Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Niosomes as a Promising Therapeutic Approach against Colorectal Cancer: A Focus on the Delivery of Chemotherapeutics and Natural Products

Author(s): Samaneh Mollazadeh, Abdulridha Mohammed Al-Asady, Amirhosein Barjasteh, Hanieh Latifi, Amir Avan, Majid Khazaei, Mikhail Ryzhikov and Seyed Mahdi Hassanian*

Volume 30, Issue 21, 2024

Published on: 13 May, 2024

Page: [1659 - 1666] Pages: 8

DOI: 10.2174/0113816128303645240429052835

Price: $65

Open Access Journals Promotions 2
Abstract

Nanotechnology has emerged as an effective approach to cancer treatment, including Colorectal Cancer (CRC). While conventional treatments, such as chemotherapeutic agents, are used to manage CRC, their efficacy can be improved using drug delivery systems that enhance their bioavailability and reduce side effects. Niosomes, polymeric nanoparticles, have shown promise as biocompatible vehicles that can transport hydrophilic and lipophilic molecules. This can result in reduced drug dosage and increased efficacy. This review examines the use of niosomal formulations as a delivery platform for treating CRC and provides practical insights into their clinical applications.

Keywords: Colorectal cancer, niosomes, nanoparticles, chemotherapeutics, natural products, nanotechnology.

[1]
Gulbake A, Jain A, Jain A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World J Gastroenterol 2016; 22(2): 582-99.
[http://dx.doi.org/10.3748/wjg.v22.i2.582] [PMID: 26811609]
[2]
Brown KGM, Solomon MJ, Mahon K, O’Shannassy S. Management of colorectal cancer. BMJ 2019; 366: l4561.
[http://dx.doi.org/10.1136/bmj.l4561] [PMID: 31439545]
[3]
Messersmith WA. NCCN guidelines updates: Management of metastatic colorectal cancer. J Nat Compre Can Network 2019; 17(5.5): 599-601.
[4]
Brar B, Ranjan K, Palria A, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy. Front Nanotechnol 2021; 3: 699266.
[http://dx.doi.org/10.3389/fnano.2021.699266]
[5]
El-Far SW, Abo El-Enin HA, Abdou EM, Nafea OE, Abdelmonem R. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; Comparative in vitro and anticancer studies. Pharmaceuticals 2022; 15(7): 816.
[http://dx.doi.org/10.3390/ph15070816] [PMID: 35890115]
[6]
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clin Transl Med 2017; 6(1): e44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[7]
Ye F, Zhao Y, El-Sayed R, Muhammed M, Hassan M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018; 18: 103-23.
[http://dx.doi.org/10.1016/j.nantod.2017.12.008]
[8]
Akhter S, Ahmad I, Ahmad MZ, et al. Nanomedicines as cancer therapeutics: Current status. Curr Cancer Drug Targets 2013; 13(4): 362-78.
[http://dx.doi.org/10.2174/1568009611313040002] [PMID: 23517593]
[9]
Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomed 2017; 12: 4085-109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[10]
Cheng T, Zhang Y, Liu J, et al. Ligand-switchable micellar nanocarriers for prolonging circulation time and enhancing targeting efficiency. ACS Appl Mater Interfaces 2018; 10(6): 5296-304.
[http://dx.doi.org/10.1021/acsami.7b18137] [PMID: 29338179]
[11]
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[12]
Iranpour S, Bahrami AR, Saljooghi AS, Matin MM. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021; 442: 213949.
[http://dx.doi.org/10.1016/j.ccr.2021.213949]
[13]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[14]
Zhang R, Xing R, Jiao T, et al. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces 2016; 8(21): 13262-9.
[http://dx.doi.org/10.1021/acsami.6b02416] [PMID: 27176934]
[15]
Mudie DM, Buchanan S, Stewart AM, et al. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets. Int J Pharm X 2020; 2: 100042.
[http://dx.doi.org/10.1016/j.ijpx.2020.100042] [PMID: 32154509]
[16]
Chiang CH, Hosseinkhani H, Cheng WS, Chen W, Wang CH, Lo YL. Improving drug loading efficiency and delivery performance of micro- and nanoparticle preparations through optimising formulation variables. Int J Nanotechnol 2013; 10(10/11): 996-1006.
[http://dx.doi.org/10.1504/IJNT.2013.058125]
[17]
Cai M, Qin L, You L, et al. Functionalization of MOF-5 with mono-substituents: Effects on drug delivery behavior. RSC Advances 2020; 10(60): 36862-72.
[http://dx.doi.org/10.1039/D0RA06106A] [PMID: 35517920]
[18]
Bao W, Tian F, Lyu C, et al. Experimental and theoretical explorations of nanocarriers’ multistep delivery performance for rational design and anticancer prediction. Sci Adv 2021; 7(6): eaba2458.
[http://dx.doi.org/10.1126/sciadv.aba2458] [PMID: 33547068]
[19]
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66: 110-6.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[20]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials 2019; 19(9): 1-638.
[21]
Rama AR, Jimenez-Lopez J, Cabeza L, et al. Last advances in nanocarriers-based drug delivery systems for colorectal cancer. Curr Drug Deliv 2016; 13(6): 830-8.
[http://dx.doi.org/10.2174/1567201813666151203232852] [PMID: 26634791]
[22]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[23]
Xu Y, Michalowski CB, Beloqui A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Curr Opin Colloid Interface Sci 2021; 52: 101414.
[http://dx.doi.org/10.1016/j.cocis.2020.101414]
[24]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[25]
Hashemi Dehaghi M, Haeri A, Keshvari H, Abbasian Z, Dadashzadeh S. Dorzolamide loaded niosomal vesicles: Comparison of passive and remote loading methods. Iran J Pharm Res 2017; 16(2): 413-22.
[PMID: 28979296]
[26]
Kulkarni P, Rawtani D, Barot T. Formulation and optimization of long acting dual niosomes using Box-Behnken experimental design method for combinative delivery of Ethionamide and D-cycloserine in Tuberculosis treatment. Colloids Surf A Physicochem Eng Asp 2019; 565: 131-42.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.004]
[27]
Muzzalupo R, Tavano L, La Mesa C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. Int J Pharm 2013; 458(1): 224-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.011] [PMID: 24060370]
[28]
Kanaani L, Javadi I, Ebrahimifar M, Ebrahimi Shahmabadi H, Akbarzadeh Khiyav A, Mehrdiba T. Effects of cisplatin-loaded niosomal nanoparticleson BT-20 human breast carcinoma cells. APJCP 2017; 18(2): 365-8.
[PMID: 28345332]
[29]
Barani M, Hajinezhad MR, Sargazi S, et al. In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. J Mater Sci Mater Med 2021; 32(12): 147.
[http://dx.doi.org/10.1007/s10856-021-06623-6] [PMID: 34862910]
[30]
Hao YM, Li K. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int J Pharm 2011; 403(1-2): 245-53.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.027] [PMID: 20971171]
[31]
Pachuau L, Roy PK, Zothantluanga JH, Ray S, Das S. Encapsulation of bioactive compound and its therapeutic potential. Bioactive Nat Prod Pharma Appl 2021; 687-714.
[http://dx.doi.org/10.1007/978-3-030-54027-2_20]
[32]
Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv Powder Technol 2020; 31(12): 4768-81.
[http://dx.doi.org/10.1016/j.apt.2020.11.008]
[33]
Nowroozi F, Almasi A, Javidi J, Haeri A, Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran J Pharm Res 2018; 17 (Suppl. 2): 1-11.
[PMID: 31011337]
[34]
Aparajay P, Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2022; 168: 106052.
[http://dx.doi.org/10.1016/j.ejps.2021.106052] [PMID: 34740786]
[35]
Umbarkar MG. Niosome as a novel pharmaceutical drug delivery: A brief review highlighting formulation, types, composition and application. IJPER 2021; 55(1s): s11-28.
[http://dx.doi.org/10.5530/ijper.55.1s.34]
[36]
Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int J Mol Sci 2022; 23(17): 9668.
[http://dx.doi.org/10.3390/ijms23179668] [PMID: 36077066]
[37]
Pachuau L, Roy LPK, Zothantluanga J, Ray S, Das S. Bioactive natural products for pharmaceutical applications. Adv Struct Mater 2021.
[38]
Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv 2021; 18(1): 55-71.
[http://dx.doi.org/10.1080/17425247.2020.1822322] [PMID: 32903034]
[39]
Kauslya A, Borawake PD, Shinde JV, Chavan RS. Niosomes: A novel carrier drug delivery system. J Drug Deliv Ther 2021; 11(1): 162-70.
[http://dx.doi.org/10.22270/jddt.v11i1.4479]
[40]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[41]
Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022; 27(4): 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[42]
Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids 2020; 165: 104984.
[http://dx.doi.org/10.1016/j.supflu.2020.104984]
[43]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target 2009; 17(9): 671-89.
[http://dx.doi.org/10.3109/10611860903079454] [PMID: 19845484]
[44]
Bartelds R, Nematollahi MH, Pols T, et al. Niosomes, an alternative for liposomal delivery. PLoS One 2018; 13(4): e0194179.
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[45]
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy. Pharmaceutics 2024; 16(2): 223.
[http://dx.doi.org/10.3390/pharmaceutics16020223] [PMID: 38399277]
[46]
Nukatsuka M, Nakagawa F, Takechi T. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, with oxaliplatin on human colorectal and gastric cancer xenografts. Anticancer Res 2015; 35(9): 4605-15.
[PMID: 26254349]
[47]
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 2019; 24(1): 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[48]
Shanmugam T, Joshi N, Ahamad N, Deshmukh A, Banerjee R. Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer. Int J Pharm 2020; 586: 119482.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119482] [PMID: 32492505]
[49]
Semrad TJ, Fahrni AR, Gong IY, Khatri VP. Integrating chemotherapy into the management of oligometastatic colorectal cancer: Evidence-based approach using clinical trial findings. Ann Surg Oncol 2015; 22(S3): 855-62.
[http://dx.doi.org/10.1245/s10434-015-4610-4] [PMID: 26100816]
[50]
Ye J, Jiang X, Dong Z, Hu S, Xiao M. Low-concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma. Cancer Manag Res 2019; 11: 9783-92.
[http://dx.doi.org/10.2147/CMAR.S217944] [PMID: 31819616]
[51]
Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm 2002; 235(1-2): 179-92.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[52]
Minamisakamoto T, Nishiguchi S, Hashimoto K, Ogawara K, Maruyama M, Higaki K. Sequential administration of PEG-Span 80 niosome enhances anti-tumor effect of doxorubicin-containing PEG liposome. Eur J Pharm Biopharm 2021; 169: 20-8.
[http://dx.doi.org/10.1016/j.ejpb.2021.08.013] [PMID: 34461216]
[53]
Hirsch BR, Zafar SY. Capecitabine in the management of colorectal cancer. Cancer Manag Res 2011; 3: 79-89.
[PMID: 21629830]
[54]
Patel P, Barot T, Kulkarni P. Formulation, characterization and in-vitro and in-vivo evaluation of capecitabine loaded niosomes. Curr Drug Deliv 2020; 17(3): 257-68.
[http://dx.doi.org/10.2174/1567201817666200214111815] [PMID: 32056523]
[55]
Akbarzadeh I, Tabarzad M, Khazraei H, Ostovan V. Development of a novel niosomal formulation for Gabapentin. Iranian J Colore Res 2021; 9(4): 149-57.
[56]
Seguella L, Rinaldi F, Marianecci C, et al. Pentamidine niosomes thwart S100B effects in human colon carcinoma biopsies favouring wt p53 rescue. J Cell Mol Med 2020; 24(5): 3053-63.
[http://dx.doi.org/10.1111/jcmm.14943] [PMID: 32022398]
[57]
Bakand A, Moghaddam SV, Naseroleslami M, André H, Mousavi-Niri N, Alizadeh E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: Potential application in colon cancer therapy. J Biol Eng 2023; 17(1): 58.
[http://dx.doi.org/10.1186/s13036-023-00375-3] [PMID: 37749603]
[58]
Ghorbanzadeh F, Jafari-Gharabaghlou D, Dashti MR, Hashemi M, Zarghami N. Advanced nano-therapeutic delivery of metformin: Potential anti-cancer effect against human colon cancer cells through inhibition of GPR75 expression. Med Oncol 2023; 40(9): 255.
[http://dx.doi.org/10.1007/s12032-023-02120-8] [PMID: 37515667]
[59]
Shafiei G, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Alizadeh E, Fathi M, Zarghami N. Targeted delivery of silibinin via magnetic niosomal nanoparticles: Potential application in treatment of colon cancer cells. Front Pharmacol 2023; 14: 1174120.
[http://dx.doi.org/10.3389/fphar.2023.1174120] [PMID: 37441534]
[60]
Parnian F, Hekmati MSH, Majdizadeh M, Jebali A. Fabrication of niosomal nano-carriers containing aqueous extract of Hedera helix and comparison of toxicity of free extract and niosome extract on HT-29 colorectal cancer cell line. J Knowl Health 2020; 15(3): 31-45.
[61]
Kengkittipat W, Kaewmalun S, Khongkow M, et al. Improvement of the multi-performance biocharacteristics of cordycepin using BiloNiosome-core/chitosan-shell hybrid nanocarriers. Colloids Surf B Biointerfaces 2021; 197: 111369.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111369] [PMID: 33032178]
[62]
Agarwal S, Mohamed MS, Raveendran S, Rochani AK, Maekawa T, Kumar DS. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Advances 2018; 8(57): 32621-36.
[http://dx.doi.org/10.1039/C8RA06362A] [PMID: 35547672]
[63]
Mousazadeh N, Gharbavi M, Rashidzadeh H, Nosrati H, Danafar H, Johari B. Anticancer evaluation of methotrexate and curcumin- coencapsulated niosomes against colorectal cancer cell lines. Nanomedicine 2022; 17(4): 201-17.
[http://dx.doi.org/10.2217/nnm-2021-0334] [PMID: 35037483]
[64]
Firouzi Amandi A, Jokar E, Eslami M, et al. Enhanced anti-cancer effect of artemisinin- and curcumin-loaded niosomal nanoparticles against human colon cancer cells. Med Oncol 2023; 40(6): 170.
[http://dx.doi.org/10.1007/s12032-023-02032-7] [PMID: 37156929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy