Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer

Author(s): Zhihao Li, Jin Yang*, Lin Chen*, Pei Chen, Chenhuan Liu, Xiaoming Long, Bo Chen and Jun Long

Volume 24, Issue 14, 2024

Published on: 28 May, 2024

Page: [1074 - 1084] Pages: 11

DOI: 10.2174/0118715206307769240522075729

Price: $65

Abstract

Background: Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor.

Objective: To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action

Methods: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR.

Results: Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT.

Conclusion: These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.

Keywords: Bladder cancer, EMT, TGF-β/smad signaling, N-cadherin, snail1, MMP2.

Graphical Abstract
[1]
Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; Moch, H.; Necchi, A.; Panebianco, V.; Sridhar, S.S.; Znaor, A.; Catto, J.W.F.; Cumberbatch, M.G. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol., 2023, 84(2), 176-190.
[http://dx.doi.org/10.1016/j.eururo.2023.03.029] [PMID: 37198015]
[2]
El-Mahdy, H.A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Ismail, A.; Yehia, A.M.; Abdelmaksoud, N.M.; Elshimy, R.A.A.; Noshy, M.; Doghish, A.S. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay – A review. Pathol. Res. Pract., 2023, 242, 154316.
[http://dx.doi.org/10.1016/j.prp.2023.154316] [PMID: 36682282]
[3]
Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[4]
Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; Quale, D.Z.; Rosenberg, J.E.; Zietman, A.L.; Holzbeierlein, J.M. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol., 2017, 198(3), 552-559.
[http://dx.doi.org/10.1016/j.juro.2017.04.086] [PMID: 28456635]
[5]
Horn, L.A.; Fousek, K.; Palena, C. Tumor plasticity and resistance to immunotherapy. Trends Cancer, 2020, 6(5), 432-441.
[http://dx.doi.org/10.1016/j.trecan.2020.02.001] [PMID: 32348738]
[6]
Stefania, D.D.; Vergara, D. The many-faced program of epithelial–mesenchymal transition: A system biology-based view. Front. Oncol., 2017, 7, 274.
[http://dx.doi.org/10.3389/fonc.2017.00274] [PMID: 29181337]
[7]
Chang, J.W.; Seo, S.T. Im, M.A.; Won, H.R.; Liu, L.; Oh, C.; Jin, Y.L.; Piao, Y.; Kim, H.J.; Kim, J.T.; Jung, S.N.; Koo, B.S. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl. Res., 2022, 247, 58-78.
[http://dx.doi.org/10.1016/j.trsl.2022.04.003] [PMID: 35462077]
[8]
Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol., 2022, 15(1), 129.
[http://dx.doi.org/10.1186/s13045-022-01347-8] [PMID: 36076302]
[9]
Ping, Q.; Wang, C.; Cheng, X.; Zhong, Y.; Yan, R.; Yang, M.; Shi, Y.; Li, X.; Li, X.; Huang, W.; Wang, L.; Bi, X.; Hu, L.; Yang, Y.; Wang, Y.; Gong, R.; Tan, J.; Li, R.; Li, H.; Li, J.; Wang, W.; Li, R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med., 2023, 21(1), 475.
[http://dx.doi.org/10.1186/s12967-023-04303-3] [PMID: 37461061]
[10]
Rodrigues-Junior, D.M.; Tsirigoti, C.; Lim, S.K.; Heldin, C.H.; Moustakas, A. Extracellular vesicles and transforming growth factor β signaling in cancer. Front. Cell Dev. Biol., 2022, 10, 849938.
[http://dx.doi.org/10.3389/fcell.2022.849938] [PMID: 35493080]
[11]
Morrison, C.D.; Parvani, J.G.; Schiemann, W.P. The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett., 2013, 341(1), 30-40.
[http://dx.doi.org/10.1016/j.canlet.2013.02.048] [PMID: 23474494]
[12]
Benjamin, D.J.; Lyou, Y. Advances in immunotherapy and the TGF-β resistance pathway in metastatic bladder cancer. Cancers , 2021, 13(22), 5724.
[http://dx.doi.org/10.3390/cancers13225724] [PMID: 34830879]
[13]
Zhang, J.; Tian, X.J.; Xing, J. Signal transduction pathways of EMT induced by TGF-β SHH, and WNT and their crosstalks. J. Clin. Med., 2016, 5(4), 41.
[http://dx.doi.org/10.3390/jcm5040041] [PMID: 27043642]
[14]
David, C.J.; Huang, Y.H.; Chen, M.; Su, J.; Zou, Y.; Bardeesy, N.; Iacobuzio-Donahue, C.A.; Massagué, J. TGF-β tumor suppression through a lethal EMT. Cell, 2016, 164(5), 1015-1030.
[http://dx.doi.org/10.1016/j.cell.2016.01.009] [PMID: 26898331]
[15]
Kuburich, N.A.; Sabapathy, T.; Demestichas, B.R.; Maddela, J.J.; den Hollander, P.; Mani, S.A. Proactive and reactive roles of TGF-β in cancer. Semin. Cancer Biol., 2023, 95, 120-139.
[http://dx.doi.org/10.1016/j.semcancer.2023.08.002] [PMID: 37572731]
[16]
Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[17]
Liang, Y.; Zhu, F.; Zhang, H.; Chen, D.; Zhang, X.; Gao, Q.; Li, Y. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci. Rep., 2016, 6(1), 29479.
[http://dx.doi.org/10.1038/srep29479] [PMID: 27378170]
[18]
Chestnut, C.; Subramaniam, D.; Dandawate, P.; Padhye, S.; Taylor, J., III; Weir, S.; Anant, S. Targeting major signaling pathways of bladder cancer with phytochemicals: A review. Nutr. Cancer, 2021, 73(11-12), 2249-2271.
[http://dx.doi.org/10.1080/01635581.2020.1856895] [PMID: 33305598]
[19]
Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. Moscatilin inhibits epithelial-to-mesenchymal transition and sensitizes anoikis in human lung cancer H460 cells. J. Nat. Med., 2016, 70(1), 18-27.
[http://dx.doi.org/10.1007/s11418-015-0931-7] [PMID: 26384689]
[20]
Karakasiliotis, I.; Mavromara, P. Hepatocellular carcinoma: From hepatocyte to liver cancer stem cell. Front. Physiol., 2015, 6, 154.
[http://dx.doi.org/10.3389/fphys.2015.00154] [PMID: 26042045]
[21]
Faguet, G.B. A brief history of cancer: Age-old milestones underlying our current knowledge database. Int. J. Cancer, 2015, 136(9), 2022-2036.
[http://dx.doi.org/10.1002/ijc.29134] [PMID: 25113657]
[22]
Ho, C.K.; Chen, C.C. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest., 2003, 21(5), 729-736.
[http://dx.doi.org/10.1081/CNV-120023771] [PMID: 14628431]
[23]
Chen, C.A.; Chen, C.C.; Shen, C.C.; Chang, H.H.; Chen, Y.J. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J. Med. Food, 2013, 16(10), 869-877.
[http://dx.doi.org/10.1089/jmf.2012.2617] [PMID: 24074296]
[24]
Pai, H.C.; Chang, L.H.; Peng, C.Y.; Chang, Y.L.; Chen, C.C.; Shen, C.C.; Teng, C.M.; Pan, S.L. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J. Mol. Med. , 2013, 91(3), 347-356.
[http://dx.doi.org/10.1007/s00109-012-0945-5] [PMID: 22961111]
[25]
Zhao, Y.; Li, Y.; Gao, Y.; Yuan, M.; Manthari, R.K.; Wang, J.; Wang, J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem. Toxicol., 2018, 115, 26-33.
[http://dx.doi.org/10.1016/j.fct.2018.02.065] [PMID: 29505816]
[26]
Shirahata, A.; Sakata, M.; Sakuraba, K.; Goto, T.; Mizukami, H.; Saito, M.; Ishibashi, K.; Kigawa, G.; Nemoto, H.; Sanada, Y.; Hibi, K. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res., 2009, 29(1), 279-281.
[PMID: 19331162]
[27]
McConkey, D.J.; Choi, W.; Marquis, L.; Martin, F.; Williams, M.B.; Shah, J.; Svatek, R.; Das, A.; Adam, L.; Kamat, A.; Siefker-Radtke, A.; Dinney, C. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev., 2009, 28(3-4), 335-344.
[http://dx.doi.org/10.1007/s10555-009-9194-7] [PMID: 20012924]
[28]
Wu, Y.S.; Ho, J.Y.; Yu, C.P.; Cho, C.J.; Wu, C.L.; Huang, C.S.; Gao, H.W.; Yu, D.S. Ellagic acid resensitizes gemcitabine-resistant bladder cancer cells by inhibiting epithelial-mesenchymal transition and gemcitabine transporters. Cancers , 2021, 13(9), 2032.
[http://dx.doi.org/10.3390/cancers13092032] [PMID: 33922395]
[29]
Semeniuk-Wojtaś A.; Poddębniak-Strama, K.; Modzelewska, M.; Baryła, M.; Dziąg-Dudek, E.; Syryło, T.; Górnicka, B.; Jakieła, A.; Stec, R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol. Immunother., 2023, 72(7), 1971-1989.
[http://dx.doi.org/10.1007/s00262-023-03376-9] [PMID: 36928373]
[30]
Zhang, X.; Zhang, P.; Shao, M.; Zang, X.; Zhang, J.; Mao, F.; Qian, H.; Xu, W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag. Res., 2018, 10, 4459-4470.
[http://dx.doi.org/10.2147/CMAR.S177373] [PMID: 30349378]
[31]
Chen, W.; Jiang, T.; Mao, H.; Gao, R.; Gao, X.; He, Y.; Zhang, H.; Chen, Q. Nodal promotes the migration and invasion of bladder cancer cells via regulation of snail. J. Cancer, 2019, 10(6), 1511-1519.
[http://dx.doi.org/10.7150/jca.29205] [PMID: 31031861]
[32]
Chen, X.; Cao, X.; Sun, X.; Lei, R.; Chen, P.; Zhao, Y.; Jiang, Y.; Yin, J.; Chen, R.; Ye, D.; Wang, Q.; Liu, Z.; Liu, S.; Cheng, C.; Mao, J.; Hou, Y.; Wang, M.; Siebenlist, U.; Eugene Chin, Y.; Wang, Y.; Cao, L.; Hu, G.; Zhang, X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis., 2016, 7(12), e2508.
[http://dx.doi.org/10.1038/cddis.2016.405] [PMID: 27906182]
[33]
Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83.
[http://dx.doi.org/10.1038/35000025] [PMID: 10655586]
[34]
Serrels, A.; Canel, M.; Brunton, V.G.; Frame, M.C. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement. Cell Adhes. Migr., 2011, 5(4), 360-365.
[http://dx.doi.org/10.4161/cam.5.4.17290] [PMID: 21836391]
[35]
Fujita, Y.; Krause, G.; Scheffner, M.; Zechner, D.; Leddy, H.E.M.; Behrens, J.; Sommer, T.; Birchmeier, W. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol., 2002, 4(3), 222-231.
[http://dx.doi.org/10.1038/ncb758] [PMID: 11836526]
[36]
Guadamillas, M.C.; Cerezo, A.; del Pozo, M.A. Overcoming anoikis – pathways to anchorage-independent growth in cancer. J. Cell Sci., 2011, 124(19), 3189-3197.
[http://dx.doi.org/10.1242/jcs.072165] [PMID: 21940791]
[37]
Rubtsova, S.N.; Zhitnyak, I.Y.; Gloushankova, N.A. Dual role of E-cadherin in cancer cells. Tissue Barriers, 2022, 10(4), 2005420.
[http://dx.doi.org/10.1080/21688370.2021.2005420] [PMID: 34821540]
[38]
Friedl, P.; Mayor, R. Tuning collective cell migration by cell–cell junction regulation. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a029199.
[http://dx.doi.org/10.1101/cshperspect.a029199] [PMID: 28096261]
[39]
Wangmo, C.; Charoen, N.; Jantharapattana, K.; Dechaphunkul, A.; Thongsuksai, P. Epithelial–mesenchymal transition predicts survival in oral squamous cell carcinoma. Pathol. Oncol. Res., 2020, 26(3), 1511-1518.
[http://dx.doi.org/10.1007/s12253-019-00731-z] [PMID: 31471883]
[40]
Mendez, M.G.; Kojima, S.I.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J., 2010, 24(6), 1838-1851.
[http://dx.doi.org/10.1096/fj.09-151639] [PMID: 20097873]
[41]
Zhu, Q-S.; Rosenblatt, K.; Huang, K-L.; Lahat, G.; Brobey, R.; Bolshakov, S.; Nguyen, T.; Ding, Z.; Belousov, R.; Bill, K.; Luo, X.; Lazar, A.; Dicker, A.; Mills, G.B.; Hung, M-C.; Lev, D. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 2011, 30(4), 457-470.
[http://dx.doi.org/10.1038/onc.2010.421] [PMID: 20856200]
[42]
Trogden, K.P.; Battaglia, R.A.; Kabiraj, P.; Madden, V.J.; Herrmann, H.; Snider, N.T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J., 2018, 32(5), 2841-2854.
[http://dx.doi.org/10.1096/fj.201700663R] [PMID: 29401610]
[43]
Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J. Exp. Clin. Cancer Res., 2014, 33(1), 62.
[http://dx.doi.org/10.1186/s13046-014-0062-0] [PMID: 25084828]
[44]
Lu, J.; Kornmann, M.; Traub, B. Role of epithelial to mesenchymal transition in colorectal cancer. Int. J. Mol. Sci., 2023, 24(19), 14815.
[http://dx.doi.org/10.3390/ijms241914815] [PMID: 37834263]
[45]
Song, J.; Shi, W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim. Biophys. Sin. , 2018, 50(1), 91-97.
[http://dx.doi.org/10.1093/abbs/gmx117] [PMID: 29069287]
[46]
Ray, I.; Michael, A.; Meira, L.B.; Ellis, P.E. The role of cytokines in epithelial–mesenchymal transition in gynaecological cancers: A systematic review. Cells, 2023, 12(3), 416.
[http://dx.doi.org/10.3390/cells12030416] [PMID: 36766756]
[47]
Islam, S.S.; Mokhtari, R.B.; Akbari, P.; Hatina, J.; Yeger, H.; Farhat, W.A. Simultaneous targeting of bladder tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of acetazolamide (AZ) and sulforaphane (SFN). Target. Oncol., 2016, 11(2), 209-227.
[http://dx.doi.org/10.1007/s11523-015-0386-5] [PMID: 26453055]
[48]
Oh, S.H.; Swiderska-Syn, M.; Jewell, M.L.; Premont, R.T.; Diehl, A.M. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J. Hepatol., 2018, 69(2), 359-367.
[http://dx.doi.org/10.1016/j.jhep.2018.05.008] [PMID: 29758331]
[49]
Wei, X.; Zhang, L.; Zhou, Z.; Kwon, O.J.; Zhang, Y.; Nguyen, H.; Dumpit, R.; True, L.; Nelson, P.; Dong, B.; Xue, W.; Birchmeier, W.; Taketo, M.M.; Xu, F.; Creighton, C.J.; Ittmann, M.M.; Xin, L. Spatially restricted stromal wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell, 2019, 24(5), 753-768.e6.
[http://dx.doi.org/10.1016/j.stem.2019.03.010] [PMID: 30982770]
[50]
Wang, X.; Eichhorn, P.J.A.; Thiery, J.P. TGF-β, EMT, and resistance to anti-cancer treatment. Semin. Cancer Biol., 2023, 97, 1-11.
[http://dx.doi.org/10.1016/j.semcancer.2023.10.004] [PMID: 37944215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy