Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Ayurvedic and Chinese Herbs against Coronaviruses

Author(s): Amin Gasmi, Sonia Kanwal, Petro Oliinyk, Roman Lysiuk, Mariia Shanaida, Asma Gasmi Benahmed, Walallawita Kankanamge Tharindu Dushmantha, Maria Arshad, Ivanna Kernychna, Larysa Lenchyk, Taras Upyr, Volodymyr Shanaida and Geir Bjørklund*

Volume 30, Issue 21, 2024

Published on: 29 April, 2024

Page: [1681 - 1698] Pages: 18

DOI: 10.2174/0113816128269864231112094917

Price: $65

Abstract

Coronavirus disease 2019 (COVID-19) is a viral disease that infects the lower airways, causing severe acute respiratory syndrome (SARS) and fatal pneumonia. The ripple effect of the COVID-19 outbreak has created serious problems in the healthcare systems of many countries and had far-reaching consequences for the global economy. Thus, effective control measures should be implemented for this coronavirus infection in the future. The ongoing episode of the SARS-CoV-2 sickness, COVID-19, in China, and the subsequent irregular spread of contamination to different nations, has alarmed the clinical and academic community primarily due to the deadly nature of this disease. Being a newly identified virus in the viral classification and having the highest mutation rate, rapid therapeutics are not readily available for treating this ailment, leading to the widespread of the disease and causing social issues for affected individuals. Evidence of Ayurveda and traditional Chinese medicine (TCM) has been found in ancient civilizations, such as those of the Hindus, Babylonians, Hebrews, and Arabs. Although TCM and Ayurvedic herbs do not promise to be very effective treatments for this pandemic, they can reduce infectivity and virulence by enhancing immunity and showing effectiveness in rehabilitation after COVID-19 disease. Thus, they could be used as sources of inhibitor molecules for certain phenomena, such as viral replication, attachment to the host, 3CL protease inhibition, 3a ion channel inhibitors, and reverse transcription inhibition. Medicinal plants from TCM and Ayurveda and their biologically active phytoconstituents can effectively modulate the targets and pathways relevant to inflammation and immune responses in human bodies. The present review analyzes the role of certain TCM and Ayurvedic medicinal plants in healing COVID-19 infection. Medicinal plants such as Glycyrrhiza glabra (licorice), Curcuma longa (turmeric), and Zingiber officinale (ginger) are regarded as the main antiviral herbs. Their extracts and individual bioactive compounds could be used as potential substances for developing remedies to prevent or cure the coronavirus disease. Generally, antiviral phytochemicals obtained from natural sources are considered potent candidates for fighting COVID-19 infection and rehabilitation after it.

Keywords: COVID-19, TCM, Ayurveda, medicinal plants, virucidal effect, immunomodulation, quercetin, curcumin, glycyrrhizin, gingerol.

[1]
Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z]
[2]
Kupferschmidt K, Cohen J. Will novel virus go pandemic or be contained? Science 2020; 367(6478): 610-1.
[http://dx.doi.org/10.1126/science.367.6478.610] [PMID: 32029604]
[3]
Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of indian traditional medicine in combating corona virus (SARS- CoV 2): A mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19.
[http://dx.doi.org/10.2174/18734316MTA4hOTEvx] [PMID: 32767920]
[4]
Chen J, Ding Z. Advances in natural product anti-coronavirus research (2002-2022). Chin Med 2023; 18(1): 13.
[http://dx.doi.org/10.1186/s13020-023-00715-x] [PMID: 36782317]
[5]
Shanaida M, Klishch I. Sedative effect of infusions from five lamiaceae martinov species. Pharmacologyonline 2021; 3: 1292-8.
[6]
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat Prod Rep 2019; 36(6): 869-88.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[7]
van Vuuren S, Viljoen A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med 2011; 77(11): 1168-82.
[http://dx.doi.org/10.1055/s-0030-1250736] [PMID: 21283954]
[8]
Lansky ES. A possible synergistic herbal solution for COVID-19. Front Biosci 2022; 14(2): 12.
[http://dx.doi.org/10.31083/j.fbs1402012] [PMID: 35730437]
[9]
Luo H, Gao Y, Zou J, et al. Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin Med 2020; 15(1): 94.
[http://dx.doi.org/10.1186/s13020-020-00375-1] [PMID: 32905189]
[10]
Gasmi A, Tippairote T, Mujawdiya PK, et al. Traditional Chinese medicine as the preventive and therapeutic remedy for COVID-19. Curr Med Chem 2024; 31(21): 3118-31.
[PMID: 36999715]
[11]
Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol 2020; 92(7): 797-806.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[12]
Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[13]
Rajan M, Gupta P, Kumar A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin J Integr Med 2021; 27(4): 243-4.
[http://dx.doi.org/10.1007/s11655-021-3331-8] [PMID: 33544289]
[14]
Dharmendra KM, Deepak S. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J Biomol Struct Dyn 2020; 40(9): 3949-64.
[15]
Fawzy NA, Abou Shaar B, Taha RM, et al. A systematic review of trials currently investigating therapeutic modalities for post- acute COVID-19 syndrome and registered on WHO International Clinical Trials Platform. Clin Microbiol Infect 2023; 29(5): 570-7.
[http://dx.doi.org/10.1016/j.cmi.2023.01.007] [PMID: 36642173]
[16]
Das K, Das P, Almuqbil M, et al. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico approach. J King Saud Univ Sci 2023; 35(3): 102534.
[http://dx.doi.org/10.1016/j.jksus.2022.102534] [PMID: 36619666]
[17]
Kanchibhotla D, Harsora P, Subramanian S, Reddy MRK, Venkatesh HKR. Rate of recovery and symptomatic efficacy of a polyherbal ayush formulation in the treatment of SARS-CoV-2 disease: A single-arm trial. Altern Ther Health Med 2023; 29(4): 134-9.
[PMID: 35951065]
[18]
Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. CCMP 2022; 2(1): 100021.
[http://dx.doi.org/10.1016/j.ccmp.2022.100021] [PMID: 36620357]
[19]
Trivedi A, Ahmad R, Siddiqui S, et al. Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: An in silico analysis. J Biomol Struct Dyn 2022; 40(20): 9648-700.
[http://dx.doi.org/10.1080/07391102.2021.1932601] [PMID: 34243689]
[20]
Verma S. In search of feasible interventions for the prevention and cure of novel coronavirus disease 2019. Preprints 2020.
[21]
Luo H, Tang Q, Shang Y, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[22]
Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharm Biol 2021; 59(1): 694-701.
[http://dx.doi.org/10.1080/13880209.2021.1931353] [PMID: 34110959]
[23]
Korablova O, Shanaida M, Gontova T. Chromatographic analysis of volatile compounds isolated from the Nigella damascena L. and Nigella arvensis L. seeds. Pharmacologyonline 2022; 3: 21-9.
[24]
Zhang D, Wu K, Zhang X, Deng S, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[25]
Narula C. 5,000-year-old ancient scriptures describe something similar to coronavirus. 2020. Available from: https://www.indiatoday.in/india/story/5000-year-old-ancient-scriptures-describe-something-similar-coronavirus-1668405-2020-04-18
[26]
Kumarasinghe A. Charaka Samhitha of Agnivesha elaborated by Charaka and Dridhabala. Nawinna, Sri Lanka: Department of Ayurveda Sri Lanka 1991.
[27]
Sendhilkumar M, Manickam P. Reactions from traditional medical systems to COVID-19 outbreak: Time to tread cautiously. J Ayurveda Integr Med 2022; 13(1): 100315.
[http://dx.doi.org/10.1016/j.jaim.2020.04.004] [PMID: 32382221]
[28]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13(1): 100312.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[29]
Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS. Construction of network pharmacology-based approach and potential mechanism from major components of Coriander sativum L. against COVID-19. Pharmacia 2022; 69(3): 689-97.
[http://dx.doi.org/10.3897/pharmacia.69.e84388]
[30]
Smith I, Wang LF. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013; 3(1): 84-91.
[http://dx.doi.org/10.1016/j.coviro.2012.11.006] [PMID: 23265969]
[31]
Liu L. Traditional Chinese medicine contributes to the treatment of COVID-19 patients. Chin Herb Med 2020; 12(2): 95-6.
[http://dx.doi.org/10.1016/j.chmed.2020.04.003] [PMID: 32391065]
[32]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[33]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[34]
Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020; 11: 298.
[http://dx.doi.org/10.3389/fmicb.2020.00298] [PMID: 32265848]
[35]
Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: Structure and genome expression. J Gen Virol 1988; 69(12): 2939-52.
[http://dx.doi.org/10.1099/0022-1317-69-12-2939] [PMID: 3058868]
[36]
Lai MM, Cavanagh D. The molecular biology of coronaviruse. Adv Virus Res. 1997; 48: pp. 1-100.
[http://dx.doi.org/10.1016/S0065-3527(08)60286-9]
[37]
Holmes KV. Coronaviruses (Coronaviridae). Encyclopedia of virology 1999; p. 291.
[38]
Polansky H, Lori G. Coronavirus disease 2019 (COVID-19): First indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55(6): 105971.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105971] [PMID: 32283177]
[39]
Polansky H, Itzkovitz E, Javaherian A. Human papillomavirus (HPV): Systemic treatment with Gene-Eden-VIR/Novirin safely and effectively clears virus. Drug Des Devel Ther 2017; 11: 575-83.
[http://dx.doi.org/10.2147/DDDT.S123340] [PMID: 28424535]
[40]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[41]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[42]
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[43]
Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C- like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79(11): 7095-103.
[http://dx.doi.org/10.1128/JVI.79.11.7095-7103.2005] [PMID: 15890949]
[44]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[45]
Jeong YS, Makino S. Mechanism of coronavirus transcription: Duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J Virol 1992; 66(6): 3339-46.
[http://dx.doi.org/10.1128/jvi.66.6.3339-3346.1992] [PMID: 1583719]
[46]
Yang H, Xie W, Xue X, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005; 3(10): e324.
[http://dx.doi.org/10.1371/journal.pbio.0030324] [PMID: 16128623]
[47]
Adedeji AO, Singh K, Calcaterra NE, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother 2012; 56(9): 4718-28.
[http://dx.doi.org/10.1128/AAC.00957-12] [PMID: 22733076]
[48]
Liu Q, Xia S, Sun Z, et al. Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob Agents Chemother 2015; 59(1): 742-4.
[http://dx.doi.org/10.1128/AAC.03977-14] [PMID: 25331705]
[49]
Xia S, Liu Q, Wang Q, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194: 200-10.
[http://dx.doi.org/10.1016/j.virusres.2014.10.007] [PMID: 25451066]
[50]
Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2014; 101: 105-12.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.004] [PMID: 24269477]
[51]
Wen C-C, Shyur L-F, Jan J-T, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS- CoV replication. J Tradit Complement Med 2011; 1(1): 41-50.
[52]
Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord Drug Targets 2007; 7: 59-66.
[http://dx.doi.org/10.2174/187152607780090757]
[53]
Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[54]
Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[55]
