Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Preparation of a Novel Multifunctional Cationic Liposome Drug-carrying System and its Functional Study on Lung Cancer

Author(s): Yi Kong, Li Xu and Jun Cao*

Volume 24, Issue 14, 2024

Published on: 27 May, 2024

Page: [1085 - 1095] Pages: 11

DOI: 10.2174/0118715206294695240522075454

Price: $65

Abstract

Background: Low-dose chemotherapy is a promising treatment strategy that may be improved by controlled delivery.

Objective: This study aimed to design polyethylene glycol-stabilized bilayer-decorated magnetic Cationic Liposomes (CLs) as a drug delivery system for integrated functional studies of lung cancer cell therapy and imaging.

Methods: A novel multifunctional folic acid targeting magnetic CLs docetaxel drug-loading system (FA-CLs-Fe- DOC) was prepared and tested for its physical properties, encapsulation rate and drug release performance. The feasibility of FA-CLs-Fe-DOC ability to inhibit tumor cells and act as an MRI contrast agent was investigated in vitro, and the target recognition and therapeutic ability of FA-CLs-Fe-DOC was studied in vivo.

Results: FA-CLs-Fe-DOC had a particle size of 221.54 ± 6.42 nm and a potential of 28.64 ± 3.56 mv, with superparamagnetic properties and better stability. The encapsulation rate was 95.36 ± 1.63%, and the drug loading capacity was 9.52 ± 0.22%, which possessed the drug slow-release performance and low cytotoxicity and could effectively inhibit the proliferation of lung cancer cells, promoting apoptosis of lung cancer cells. MRI showed that it had the function of tracking and localization of lung cancer cells. In vivo experiments confirmed the targeted recognition property and therapeutic function of lung cancer cells.

Conclusion: In this study, we successfully prepared an FA-CLs-Fe-DOC capable of specifically targeting lung cancer cells with integrated functions of efficient lung cancer cell killing and imaging localization. This targeted drug packaging technology may provide a new strategy for the design of integrated carriers for targeted cancer therapy and imaging.

Keywords: Lung cancer, cationic liposomes, docetaxel, therapy, imaging, drug, FA-CLs-Fe-DOC.

« Previous
Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; Wong, M.C.S. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality. Chest, 2022, 161(4), 1101-1111.
[http://dx.doi.org/10.1016/j.chest.2021.12.655] [PMID: 35026300]
[3]
Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med., 2020, 383(7), 640-649.
[http://dx.doi.org/10.1056/NEJMoa1916623] [PMID: 32786189]
[4]
Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer, 2023, 22(1), 40.
[http://dx.doi.org/10.1186/s12943-023-01740-y] [PMID: 36810079]
[5]
Chaft, J.E.; Shyr, Y.; Sepesi, B.; Forde, P.M. Preoperative and postoperative systemic therapy for operable non–small-cell lung cancer. J. Clin. Oncol., 2022, 40(6), 546-555.
[http://dx.doi.org/10.1200/JCO.21.01589] [PMID: 34985966]
[6]
Shi, Y.; Wu, L.; Yu, X.; Xing, P.; Wang, Y.; Zhou, J.; Wang, A.; Shi, J.; Hu, Y.; Wang, Z.; An, G.; Fang, Y.; Sun, S.; Zhou, C.; Wang, C.; Ye, F.; Li, X.; Wang, J.; Wang, M.; Liu, Y.; Zhao, Y.; Yuan, Y.; Feng, J.; Chen, Z.; Shi, J.; Sun, T.; Wu, G.; Shu, Y.; Guo, Q.; Zhang, Y.; Song, Y.; Zhang, S.; Chen, Y.; Li, W.; Niu, H.; Hu, W.; Wang, L.; Huang, J.; Zhang, Y.; Cheng, Y.; Wu, Z.; Peng, B.; Sun, J.; Mancao, C.; Wang, Y.; Sun, L. Sintilimab versus docetaxel as second-line treatment in advanced or metastatic squamous non-small-cell lung cancer: An open-label, randomized controlled phase 3 trial (ORIENT-3). Cancer Commun. (Lond.), 2022, 42(12), 1314-1330.
[http://dx.doi.org/10.1002/cac2.12385] [PMID: 36336841]
[7]
Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; Butts, C.; Wójcik-Tomaszewska, J.; Coudert, B.; Garassino, M.C.; Ready, N.; Felip, E.; García, M.A.; Waterhouse, D.; Domine, M.; Barlesi, F.; Antonia, S.; Wohlleber, M.; Gerber, D.E.; Czyzewicz, G.; Spigel, D.R.; Crino, L.; Eberhardt, W.E.E.; Li, A.; Marimuthu, S.; Brahmer, J. Five-year outcomes from the randomized, Phase III Trials CheckMate 017 and 057: Nivolumab versus docetaxel in previously treated non–small-cell lung cancer. J. Clin. Oncol., 2021, 39(7), 723-733.
[http://dx.doi.org/10.1200/JCO.20.01605] [PMID: 33449799]
[8]
Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother., 2022, 151, 113053.
[http://dx.doi.org/10.1016/j.biopha.2022.113053] [PMID: 35594717]
[9]
Cao, Y.; Li, S.; Chen, J. Modeling better in vitro models for the prediction of nanoparticle toxicity: A review. Toxicol. Mech. Methods, 2021, 31(1), 1-17.
[http://dx.doi.org/10.1080/15376516.2020.1828521] [PMID: 32972312]
[10]
Bartusik-Aebisher, D.; Bober, Z.; Zalejska-Fiolka, J.; Kawczyk-Krupka, A.; Aebisher, D. Multinuclear MRI in drug discovery. Molecules, 2022, 27(19), 6493.
[http://dx.doi.org/10.3390/molecules27196493] [PMID: 36235031]
[11]
Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C, 2017, 70(Pt 1), 763-771.
[http://dx.doi.org/10.1016/j.msec.2016.09.052] [PMID: 27770953]
[12]
Sun, X.; Tan, A.; Boyd, B.J. Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(3), e1863.
[http://dx.doi.org/10.1002/wnan.1863] [PMID: 36428234]
[13]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel), 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[14]
Meng, Y.; Niu, X.; Li, G. Liposome nanoparticles as a novel drug delivery system for therapeutic and diagnostic applications. Curr. Drug Deliv., 2022, 20(1), 41-56.
[PMID: 35331112]
[15]
Sainaga Jyothi, V.G.S.; Bulusu, R.; Venkata Krishna Rao, B.; Pranothi, M.; Banda, S.; Kumar Bolla, P.; Kommineni, N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int. J. Pharm., 2022, 624, 122022.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122022] [PMID: 35843364]
[16]
Bogaert, B.; Sauvage, F.; Guagliardo, R.; Muntean, C.; Nguyen, V.P.; Pottie, E.; Wels, M.; Minnaert, A.K.; De Rycke, R.; Yang, Q.; Peer, D.; Sanders, N.; Remaut, K.; Paulus, Y.M.; Stove, C.; De Smedt, S.C.; Raemdonck, K. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J. Control. Release, 2022, 350, 256-270.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.009] [PMID: 35963467]
[17]
Wang, A.; Zheng, Y.; Zhu, W.; Yang, L.; Yang, Y.; Peng, J. Melittin-based nano-delivery systems for cancer therapy. Biomolecules, 2022, 12(1), 118.
[http://dx.doi.org/10.3390/biom12010118] [PMID: 35053266]
[18]
Pattipeiluhu, R.; Arias-Alpizar, G.; Basha, G.; Chan, K.Y.T.; Bussmann, J.; Sharp, T.H.; Moradi, M.A.; Sommerdijk, N.; Harris, E.N.; Cullis, P.R.; Kros, A.; Witzigmann, D.; Campbell, F. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv. Mater., 2022, 34(16), 2201095.
[http://dx.doi.org/10.1002/adma.202201095] [PMID: 35218106]
[19]
Eguchi, M.; Hirata, S.; Ishigami, I.; Shuwari, N.; Ono, R.; Tachibana, M.; Tanuma, M.; Kasai, A.; Hashimoto, H.; Ogawara, K.; Mizuguchi, H.; Sakurai, F. Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of PEG-liposomes. J. Control. Release, 2023, 354, 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.050] [PMID: 36586673]
[20]
Maruyama, M.; Tojo, H.; Toi, K.; Ienaka, Y.; Hyodo, K.; Kikuchi, H.; Ogawara, K.; Higaki, K. Effect of doxorubicin release rate from polyethylene glycol-modified liposome on anti-tumor activity in B16-BL6 tumor-bearing mice. J. Pharm. Sci., 2022, 111(2), 293-297.
[http://dx.doi.org/10.1016/j.xphs.2021.11.020] [PMID: 34861247]
[21]
Zhu, Y.; Wang, A.; Zhang, S.; Kim, J.; Xia, J.; Zhang, F.; Wang, D.; Wang, Q.; Wang, J. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J. Adv. Res., 2023, 49, 159-173.
[http://dx.doi.org/10.1016/j.jare.2022.09.007] [PMID: 36167294]
[22]
Nakamura, T.; Sato, Y.; Yamada, Y.; Abd Elwakil, M.M.; Kimura, S.; Younis, M.A.; Harashima, H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv. Drug Deliv. Rev., 2022, 188, 114417.
[http://dx.doi.org/10.1016/j.addr.2022.114417] [PMID: 35787389]
[23]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2018, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[24]
Wang, S.; Low, P.S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release, 1998, 53(1-3), 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00236-8] [PMID: 9741912]
[25]
Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y.; Ozturk, S.C.; Yanik, H.; Tuncel, M.; Aydin, C.; Esendagli, G. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur. J. Pharm. Sci., 2021, 156, 105576.
[http://dx.doi.org/10.1016/j.ejps.2020.105576] [PMID: 32987115]
[26]
Gai, C.; Liu, C.; Wu, X.; Yu, M.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis., 2020, 11(9), 751.
[http://dx.doi.org/10.1038/s41419-020-02939-3] [PMID: 32929075]
[27]
Rana, S.; Shetake, N.G.; Barick, K.C.; Pandey, B.N.; Salunke, H.G.; Hassan, P.A. Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 2016, 45(43), 17401-17408.
[http://dx.doi.org/10.1039/C6DT03323G] [PMID: 27731450]
[28]
Rathnayake, K.; Patel, U.; Hunt, E.C.; Singh, N. Fabrication of a dual-targeted liposome-coated mesoporous silica core–shell nanoassembly for targeted cancer therapy. ACS Omega, 2023, 8(38), 34481-34498.
[http://dx.doi.org/10.1021/acsomega.3c02901] [PMID: 37779923]
[29]
Liang, X.; Shi, B.; Wang, K.; Fan, M.; Jiao, D.; Ao, J.; Song, N.; Wang, C.; Gu, J.; Li, Z. Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials, 2016, 82, 194-207.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.015] [PMID: 26763734]
[30]
Hattori, Y.; Shimizu, S.; Ozaki, K.; Onishi, H. Effect of cationic lipid type in Folate-PEG-Modified cationic liposomes on folate receptor-mediated siRNA transfection in tumor cells. Pharmaceutics, 2019, 11(4), 181.
[http://dx.doi.org/10.3390/pharmaceutics11040181] [PMID: 30991703]
[31]
Xue, K.; Luo, B.; Li, X.; Deng, W.; Zeng, C.; Zuo, C. Consistency evaluation of lung adenocarcinoma tissue and circulating tumor cells related gene mutation detection based on multi-site immunomagnetic beads. J. Biomater. Appl., 2022, 36(9), 1700-1711.
[http://dx.doi.org/10.1177/08853282211065861] [PMID: 35029523]
[32]
Huang, Z.L.; Li, F.; Zhang, J.T.; Shi, X.J.; Xu, Y.H.; Huang, X.Y. Research on the construction of bispecific-targeted sustained-release drug-delivery microspheres and their function in treatment of hepatocellular carcinoma. ACS Omega, 2022, 7(25), 22003-22014.
[http://dx.doi.org/10.1021/acsomega.2c02584] [PMID: 35785307]
[33]
Zugazagoitia, J.; Paz-Ares, L. Extensive-stage small-cell lung cancer: First-line and second-line treatment options. J. Clin. Oncol., 2022, 40(6), 671-680.
[http://dx.doi.org/10.1200/JCO.21.01881] [PMID: 34985925]
[34]
Wei, G.; Wang, Y.; Yang, G.; Wang, Y.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics, 2021, 11(13), 6370-6392.
[http://dx.doi.org/10.7150/thno.57828] [PMID: 33995663]
[35]
Tang, H.; Xie, Y.; Zhu, M.; Jia, J.; Liu, R.; Shen, Y.; Zheng, Y.; Guo, X.; Miao, D.; Pei, J. Estrone-conjugated pegylated liposome co-loaded paclitaxel and carboplatin improve anti-tumor efficacy in ovarian cancer and reduce acute toxicity of chemo-drugs. Int. J. Nanomedicine, 2022, 17, 3013-3041.
[http://dx.doi.org/10.2147/IJN.S362263] [PMID: 35836838]
[36]
Bhagya, N.; Chandrashekar, K.R. Liposome encapsulated anticancer drugs on autophagy in cancer cells – Current and future perspective. Int. J. Pharm., 2023, 642, 123105.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123105] [PMID: 37279869]
[37]
Stolarz, A.J.; Chhetri, B.P.; Borrelli, M.J.; Jenkins, S.V.; Jamshidi-Parsian, A.; Phillips, J.H.; Fologea, D.; Gandy, J.; Griffin, R.J. Liposome formulation for tumor-targeted drug delivery using radiation therapy. Int. J. Mol. Sci., 2022, 23(19), 11662.
[http://dx.doi.org/10.3390/ijms231911662] [PMID: 36232973]
[38]
Khan, F.A.; Albalawi, R.; Pottoo, F.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med. Res. Rev., 2022, 42(1), 227-258.
[http://dx.doi.org/10.1002/med.21809] [PMID: 33891325]
[39]
Arshad, R.; Barani, M.; Rahdar, A.; Sargazi, S.; Cucchiarini, M.; Pandey, S.; Kang, M. Multi-functionalized nanomaterials and nanoparticles for diagnosis and treatment of retinoblastoma. Biosensors (Basel), 2021, 11(4), 97.
[http://dx.doi.org/10.3390/bios11040097] [PMID: 33810621]
[40]
Li, Y.; Wang, M.; Huang, B.; Ping, Y.; You, J.; Gao, J. Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery. Int. J. Nanomedicine, 2017, 12, 8557-8572.
[http://dx.doi.org/10.2147/IJN.S148975] [PMID: 29238192]
[41]
Daldrup-Link, H.E.; Mohanty, S.; Ansari, C.; Lenkov, O.; Shaw, A.; Ito, K.; Hong, S.H.; Hoffmann, M.; Pisani, L.; Boudreau, N.; Gambhir, S.S.; Coussens, L.M. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight, 2016, 1(6), e85608.
[http://dx.doi.org/10.1172/jci.insight.85608] [PMID: 27182558]
[42]
Lee, K.H.; Liapi, E.; Vossen, J.A.; Buijs, M.; Ventura, V.P.; Georgiades, C.; Hong, K.; Kamel, I.; Torbenson, M.S.; Geschwind, J.F.H. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: Evaluation with MR imaging and implication for therapy. J. Vasc. Interv. Radiol., 2008, 19(10), 1490-1496.
[http://dx.doi.org/10.1016/j.jvir.2008.06.008] [PMID: 18755602]
[43]
Ma, X.H.; Wang, S.; Liu, S.Y.; Chen, K.; Wu, Z.Y.; Li, D.F.; Mi, Y.T.; Hu, L.B.; Chen, Z.W.; Zhao, X.M. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(24), 3030-3043.
[http://dx.doi.org/10.3748/wjg.v25.i24.3030] [PMID: 31293339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy