Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study based on Network Pharmacology, Molecular Docking and Bioinformatics

Author(s): Yuxiang Wan, Honglin Jiang, Zeyu Liu, Chen Bai, Yanyan Lian, Chunguang Zhang, Qiaoli Zhang* and Jinchang Huang*

Volume 30, Issue 24, 2024

Published on: 13 May, 2024

Page: [1894 - 1911] Pages: 18

DOI: 10.2174/0113816128287535240429043610

conference banner
Abstract

Background: Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear.

Objective: This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach.

Methods: A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking.

Results: The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective.

Conclusion: This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.

Keywords: Huaier, hepatocellular carcinoma, AKRIC3, network pharmacology, metabolic reprogramming, traditional Chinese medicine.

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Blechacz B. Cholangiocarcinoma: Current knowledge and new developments. Gut Liver 2017; 11(1): 13-26.
[http://dx.doi.org/10.5009/gnl15568] [PMID: 27928095]
[3]
Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol 2017; 34(2): 153-9.
[http://dx.doi.org/10.1053/j.semdp.2016.12.011] [PMID: 28108047]
[4]
Schlachterman A, Craft WWJ Jr, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol 2015; 21(28): 8478-91.
[http://dx.doi.org/10.3748/wjg.v21.i28.8478] [PMID: 26229392]
[5]
Chen Q, Shu C, Laurence AD, et al. Effect of huaier granule on recurrence after curative resection of HCC: A multicentre, randomised clinical trial. Gut 2018; 67(11): 2006-16.
[http://dx.doi.org/10.1136/gutjnl-2018-315983] [PMID: 29802174]
[6]
CSCO. Hepatocellular carcinoma. Beijing: People's Medical Publishing House 2018.
[7]
Shan L, Li Y, Jiang H, et al. Huaier restrains proliferative and migratory potential of hepatocellular carcinoma cells partially through decreased yes-associated protein 1. J Cancer 2017; 8(19): 4087-97.
[http://dx.doi.org/10.7150/jca.21018] [PMID: 29187885]
[8]
Bao H, Liu P, Jiang K, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett 2016; 12(2): 1058-66.
[http://dx.doi.org/10.3892/ol.2016.4686] [PMID: 27446394]
[9]
Zheng J, Li C, Wu X, et al. Huaier polysaccharides suppresses hepatocarcinoma MHCC97-H cell metastasis via inactivation of EMT and AEG-1 pathway. Int J Biol Macromol 2014; 64: 106-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.034] [PMID: 24321491]
[10]
Zou Y, Xiong H, Xiong H, et al. A polysaccharide from mushroom Huaier retards human hepatocellular carcinoma growth, angiogenesis, and metastasis in nude mice. Tumour Biol 2015; 36(4): 2929-36.
[http://dx.doi.org/10.1007/s13277-014-2923-8] [PMID: 25492485]
[11]
Gingold JA, Zhu D, Lee DF, Kaseb A, Chen J. Genomic profiling and metabolic homeostasis in primary liver cancers. Trends Mol Med 2018; 24(4): 395-411.
[http://dx.doi.org/10.1016/j.molmed.2018.02.006] [PMID: 29530485]
[12]
Wang YH, Cheng TY, Chen TY, Chang KM, Chuang VP, Kao KJ. Plasmalemmal vesicle associated protein (plvap) as a therapeutic target for treatment of hepatocellular carcinoma. BMC Cancer 2014; 14(1): 815.
[http://dx.doi.org/10.1186/1471-2407-14-815] [PMID: 25376302]
[13]
Fang S, Dong L, Liu L, et al. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 2021; 49(D1): D1197-206.
[http://dx.doi.org/10.1093/nar/gkaa1063] [PMID: 33264402]
[14]
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[15]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[16]
Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal radix curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013; 145(1): 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[17]
Wan Y, Xu L, Liu Z, et al. Utilising network pharmacology to explore the underlying mechanism of wumei pill in treating pancreatic neoplasms. BMC Complement Altern Med 2019; 19(1): 158.
[http://dx.doi.org/10.1186/s12906-019-2580-y] [PMID: 31272505]
[18]
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[19]
Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013; 29(23): 3073-9.
[http://dx.doi.org/10.1093/bioinformatics/btt540] [PMID: 24048355]
[20]
Nickel J, Gohlke B, Erehman J, Banerjee P, Rong WW, Goede A. SuperPred: Update on drug classification and target prediction. NUCLEIC ACIDS RES 2014; 42(Web Server issue): W26-31.
[http://dx.doi.org/10.1093/nar/gku477]
[21]
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12(9): e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[22]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[23]
Tomczak K, Czerwińska P, Wiznerowicz M. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol 2015; 1A(1A): 68-77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[24]
Digre A, Lindskog C. The human protein atlas-spatial localization of the human proteome in health and disease. Protein science 2021; 30(1): 218-33.
[http://dx.doi.org/10.1002/pro.3987]
[25]
Chen M, Adeniji AO, Twenter BM, Winkler JD, Christianson DW, Penning TM. Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorg Med Chem Lett 2012; 22(10): 3492-7.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.085] [PMID: 22507964]
[26]
Kaur P, Chamberlin AR, Poulos TL, Sevrioukova IF. Structure-based inhibitor design for evaluation of a cyp3a4 pharmacophore model. J Med Chem 2016; 59(9): 4210-20.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01146] [PMID: 26371436]
[27]
Rajeswari M, Santhi N, Bhuvaneswari V. Pharmacophore and virtual screening of jak3 inhibitors. Bioinformation 2014; 10(3): 157-63.
[http://dx.doi.org/10.6026/97320630010157] [PMID: 24748756]
[28]
Fazi R, Tintori C, Brai A, et al. Homology model-based virtual screening for the identification of human helicase ddx3 inhibitors. J Chem Inf Model 2015; 55(11): 2443-54.
[http://dx.doi.org/10.1021/acs.jcim.5b00419] [PMID: 26544088]
[29]
Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[30]
Halgren TA, Murphy RB, Friesner RA, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004; 47(7): 1750-9.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[31]
Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via Wnt/β-catenin signaling. Molecules 2017; 22(6): 862.
[http://dx.doi.org/10.3390/molecules22060862] [PMID: 28574485]
[32]
Han B, Yu YQ, Yang QL, Shen CY, Wang XJ. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget 2017; 8(49): 86227-39.
[http://dx.doi.org/10.18632/oncotarget.21043] [PMID: 29156790]
[33]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[34]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[35]
Lee M, Ko H, Yun M. Cancer metabolism as a mechanism of treatment resistance and potential therapeutic target in hepatocellular carcinoma. Yonsei Med J 2018; 59(10): 1143-9.
[http://dx.doi.org/10.3349/ymj.2018.59.10.1143] [PMID: 30450847]
[36]
Niu Y, Shan L, Gao H, et al. Huaier suppresses the hepatocellular carcinoma cell cycle by regulating minichromosome maintenance proteins. OncoTargets Ther 2020; 13: 12015-25.
[http://dx.doi.org/10.2147/OTT.S279723] [PMID: 33244243]
[37]
Zhang C, Zhang J, Li X, Sun N, Yu R, Zhao B. Huaier aqueous extract induces hepatocellular carcinoma cells arrest in s phase via jnk signaling pathway. Evid Based Complement Alternat Med 2015; 2015: 171356.
[38]
Xu X, Wei Q, Wang K, et al. Anticancer effects of Huaier are associated with down-regulation of P53. APJCP 2011; 12(9): 2251-4.
[PMID: 22296365]
[39]
Bland R, Hewison M. Steroid hormone metabolites and hormone binding assays. Methods Mol Biol 2001; 176: 145-62.
[http://dx.doi.org/10.1385/1-59259-115-9:145] [PMID: 11554320]
[40]
Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 2007; 8(4): 289-300.
[http://dx.doi.org/10.1007/s11154-007-9052-2] [PMID: 17926129]
[41]
Ray K. Restoring gluconeogenesis: Steroids could treat liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10(12): 693.
[http://dx.doi.org/10.1038/nrgastro.2013.215] [PMID: 24192608]
[42]
Maio DM, Daniele B, Pignata S, et al. Is human hepatocellular carcinoma a hormone-responsive tumor? World J Gastroenterol 2008; 14(11): 1682-9.
[http://dx.doi.org/10.3748/wjg.14.1682] [PMID: 18350599]
[43]
Kur P, Wołosiuk KA, Has MK, Wiszniewska B. Sex hormone-dependent physiology and diseases of liver. Int J Environ Res Public Health 2020; 17(8): 2620.
[http://dx.doi.org/10.3390/ijerph17082620] [PMID: 32290381]
[44]
Zhang L, Wu J, Wu Q, et al. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555: 216037.
[http://dx.doi.org/10.1016/j.canlet.2022.216037] [PMID: 36563929]
[45]
Ince I, Knibbe CAJ, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: Evidence from in vitro and in vivo investigations. Clin Pharmacokinet 2013; 52(5): 333-45.
[http://dx.doi.org/10.1007/s40262-013-0041-1] [PMID: 23463352]
[46]
Krohne G, Franke WW, Ely S, D’Arcy A, Jost E. Localization of a nuclear envelope-associated protein by indirect immunofluorescence microscopy using antibodies against a major polypeptide from rat liver fractions enriched in nuclear envelope-associated material. Cytobiologie 1978; 18(1): 22-38.
[PMID: 361462]
[47]
Fanni D, Manchia M, Lai F, Gerosa C, Ambu R, Faa G. Immunohistochemical markers of CYP3A4 and CYP3A7: A new tool towards personalized pharmacotherapy of hepatocellular carcinoma. Eur J Histochem 2016; 60(2): 2614.
[http://dx.doi.org/10.4081/ejh.2016.2614] [PMID: 27349315]
[48]
Drozdzik M, Oswald S. Expression and regulation of drug transporters and metabolizing enzymes in the human gastrointestinal tract. Curr Med Chem 2016; 23(39): 4468-89.
[http://dx.doi.org/10.2174/0929867323666161024154457] [PMID: 27781942]
[49]
Goey AKL, Mooiman KD, Beijnen JH, Schellens JHM, Meijerman I. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb–drug interactions in cancer patients. Cancer Treat Rev 2013; 39(7): 773-83.
[http://dx.doi.org/10.1016/j.ctrv.2012.12.008] [PMID: 23394826]
[50]
Wang W, Xu G, Ding CL, et al. All-trans retinoic acid protects hepatocellular carcinoma cells against serum-starvation-induced cell death by upregulating collagen 8A2. FEBS J 2013; 280(5): 1308-19.
[http://dx.doi.org/10.1111/febs.12122] [PMID: 23298258]
[51]
Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: Catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 2000; 28(3): 315-22.
[PMID: 10681376]
[52]
Shang F, Liu M, Li B, et al. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells. Cancer Chemother Pharmacol 2016; 77(5): 1087-96.
[http://dx.doi.org/10.1007/s00280-016-3030-x] [PMID: 27071921]
[53]
Zhang YJ, Chen S, Tsai WY, Ahsan H, Lunn RM, Wang L. Expression of cytochrome P450 1A1/2 and 3A4 in liver tissues of hepatocellular carcinoma cases and controls from Taiwan and their relationship to hepatitis B virus and aflatoxin B1-and 4-aminobiphenyl-DNA adducts. Biomarkers 2000; 5(4): 295-306.
[54]
Ba Q, Li J, Huang C, et al. Effects of benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. Environ Health Perspect 2015; 123(3): 246-54.
[http://dx.doi.org/10.1289/ehp.1408524] [PMID: 25325763]
[55]
Hu Z, Yang A, Su G, et al. Huaier restrains proliferative and invasive potential of human hepatoma SKHEP-1 cells partially through decreased Lamin B1 and elevated NOV. Sci Rep 2016; 6(1): 31298.
[http://dx.doi.org/10.1038/srep31298] [PMID: 27503760]
[56]
Liu D, Zhu H, Zheng Y, Zhu X. Kaempferol activates human steroid and xenobiotic receptor-mediated cytochrome P450 3A4 transcription. Zhejiang da xue xue bao. Yi xue ban = J Zhejiang University. Med Sci 2006; 35(1): 14-7.
[57]
Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reductase superfamily homepage. Chem Biol Interact 2003; 143-144: 621-31.
[http://dx.doi.org/10.1016/S0009-2797(02)00193-X] [PMID: 12604248]
[58]
Labrie F, Luu-The V, Lin SX, et al. Intracrinology: Role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J Mol Endocrinol 2000; 25(1): 1-16.
[http://dx.doi.org/10.1677/jme.0.0250001] [PMID: 10915214]
[59]
Penning TM, Burczynski ME, Jez JM, et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 2000; 351(1): 67-77.
[http://dx.doi.org/10.1042/bj3510067] [PMID: 10998348]
[60]
Lin HK, Jez JM, Schlegel BP, Peehl DM, Pachter JA, Penning TM. Expression and characterization of recombinant type 2 3 alpha-hydroxysteroid dehydrogenase (HSD) from human prostate: Demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution. Mol Endocrinol 1997; 11(13): 1971-84.
[PMID: 9415401]
[61]
Matsuura K, Shiraishi H, Hara A, et al. Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J Biochem 1998; 124(5): 940-6.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022211] [PMID: 9792917]
[62]
Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM. Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: Implications for steroid hormone metabolism and action. J Biol Chem 2004; 279(11): 10784-95.
[http://dx.doi.org/10.1074/jbc.M313308200] [PMID: 14672942]
[63]
Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004; 15(9): 432-8.
[http://dx.doi.org/10.1016/j.tem.2004.09.004] [PMID: 15519890]
[64]
Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 2011; 7(12): 715-26.
[http://dx.doi.org/10.1038/nrendo.2011.122] [PMID: 21844907]
[65]
White DL, Liu Y, Tsavachidis S, et al. Sex hormone pathway gene polymorphisms are associated with risk of advanced hepatitis C-related liver disease in males. Gastroenterology 2014; 146(5): S-968.
[http://dx.doi.org/10.1016/S0016-5085(14)63524-1] [PMID: 25379136]
[66]
Abbattista MR, Jamieson SMF, Gu Y, et al. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. Cancer Biol Ther 2015; 16(4): 610-22.
[http://dx.doi.org/10.1080/15384047.2015.1017171] [PMID: 25869917]
[67]
Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of akr1c3-mediated activation of nf-κb and stat3 facilitates proliferation and metastasis in hepatocellular carcinoma. Cancer Res 2021; 81(5): 1361-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2480] [PMID: 33361392]
[68]
Zhu P, Feng R, Lu X, et al. Diagnostic and prognostic values of akr1c3 and akr1d1 in hepatocellular carcinoma. Aging 2021; 13(3): 4138-56.
[http://dx.doi.org/10.18632/aging.202380] [PMID: 33493134]
[69]
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013; 138(4): 2099-107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[70]
Stroheker T, Picard K, Lhuguenot JC, Lavier CMC, Chagnon MC. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol 2004; 42(6): 887-97.
[http://dx.doi.org/10.1016/j.fct.2004.01.012]
[71]
Wang J, Fang F, Huang Z, Wang Y, Wong C. Kaempferol is an estrogen-related receptor α and γ inverse agonist. FEBS Lett 2009; 583(4): 643-7.
[http://dx.doi.org/10.1016/j.febslet.2009.01.030] [PMID: 19171140]
[72]
Jeong YU, Park YJ. Ergosterol peroxide from the medicinal mushroom Ganoderma lucidum inhibits differentiation and lipid accumulation of 3t3-l1 adipocytes. Int J Mol Sci 2020; 21(2): 460.
[http://dx.doi.org/10.3390/ijms21020460] [PMID: 31936890]
[73]
Sherif ENF, Ahmed SA, Ibrahim AK, et al. Ergosterol peroxide from the egyptian red lingzhi or reishi mushroom, ganoderma resinaceum (agaricomycetes), showed preferred inhibition of mcf-7 over mda-mb-231 breast cancer cell lines. Int J Med Mushrooms 2020; 22(4): 389-96.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2020034223] [PMID: 32558503]
[74]
Li X, Wu Q, Bu M, et al. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 2016; 7(23): 33948-59.
[http://dx.doi.org/10.18632/oncotarget.8608] [PMID: 27058618]
[75]
Yuan Z, Pan Y, Leng T, Chu Y, Zhang H, Ma J. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J Pharm Pharm Sci 2022; 25: 218-26.
[http://dx.doi.org/10.18433/jpps32911]
[76]
Gu S, Pei J. Chinese herbal medicine meets biological networks of complex diseases: A computational perspective. Evid Based Complement Alternat Med 2017; 2017: 7198645.
[http://dx.doi.org/10.1155/2017/7198645]
[77]
Liu X, Liu J, Fu B, et al. DCABM-TCM: A database of constituents absorbed into the blood and metabolites of traditional Chinese medicine. J Chem Inf Model 2023; 63(15): 4948-59.
[http://dx.doi.org/10.1021/acs.jcim.3c00365] [PMID: 37486750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy