paul S, Chakraborty S, Anand U, et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143: 112175.
[http://dx.doi.org/10.1016/j.biopha.2021.112175] [PMID: 34649336]
[39]
Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J Basic Med Sci 2020; 23(12): 1501-26.
[PMID: 33489024]
[40]
Iqbal RM, Sharma SK. Anti-manic and antipsychotic effects of Withania somnifera extract in rodent model of bipolar disorder. Int J Pharm Investig 2022; 13(1): 122-8.
[http://dx.doi.org/10.5530/223097131721]
[41]
EghbaliFeriz S, Taleghani A, Najaran TZ. Central nervous system diseases and Scutellaria: A review of current mechanism studies. Biomed Pharmacother 2018; 102: 185-95.
[http://dx.doi.org/10.1016/j.biopha.2018.03.021] [PMID: 29554597]
[42]
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: Analysis of the available clinical data. Sci Rep 2021; 11(1): 596.
[http://dx.doi.org/10.1038/s41598-020-80045-2] [PMID: 33436817]
[43]
Das TK, Javadzadeh A, Dey A, et al. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91: 94-102.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.006] [PMID: 30125624]
[44]
Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[45]
Nandy S, Mukherjee A, Pandey DK, Dey A. Bacopa monnieri: The neuroprotective elixir from the East-phytochemistry, pharmacology, and biotechnological improvement. Singh J, Meshram V, Gupta M. Bioactive Natural products in Drug Discovery. Singapore: Springer 2020; pp. 97-126.
[46]
Rajan KE, Preethi J, Singh HK. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid Based Complement Alternat Med 2015; 2015: 945217.
[47]
Mankar SS, Turan SP, Mankar SS, Shelke PA. Antidepressant in animal models of depression and study of cognitive property. GSC Biol Pharm Sci 2019; 07(03): 064-76.
[http://dx.doi.org/10.30574/gscbps.2019.7.3.0069]
[48]
Nishanth BJ, Vijayababu P, Kurian NK. Bacopa monnieri extract as a neuroprotective and cognitive enhancement agent. Int J Drug Discov Pharmacol 2023; 2(4): 44-56.
[49]
Bhatt S, Devadoss T, Manjula SN, Rajangam J. 5-HT3 receptor antagonism a potential therapeutic approach for the treatment of depression and other disorders. Curr Neuropharmacol 2021; 19(9): 1545-59.
[http://dx.doi.org/10.2174/1570159X18666201015155816] [PMID: 33059577]
[50]
Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142: 112021.
[http://dx.doi.org/10.1016/j.biopha.2021.112021] [PMID: 34463268]
[51]
Shinjyo N, Waddell G, Green J. Valerian root in treating sleep problems and associated disorders-A systematic review and meta-analysis. J Evid Based Integr Med 2020; 25: 2515690X2096732.
[http://dx.doi.org/10.1177/2515690X20967323] [PMID: 33086877]
[52]
Saecker L, Häberlein H, Franken S. Investigation of adenosine A1 receptor-mediated β-arrestin 2 recruitment using a split-luciferase assay. Front Pharmacol 2023; 14: 1172551.
[http://dx.doi.org/10.3389/fphar.2023.1172551] [PMID: 37324481]
[53]
Gavzan H, Araghi A, Abbasabadi MB, Talebpour N, Golshahi H. Antidepressant effects of a Persian herbal formula on mice with chronic unpredictable mild stress. Avicenna J Phytomed 2023; 13(5): 562-74.
[PMID: 38089415]
[54]
Esmaeili S, Rezaei-Tavirani M, Razzaghi M, Okhovatian F. Efficacy of Valerian root extract on anxiety via bioinformatics. Res J Pharmacogn 2022; 9(4): 13-20.
[55]
Porcelli S, Drago A, Fabbri C, Serretti A. Mechanisms of antidepressant action: An integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1532-43.
[http://dx.doi.org/10.1016/j.pnpbp.2011.03.005] [PMID: 21402119]
[56]
Holzmann I, Cechinel Filho V, Cáceres A, Martínez V, Cruz SM, De Souza MM. Antidepressant-like effect of hydroalcoholic extract of Valeriana prionophylla Standl. from Guatemala: Evidence for the involvement of the monoaminergic systems. Int J Phytopharm 2016; 6(1): 14-26.
[57]
Lalehgani H, Rafii Z, Shirvani H, Karimi M, Saki M. Valeriana officinalis as a natural drug in treatment of bipolar mood patients. Avicenna J Phytomed 2015; 5: 121-2.
[58]
Butnariu M, Quispe C, Herrera-Bravo J, et al. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev 2022; 2022: 1-29.
[http://dx.doi.org/10.1155/2022/8214821] [PMID: 35198096]
[59]
Rahaiee S, Moini S, Hashemi M, Shojaosadati SA. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Technol 2015; 52(4): 1881-8.
[http://dx.doi.org/10.1007/s13197-013-1238-x] [PMID: 25829569]
[60]
Ebrahimzadeh A, Moghadam SY, Rahimi H, et al. Crocin acts as a neuroprotective mediator against methylphenidate-induced neurobehavioral and neurochemical sequelae: Possible role of the CREB-BDNF signaling pathway. Acta Neurobiol Exp 2020; 79(4): 352-66.
[http://dx.doi.org/10.21307/ane-2019-033] [PMID: 31885392]
[61]
Shafiee M, Arekhi S, Omranzadeh A, Sahebkar A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J Affect Disord 2018; 227: 330-7.
[http://dx.doi.org/10.1016/j.jad.2017.11.020] [PMID: 29136602]
[62]
Wang JQ, Mao L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol Neurobiol 2019; 56(9): 6197-205.
[http://dx.doi.org/10.1007/s12035-019-1524-3] [PMID: 30737641]
[63]
Siddiqui SA, Ali Redha A, Snoeck ER, et al. Anti-depressant properties of crocin molecules in saffron. Molecules 2022; 27(7): 2076.
[http://dx.doi.org/10.3390/molecules27072076] [PMID: 35408474]
[64]
Wauquier F, Boutin-Wittrant L, Pourtau L, et al. Circulating human serum metabolites derived from the intake of a saffron extract (Safr’InsideTM) protect neurons from oxidative stress: Consideration for depressive disorders. Nutrients 2022; 14(7): 1511.
[http://dx.doi.org/10.3390/nu14071511] [PMID: 35406124]
[65]
Mohajeri SA, Sepahi S, Azam GAG. Antidepressant and antianxiety properties of saffron. Saffron Science, Technology and Health Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing 2020; pp. 431-44.
[http://dx.doi.org/10.1016/B978-0-12-818638-1.00028-9]
[66]
Ettehadi H, Mojabi SN, Ranjbaran M, et al. Aqueous extract of saffron (Crocus sativus) increases brain dopamine and glutamate concentrations in rats. J Behav Brain Sci 2013; 3(3): 315-9.
[http://dx.doi.org/10.4236/jbbs.2013.33031]
[67]
Kiashemshaki B, Safakhah HA, Ghanbari A, Khaleghian A, Miladi-Gorji H. Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. Am J Drug Alcohol Abuse 2021; 47(2): 170-81.
[http://dx.doi.org/10.1080/00952990.2020.1865995] [PMID: 33497577]
[68]
Safakhah HA, Vafaei AA, Tavasoli A, Jafari S, Ghanbari A. Role of muscarinic receptors in hypoalgesia induced by crocin in neuropathic pain rats. Sci World J 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/4046256] [PMID: 33299384]
[69]
Sealy EA. Sleep, sleep deprivation, sleeplessness and their effect on society. Sch J Appl Med Sci 2022; 10(10): 1647-63.
[http://dx.doi.org/10.36347/sjams.2022.v10i10.011]
[70]
Smruthi R, Divya M, Archana K, Ravi M. The active compounds of Passiflora spp. and their potential medicinal uses from both in vitro and in vivo evidences. Int J Adv Biomed Pharm Res 2021; 4(1): 45-55.
[71]
Al-kuraishy HM, Al-windy S, Al-Gareeb AI. Beneficial neuro-pharmacological effect of passionflower (Passiflora incarnata L). ARC. J Neurosci 2020; 4(1): 22-6.
[PMID: 31896561]
[72]
Fonseca LR, Rodrigues RA, Ramos AS, et al. Herbal medicinal products from Passiflora for anxiety: An unexploited potential. Sci World J 2020; 2020: 1-18.
[http://dx.doi.org/10.1155/2020/6598434] [PMID: 32765195]
[73]
Landa RJF, Ponciano GLJ, Olguín PA, Vázquez OOJ. Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic-and antidepressant-like effects of flavonoid chrysin. Molecules 2022; 27(11): 3551.
[http://dx.doi.org/10.3390/molecules27113551] [PMID: 35684488]
[74]
Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015; 289: 367-80.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.048] [PMID: 25592430]
[75]
Babaei N, Saliminia A, Azimaraghi O, Aghajani Y, Khazaei N, Movafegh A. Preoperative oral valiflore reduces anxiety in laparoscopic cholecystectomy: A double blind, placebo-controlled study. J Cell Mol Anesth 2017; 2(3): 103-11.
[76]
Souza LC, Antunes MS, Filho CB, et al. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol Biochem Behav 2015; 134: 22-30.
[http://dx.doi.org/10.1016/j.pbb.2015.04.010] [PMID: 25931267]
[77]
Kondža M, Bojić M, Tomić I, Maleš Ž, Rezić V, Ćavar I. Characterization of the CYP3A4 enzyme inhibition potential of selected flavonoids. Molecules 2021; 26(10): 3018.
[http://dx.doi.org/10.3390/molecules26103018] [PMID: 34069400]
[78]
Liaqat H, Parveen A, Kim SY. Antidepressive effect of natural products and their derivatives targeting BDNF-TrkB in gut-brain axis. Int J Mol Sci 2022; 23(23): 14968.
[http://dx.doi.org/10.3390/ijms232314968] [PMID: 36499295]
[79]
Selvaraj LK, Jeyabalan S, Wong LS, et al. Baicalein prevents stress-induced anxiety behaviors in zebrafish model. Front Pharmacol 2022; 13: 990799.
[http://dx.doi.org/10.3389/fphar.2022.990799] [PMID: 36386131]
[80]
Sarris J. Herbal medicines in the treatment of psychiatric disorders: 10-year updated review. Phytother Res 2018; 32(7): 1147-62.
[http://dx.doi.org/10.1002/ptr.6055] [PMID: 29575228]
[81]
Khani S, Khalaj A. Spasmolytic effects of hydroalcoholic extract of Melissa officinalis on isolated rat ileum. J Rep Pharmaceut Sci 2018; 7(3): 260-9.
[http://dx.doi.org/10.4103/2322-1232.254803]
[82]
Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, pharmacological effects and derived release systems-a review. Int J Mol Sci 2022; 23(7): 3591.
[http://dx.doi.org/10.3390/ijms23073591] [PMID: 35408950]
[83]
Soodi M, Dashti A, Hajimehdipoor H, Akbari S, Ataei N. Melissa officinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxidative stress. Cell J 2017; 18(4): 556-64.
[PMID: 28042540]
[84]
Noguchi-Shinohara M, Ono K, Hamaguchi T, et al. Pharmacokinetics, safety and tolerability of Melissa officinalis extract which contained rosmarinic acid in healthy individuals: A randomized controlled trial. PLoS One 2015; 10(5): e0126422.
[http://dx.doi.org/10.1371/journal.pone.0126422] [PMID: 25978046]
[85]
Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L. – A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2016; 188: 204-28.
[http://dx.doi.org/10.1016/j.jep.2016.05.010] [PMID: 27167460]
[86]
Nikolaichuk H, Typek R, Gnat S, Studziński M, Choma IM. Effect-directed analysis as a method for quality and authenticity estimation of Rhodiola rosea L. preparations. J Chromatogr A 2021; 1649: 462217.
[http://dx.doi.org/10.1016/j.chroma.2021.462217] [PMID: 34034112]
[87]
Harfouche A, Alata W, Leblanc K, Heslaut G, Figadère B, Maciuk A. Label-free LC-HRMS-based enzymatic activity assay for the detection of DDC, MAO and COMT inhibitors. J Pharm Biomed Anal 2022; 212: 114598.
[http://dx.doi.org/10.1016/j.jpba.2022.114598] [PMID: 35152005]
[88]
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants 2021; 10(9): 1439.
[http://dx.doi.org/10.3390/antiox10091439] [PMID: 34573069]
[89]
Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 2018; 355: 257-68.
[http://dx.doi.org/10.1016/j.taap.2018.07.010] [PMID: 30017640]
[90]
Siddiqui PJA, Khan A, Uddin N, et al. Antidepressant-like deliverables from the sea: Evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Biosci Biotechnol Biochem 2017; 81(7): 1369-78.
[http://dx.doi.org/10.1080/09168451.2017.1313697] [PMID: 28406051]
[91]
Moragrega I, Ríos JL. Medicinal plants in the treatment of depression: Evidence from preclinical studies. Planta Med 2021; 87(9): 656-85.
[http://dx.doi.org/10.1055/a-1338-1011] [PMID: 33434941]
[92]
Yarnell E. Herbal medicine for insomnia. Altern Complement Ther 2015; 21(4): 173-9.
[http://dx.doi.org/10.1089/act.2015.29011.eya]
[93]
Ayumi RR, Mossadeq SWM, Zakaria ZA, et al. Antinociceptive activity of asiaticoside in mouse models of induced nociception. Planta Med 2020; 86(8): 548-55.
[http://dx.doi.org/10.1055/a-1144-3663] [PMID: 32294786]
[94]
Golla P, Tirupathi H. To evaluate and compare antidepressant activity of Centella asiatica in mice by using forced swimming test. Int J Basic Clin Pharmacol 2016; 5(5): 2017-20.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20163229]
[95]
Ceremuga TE, Valdivieso D, Kenner C, et al. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J 2015; 83(2): 91-8.
[PMID: 26016167]
[96]
Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target proteins in the dorsal hippocampal formation sustain the memory-enhancing and neuroprotective effects of Ginkgo biloba. Front Pharmacol 2019; 9: 1533.
[http://dx.doi.org/10.3389/fphar.2018.01533] [PMID: 30666208]
[97]
Savage K, Firth J, Stough C, Sarris J. GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytother Res 2018; 32(1): 3-18.
[http://dx.doi.org/10.1002/ptr.5940] [PMID: 29168225]
[98]
Mustafa G, Ansari SH, Bhat ZA, Abdulkareim AS. Antianxiety activities associated with herbal drugs: A review. Plant Human Health Pharmacol Therapeut Uses 2019; 3: 87-100.
[http://dx.doi.org/10.1007/978-3-030-04408-4_5]
[99]
Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allyl cysteine, a garlic compound, produces an antidepressant-like effect and exhibits antioxidant properties in mice. Brain Sci 2020; 10(9): 592.
[http://dx.doi.org/10.3390/brainsci10090592] [PMID: 32859119]
[100]
Ayatollahi SA, Khoshsirat S, Peyvandi AA, et al. Ginkgo biloba modulates hippocampal BDNF expression in a rat model of chronic restraint stress-induced depression. Physiol Pharmacol 2020; 24(4): 285-97.
[http://dx.doi.org/10.32598/ppj.24.4.20]
[101]
Zhang J, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 2016; 14(7): 721-31.
[http://dx.doi.org/10.2174/1570159X14666160119094646] [PMID: 26786147]
[102]
Zheleznyakova GY, Cao H, Schiöth HB. BDNF DNA methylation changes as a biomarker of psychiatric disorders: Literature review and open access database analysis. Behav Brain Funct 2016; 12(1): 17.
[http://dx.doi.org/10.1186/s12993-016-0101-4] [PMID: 27267954]
[103]
Baek JH, Nierenberg AA, Kinrys G. Clinical applications of herbal medicines for anxiety and insomnia; Targeting patients with bipolar disorder. Aust N Z J Psychiatry 2014; 48(8): 705-15.
[http://dx.doi.org/10.1177/0004867414539198] [PMID: 24947278]
[104]
Bonthu AK, Boosani V, Bugulu SG, et al. Evaluation of sedative and hypnotic activity of Valeriana wallichii roots on animal models. Sch Acad J Pharm 2020; 2020
[105]
Goldberg JF. Complex combination pharmacotherapy for bipolar disorder: Knowing when less is more or more is better. Focus Am Psychiatr Publ 2019; 17(3): 218-31.
[http://dx.doi.org/10.1176/appi.focus.20190008] [PMID: 32047367]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy