Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology

Author(s): Xiangka Hu, Feifei Liu, He Yang, Mushuang Qi, Ying Ren, Wanjun Zhu and Chunmei Dai*

Volume 30, Issue 24, 2024

Published on: 03 June, 2024

Page: [1912 - 1926] Pages: 15

DOI: 10.2174/0113816128293824240517113238

Abstract

Introduction: Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients.

Methods: The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism.

Aim: This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments.

Results: A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm.

Conclusion: This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.

Keywords: Modified Danggui Buxue decoction, retinal oxidative damage, network pharmacology, protein kinase b, nuclear factor e2-related factor 2, AMD.

[1]
Wang J, Li M, Geng Z, et al. Role of oxidative stress in retinal disease and the early intervention strategies: A review. Oxid Med Cell Longev 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/7836828] [PMID: 36275903]
[2]
Steinmetz JD, Bourne RRA, Briant PS, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9(2): e144-60.
[http://dx.doi.org/10.1016/S2214-109X(20)30489-7] [PMID: 33275949]
[3]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health 2014; 2(2): e106-16.
[http://dx.doi.org/10.1016/S2214-109X(13)70145-1] [PMID: 25104651]
[4]
Guymer RH, Campbell TG. Age-related macular degeneration. Lancet 2023; 401(10386): 1459-72.
[http://dx.doi.org/10.1016/S0140-6736(22)02609-5] [PMID: 36996856]
[5]
Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7(1): 31.
[http://dx.doi.org/10.1038/s41572-021-00265-2] [PMID: 33958600]
[6]
Ruan Y, Jiang S, Gericke A. Age-related macular degeneration: Role of oxidative stress and blood vessels. Int J Mol Sci 2021; 22(3): 1296.
[http://dx.doi.org/10.3390/ijms22031296] [PMID: 33525498]
[7]
Castelli V, Paladini A, D’Angelo M, et al. Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther 2021; 27(4): 403-12.
[http://dx.doi.org/10.1111/cns.13610] [PMID: 33621439]
[8]
Ying L, Yuxian Z, Shuyu Y. Yang Shuyu’s experience in treating diabetic retinopathy with modified Danggui Buxue decoction. China J Chin Ophthalmol 2021; 08: 570-4.
[9]
Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69(3): 223-35.
[http://dx.doi.org/10.1111/jphp.12683] [PMID: 28124440]
[10]
Song X, Kong J, Song J, Pan R, Wang L. Angelica sinensis polysaccharide alleviates myocardial fibrosis and oxidative stress in the heart of hypertensive rats. Comput Math Methods Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/6710006] [PMID: 34527077]
[11]
Fan Y, Qiao Y, Huang J, Tang M. Protective effects of Panax notoginseng saponins against high glucose-induced oxidative injury in rat retinal capillary endothelial cells. Evid Based Complement Alternat Med 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/5326382] [PMID: 27019662]
[12]
Shi Y. Clinical characteristics of non-proliferative diabetic retinopathy and clinical efficacy of Radix astragali, Radix angelica sinensis and Panax notoginseng (RRP) in treating non-proliferative diabetic retinopathy patients. Xiamen University 2016.
[13]
Ding H, Hong Y, Qi F, et al. The innovative application of “monarch”, “minister”, “assistant”, and “guide” in clinical practice. Lishizhen Med Materia Medica Res 2022; 05: 1178-9.
[14]
Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[15]
Lichao W, Junfeng L, Tingting Z, Fangfang T, Wenhong L. Anti-inflammatory effects of stigmasterol based on network pharmacology and cell experiments. Zhongchengyao 2022; 02: 609-15.
[16]
Hu X, Shao P, Liu X, et al. Study on the anti-inflammatory effect and mechanism of Yuxuebi tablet based on network pharmacology. ACS Omega 2022; 7(36): 32784-94.
[http://dx.doi.org/10.1021/acsomega.2c04641] [PMID: 36120030]
[17]
Luo J, Chen X, Liang P, et al. Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking. Comput Biol Med 2023; 155: 106637.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106637] [PMID: 36791549]
[18]
Kola-Mustapha AT, Raji MA, Adedeji O, Ambrose GO. Network pharmacology and molecular modeling to elucidate the potential mechanism of neem oil against Acne vulgaris. Molecules 2023; 28(6): 2849.
[http://dx.doi.org/10.3390/molecules28062849] [PMID: 36985821]
[19]
Liu J, Sun T, Liu S, et al. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 2022; 151(Pt A): 106298.
[20]
Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered 2022; 13(5): 13767-83.
[http://dx.doi.org/10.1080/21655979.2022.2084253] [PMID: 35726821]
[21]
Deng J, Qin L, Zhou Z. Network pharmacology and molecular docking reveal the mechanism of Isodon ternifolius (D. Don) kudo against liver fibrosis. Drug Des Devel Ther 2023; 17: 2335-51.
[http://dx.doi.org/10.2147/DDDT.S412818] [PMID: 37576085]
[22]
Han J, Hou J, Liu Y, Liu P, Zhao T, Wang X. Using network pharmacology to explore the mechanism of Panax notoginseng in the treatment of myocardial fibrosis. J Diabetes Res 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/8895950] [PMID: 35372585]
[23]
Wang C, Liu X, Guo S. Network pharmacology-based strategy to investigate the effect and mechanism of α-solanine against glioma. BMC Compl Med Therap 2023; 23(1): 371.
[http://dx.doi.org/10.1186/s12906-023-04215-1] [PMID: 37865727]
[24]
Shang L, Wang Y, Li J, et al. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J Ethnopharmacol 2023; 302(Pt A): 115876..
[http://dx.doi.org/10.1016/j.jep.2022.115876]
[25]
Zhang H, Zhou C, Zhang Z, et al. Integration of network pharmacology and experimental validation to explore the pharmacological mechanisms of Zhuanggu Busui formula against osteoporosis. Front Endocrinol 2022; 12: 841668.
[http://dx.doi.org/10.3389/fendo.2021.841668] [PMID: 35154014]
[26]
Man L. Effect of Bushen Yangxue Mingmu formula on retinal pigment epithelial cell oxidative stress and its mechanism. Chinese Academy of Chinese Medical Sciences 2015.
[27]
Wang J, Iacovelli J, Spencer C, Saint-Geniez M. Direct effect of sodium iodate on neurosensory retina. Invest Ophthalmol Vis Sci 2014; 55(3): 1941-53.
[http://dx.doi.org/10.1167/iovs.13-13075] [PMID: 24481259]
[28]
Sun R, Zhang A, Ge Y, et al. Ultra-small-size astragaloside-IV loaded lipid nanocapsules eye drops for the effective management of dry age-related macular degeneration. Expert Opin Drug Deliv 2020; 17(9): 1305-20.
[http://dx.doi.org/10.1080/17425247.2020.1783236] [PMID: 32538226]
[29]
Li J, Wang X, Bai J, Wei H, Wang W, Wang S. Fucoidan modulates SIRT1 and NLRP3 to alleviate hypertensive retinopathy: In vivo and in vitro insights. J Transl Med 2024; 22(1): 155.
[http://dx.doi.org/10.1186/s12967-024-04877-6] [PMID: 38360728]
[30]
Yang H, Liu Z, Hu X, et al. Protective effect of Panax notoginseng saponins on apolipoprotein-E-deficient atherosclerosis-prone mice. Curr Pharm Des 2022; 28(8): 671-7.
[http://dx.doi.org/10.2174/1381612828666220128104636] [PMID: 35088656]
[31]
Cai Z, Hu X, Gui L, et al. Study on the therapeutic effect and mechanism of Tangningtongluo tablet on diabetic mice. J Diabetes Complications 2023; 37(8): 108523.
[http://dx.doi.org/10.1016/j.jdiacomp.2023.108523] [PMID: 37301061]
[32]
Guo T, Liu Z, Zhao Q, Zhao Z, Liu C. A combination of astragaloside I, levistilide A and calycosin exerts anti-liver fibrosis effects in vitro and in vivo. Acta Pharmacol Sin 2018; 39(9): 1483-92.
[http://dx.doi.org/10.1038/aps.2017.175] [PMID: 29849130]
[33]
Qiao C, Wan J, Zhang L, et al. Astragaloside II alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Am J Transl Res 2019; 11(11): 7074-83.
[PMID: 31814910]
[34]
Wang Y, Liu X, Hu T, et al. Astragalus saponins improves stroke by promoting the proliferation of neural stem cells through phosphorylation of Akt. J Ethnopharmacol 2021; 277: 114224.
[http://dx.doi.org/10.1016/j.jep.2021.114224] [PMID: 34044075]
[35]
Liu YL, Zhang QZ, Wang YR, et al. Astragaloside IV improves high-fat diet–induced hepatic steatosis in nonalcoholic fatty liver disease rats by regulating inflammatory factors level via TLR4/NF-κB signaling pathway. Front Pharmacol 2021; 11: 605064.
[http://dx.doi.org/10.3389/fphar.2020.605064] [PMID: 33708118]
[36]
Meng Y, Ji J, Xiao X, et al. Ononin induces cell apoptosis and reduces inflammation in rheumatoid arthritis fibroblast-like synoviocytes by alleviating MAPK and NF-κB signaling pathways. Acta Biochim Pol 2021; 68(2): 239-45.
[http://dx.doi.org/10.18388/abp.2020_5528] [PMID: 34075738]
[37]
Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam MS. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox Res 2020; 37(4): 944-55.
[http://dx.doi.org/10.1007/s12640-019-00099-7] [PMID: 31422569]
[38]
Choi ES, Yoon JJ, Han BH, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine 2018; 38: 12-23.
[http://dx.doi.org/10.1016/j.phymed.2017.09.022] [PMID: 29425644]
[39]
Zhou P, Xie W, Meng X, et al. Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy. Cells 2019; 8(3): 213.
[http://dx.doi.org/10.3390/cells8030213] [PMID: 30832367]
[40]
Zheng Z, Wang M, Cheng C, et al. Ginsenoside Rb1 reduces H2O2-induced HUVEC dysfunction by stimulating the sirtuin-1/AMP-activated protein kinase pathway. Mol Med Rep 2020; 22(1): 247-56.
[http://dx.doi.org/10.3892/mmr.2020.11096] [PMID: 32377712]
[41]
Deng Z, Lim J, Wang Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 2020; 16(5): 917-31.
[http://dx.doi.org/10.1080/15548627.2019.1644076] [PMID: 31362587]
[42]
Forcina GC, Pope L, Murray M, et al. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci USA 2022; 119(11): e2118646119.
[http://dx.doi.org/10.1073/pnas.2118646119] [PMID: 35271393]
[43]
Dang X, He B, Ning Q, et al. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways. Respir Res 2020; 21(1): 95.
[http://dx.doi.org/10.1186/s12931-020-01358-4] [PMID: 32321531]
[44]
Ren B, Zhang Y, Liu S, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24(21): 12355-67.
[http://dx.doi.org/10.1111/jcmm.15725] [PMID: 32961025]
[45]
Ji Y, Luo J, Zeng J, et al. Xiaoyao pills ameliorate depression- like behaviors and oxidative stress induced by olfactory bulbectomy in rats via the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathway. Front Pharmacol 2021; 12: 643456.
[http://dx.doi.org/10.3389/fphar.2021.643456] [PMID: 33935736]
[46]
Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, et al. Human papillomavirus 16 E7 promotes EGFR/PI3K/AKT1/NRF2 signaling pathway contributing to PIR/NF-κB activation in oral cancer cells. Cancers (Basel) 2020; 12(7): 1904.
[http://dx.doi.org/10.3390/cancers12071904] [PMID: 32679705]
[47]
Zhang B, Qu Z, Hui H, et al. Exploring the therapeutic potential of isoorientin in the treatment of osteoporosis: A study using network pharmacology and experimental validation. Mol Med 2024; 30(1): 27.
[http://dx.doi.org/10.1186/s10020-024-00799-7] [PMID: 38378457]
[48]
Wang M, Li B, Liu Y, et al. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14: 1107507.
[http://dx.doi.org/10.3389/fphar.2023.1107507] [PMID: 36814500]
[49]
Zhang Z, Qu J, Zheng C, et al. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial–mesenchymal transition during pulmonary fibrosis. Cell Death Dis 2018; 9(2): 83.
[http://dx.doi.org/10.1038/s41419-017-0198-x] [PMID: 29362432]
[50]
Wu Y. Clinical survey of the Xi-shiyin in treatment of non-proliferative diabetic retinopathy. Fujian University of Traditional Chinese Medicine 2013.
[51]
Hsu MY, Hsiao YP, Lin YT, et al. Quercetin alleviates the accumulation of superoxide in sodium iodate-induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl-SOD2 via the Nrf2-PGC-1α-Sirt1 pathway. Antioxidants 2021; 10(7): 1125.
[http://dx.doi.org/10.3390/antiox10071125] [PMID: 34356358]
[52]
Du W, An Y, He X, Zhang D, He W. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid Med Cell Longev 2018; 2018: 1-14.
[http://dx.doi.org/10.1155/2018/1610751] [PMID: 30584457]
[53]
Wang J, Gong HM, Zou HH, Liang L, Wu XY. Isorhamnetin prevents H2O2-induced oxidative stress in human retinal pigment epithelial cells. Mol Med Rep 2018; 17(1): 648-52.
[PMID: 29115489]
[54]
Jia WC, Liu G, Zhang CD, Zhang SP. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells. Eur Rev Med Pharmacol Sci 2014; 18(15): 2191-7.
[PMID: 25070826]
[55]
Kai X. Study on the effect of astragaloside IV nanoemulsion gel on experimental dry age-related macular degeneration rat model. Chinese Academy of Chinese Medical Sciences 2018.
[56]
Devaraj E, Roy A, Royapuram Veeraragavan G, et al. β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(6): 1067-75.
[http://dx.doi.org/10.1007/s00210-020-01810-8] [PMID: 31930431]
[57]
Hu R, Wang M, Liu L, et al. Calycosin inhibited autophagy and oxidative stress in chronic kidney disease skeletal muscle atrophy by regulating AMPK/SKP2/CARM1 signalling pathway. J Cell Mol Med 2020; 24(19): 11084-99.
[http://dx.doi.org/10.1111/jcmm.15514] [PMID: 32910538]
[58]
Rajput SA, Shaukat A, Rajput IR, et al. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. Ecotoxicol Environ Saf 2021; 220: 112333.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112333] [PMID: 34058674]
[59]
Chan CM, Huang DY, Sekar P, Hsu SH, Lin WW. Correction to: Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci 2019; 26(1): 66.
[http://dx.doi.org/10.1186/s12929-019-0555-4] [PMID: 31481051]
[60]
Enzbrenner A, Zulliger R, Biber J, et al. Sodium iodate-induced degeneration results in local complement changes and inflammatory processes in murine retina. Int J Mol Sci 2021; 22(17): 9218.
[http://dx.doi.org/10.3390/ijms22179218] [PMID: 34502128]
[61]
Xu W, Liu X, Han W, et al. Inhibiting HIF-1 signaling alleviates HTRA1-induced RPE senescence in retinal degeneration. Cell Commun Signal 2023; 21(1): 134.
[http://dx.doi.org/10.1186/s12964-023-01138-9] [PMID: 37316948]
[62]
Jie H, Xingwei W. Current research in animal models of dry age-related macular degeneration. China J Chin Ophthalmol 2020; 07: 515-7.
[63]
Koster C, van den Hurk KT, ten Brink JB, et al. Sodium-iodate injection can replicate retinal degenerative disease stages in pigmented mice and rats: Non-invasive follow-up using OCT and ERG. Int J Mol Sci 2022; 23(6): 2918.
[http://dx.doi.org/10.3390/ijms23062918] [PMID: 35328338]
[64]
Zhou P, Kannan R, Spee C, Sreekumar PG, Dou G, Hinton DR. Protection of retina by αB crystallin in sodium iodate induced retinal degeneration. PLoS One 2014; 9(5): e98275.
[http://dx.doi.org/10.1371/journal.pone.0098275] [PMID: 24874187]
[65]
Yang X, Huo F, Liu B, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci 2017; 61(4): 581-9.
[http://dx.doi.org/10.1007/s12031-017-0899-8] [PMID: 28238066]
[66]
Hsin IL, Shen HP, Chang HY, Ko JL, Wang PH. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop induces cell cycle arrest by dual PI3K/mTOR inhibitor PQR309 in endometrial cancer cell lines. Cells 2021; 10(11): 2916.
[http://dx.doi.org/10.3390/cells10112916] [PMID: 34831139]
[67]
Wang J, Chen R, Liu C, Wu X, Zhang Y. Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 2021; 909: 174396.
[http://dx.doi.org/10.1016/j.ejphar.2021.174396] [PMID: 34332921]
[68]
Li Z, Dong X, Liu H, et al. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis 2013; 19: 1656-66.
[PMID: 23901249]
[69]
Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res 2019; 68(Suppl 2): S131-8.
[70]
Cai ZY, Liu K, Duan X-C, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14(8): 1260-73.
[http://dx.doi.org/10.18240/ijo.2021.08.19] [PMID: 34414093]
[71]
Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 2020; 40(13): e00099-20.
[http://dx.doi.org/10.1128/MCB.00099-20] [PMID: 32284348]
[72]
Ma K, Wu HY, Wang SY, Li BX. The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation. Ecotoxicol Environ Saf 2021; 226: 112862.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112862] [PMID: 34624533]
[73]
Li X, Deng A, Liu J, Hou W. The role of Keap1-Nrf2-ARE signal pathway in diabetic retinopathy oxidative stress and related mechanisms. Int J Clin Exp Pathol 2018; 11(6): 3084-90.
[PMID: 31938435]
[74]
Lee J, Lim JW, Kim H. Lycopene inhibits IL-6 expression by upregulating NQO1 and HO-1 via activation of Nrf2 in ethanol/ lipopolysaccharide-stimulated pancreatic acinar cells. Antioxidants 2022; 11(3): 519.
[http://dx.doi.org/10.3390/antiox11030519] [PMID: 35326169]
[75]
Yuan Z, Du W, He X, Zhang D, He W. Tribulus terrestris ameliorates oxidative stress-induced ARPE-19 cell injury through the PI3K/Akt-Nrf2 signaling pathway. Oxid Med Cell Longev 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/7962393] [PMID: 32774685]
[76]
Zhang C, Yang Y, Chen R, et al. Aberrant expression of oxidative stress related proteins affects the pregnancy outcome of gestational diabetes mellitus patients. Am J Transl Res 2019; 11(1): 269-79.
[PMID: 30787985]

© 2024 Bentham Science Publishers | Privacy Policy