Yang S, Chen SJ, Hsu MF, et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem 2006; 49(16): 4971-80.
[http://dx.doi.org/10.1021/jm0603926] [PMID: 16884309]
[56]
Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 2004; 43(17): 4906-12.
[http://dx.doi.org/10.1021/bi0361766] [PMID: 15109248]
[57]
Chen LR, Wang YC, Lin YW, et al. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg Med Chem Lett 2005; 15(12): 3058-62.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.027] [PMID: 15896959]
[58]
Kim Y, Mandadapu SR, Groutas WC, Chang KO. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res 2013; 97(2): 161-8.
[http://dx.doi.org/10.1016/j.antiviral.2012.11.005] [PMID: 23219425]
[59]
Chen L, Chen S, Gui C, Shen J, Shen X, Jiang H. Discovering severe acute respiratory syndrome coronavirus 3CL protease inhibitors: Virtual screening, surface plasmon resonance, and fluorescence resonance energy transfer assays. SLAS Discov 2006; 11(8): 915-21.
[http://dx.doi.org/10.1177/1087057106293295] [PMID: 17092912]
[60]
Sarkar PK, Das MC. Mechanistic insights from the review and evaluation of ayurvedic herbal medicines for the prevention and management of COVID-19 patients. J Herb Med 2022; 32: 100554.
[http://dx.doi.org/10.1016/j.hermed.2022.100554] [PMID: 35251909]
[61]
Vimalanathan S, Ignacimuthu S, Hudson JB. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm Biol 2009; 47(5): 422-9.
[http://dx.doi.org/10.1080/13880200902800196]
[62]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[63]
Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 2021; 36(1): 497-503.
[http://dx.doi.org/10.1080/14756366.2021.1873977] [PMID: 33491508]
[64]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[65]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[66]
Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 2020; 9(5): 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[67]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[68]
Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013; 48(6): 742-8.
[http://dx.doi.org/10.1165/rcmb.2012-0339OC] [PMID: 23418343]
[69]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[70]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[71]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[72]
Tanaka A, Nagate T, Matsuda H. Acceleration of wound healing by gelatin film dressings with epidermal growth factor. J Vet Med Sci 2005; 67: 909-13.
[http://dx.doi.org/10.1292/jvms.67.909]
[73]
Callebaut PE, Pensaert MB. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J Gen Virol 1980; 48(1): 193-204.
[http://dx.doi.org/10.1099/0022-1317-48-1-193] [PMID: 7381432]
[74]
Corfield AP, Sander-Wewer M, Veh RW, Wember M, Schauer R. The action of sialidases on substrates containing O-acetylsialic acids. Biol Chem Hoppe Seyler 1986; 367(1): 433-40.
[http://dx.doi.org/10.1515/bchm3.1986.367.1.433] [PMID: 3741623]
[75]
De Groot AS. Immunomics: Discovering new targets for vaccines and therapeutics. Drug Discov Today 2006; 11(5-6): 203-9.
[http://dx.doi.org/10.1016/S1359-6446(05)03720-7] [PMID: 16580597]
[76]
Dveksler GS, Pensiero MN, Dieffenbach CW, et al. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci 1993; 90(5): 1716-20.
[http://dx.doi.org/10.1073/pnas.90.5.1716] [PMID: 8383324]
[77]
Dveksler GS, Pensiero MN, Cardellichio CB, et al. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J Virol 1991; 65(12): 6881-91.
[http://dx.doi.org/10.1128/jvi.65.12.6881-6891.1991] [PMID: 1719235]
[78]
Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 1995; 69(2): 889-95.
[http://dx.doi.org/10.1128/jvi.69.2.889-895.1995] [PMID: 7815557]
[79]
Hanaoka K, Pritchett TJ, Takasaki S, et al. 4-O-acetyl-N-acetylneuraminic acid in the N-linked carbohydrate structures of equine and guinea pig α2-macroglobulins, potent inhibitors of influenza virus infection. J Biol Chem 1989; 264(17): 9842-9.
[http://dx.doi.org/10.1016/S0021-9258(18)81735-5] [PMID: 2470764]
[80]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[81]
Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010; 463(7281): 689-92.
[http://dx.doi.org/10.1038/nature08722] [PMID: 20130653]
[82]
Fischer WB, Hsu HJ. Viral channel forming proteins - Modeling the target. Biochim Biophys Acta Biomembr 2011; 1808(2): 561-71.
[http://dx.doi.org/10.1016/j.bbamem.2010.05.014] [PMID: 20546700]
[83]
Griffin SDC, Harvey R, Clarke DS, Barclay WS, Harris M, Rowlands DJ. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 2004; 85(2): 451-61.
[http://dx.doi.org/10.1099/vir.0.19634-0] [PMID: 14769903]
[84]
Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971; 233(5316): 177-82.
[http://dx.doi.org/10.1038/233177a0] [PMID: 4939175]
[85]
Wong YF, Cheung TH, Lo KWK, et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 2007; 26(13): 1971-82.
[http://dx.doi.org/10.1038/sj.onc.1209986] [PMID: 17043662]
[86]
Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43.
[http://dx.doi.org/10.1007/s00018-004-4242-5] [PMID: 15549175]
[87]
Bingham RW, Madge MH, Tyrrell DAJ. Haemagglutination by avian infectious bronchitis virus-a coronavirus. J Gen Virol 1975; 28(3): 381-90.
[http://dx.doi.org/10.1099/0022-1317-28-3-381] [PMID: 170378]
[88]
Bosch FX, Orlich M, Klenk HD, Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 1979; 95(1): 197-207.
[http://dx.doi.org/10.1016/0042-6822(79)90414-8] [PMID: 442540]
[89]
Cavanagh D. Structural polypeptides of coronavirus IBV. J Gen Virol 1981; 53(1): 93-103.
[http://dx.doi.org/10.1099/0022-1317-53-1-93] [PMID: 6268743]
[90]
Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J Gen Virol 1983; 64(12): 2577-83.
[http://dx.doi.org/10.1099/0022-1317-64-12-2577] [PMID: 6319549]
[91]
Almanza M, Vega N. Isolating and characterising a lectin from galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys 2004; 429(2): 180-90.
[92]
González-Moles MA, Mosqueda-Taylor A, Delgado-Rodríguez M, et al. Analysis of p53 protein by PAb240, Ki-67 expression and human papillomavirus DNA detection in different types of odontogenic keratocyst. Anticancer Res 2006; 26(1A): 175-81.
[PMID: 16475695]
[93]
Baker SC, Yokomori K, Dong S, et al. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 1993; 67(10): 6056-63.
[http://dx.doi.org/10.1128/jvi.67.10.6056-6063.1993] [PMID: 8396668]
[94]
Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol 2005; 287: 229-52.
[http://dx.doi.org/10.1007/3-540-26765-4_8] [PMID: 15609514]
[95]
Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013; 87(23): 12552-61.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
[96]
Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8: 45-53.
[http://dx.doi.org/10.1016/j.coviro.2014.06.002] [PMID: 24997250]
[97]
Ren X, Meng F, Yin J, et al. Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus. PLoS One 2011; 6(5): e18669.
[http://dx.doi.org/10.1371/journal.pone.0018669] [PMID: 21573100]
[98]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[99]
Ling C. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med 2020; 18(2): 87-8.
[http://dx.doi.org/10.1016/j.joim.2020.02.004] [PMID: 32122812]
[100]
Huang K, Zhang P, Zhang Z, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225: 107843.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107843] [PMID: 33811957]
[101]
Joshi RS, Jagdale SS, Bansode SB, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS- CoV-2 structurally conserved main protease. J Biomol Struct Dyn 2021; 39(9): 3099-114.
[PMID: 32329408]
[102]
Patwardhan B, Chavan-Gautam P, Gautam M, et al. Ayurveda rasayana in prophylaxis of COVID-19. Curr Sci 2020; 118: 1158-60.
[103]
Saggam A, Limgaokar K, Borse S, et al. Withania somnifera (L.) dunal: Opportunity for clinical repurposing in COVID-19 management. Front Pharmacol 2021; 12: 623795.
[http://dx.doi.org/10.3389/fphar.2021.623795] [PMID: 34012390]
[104]
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203.
[PMID: 32851919]
[105]
India Go. Government of India. Guidelines for Ayurveda practitioners for COVID-19. New Delhi: Ayush Bhavan, 2020.
[106]
Kundu D, Selvaraj C, Singh SK, Dubey VK. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn 2021; 39(9): 3428-34.
[PMID: 32362243]
[107]
Shanaida M, Jasicka-Misiak I, Makowicz E, Stanek N, Shanaida V, Wieczorek P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J Pharm Bioallied Sci 2020; 12(2): 139-45.
[http://dx.doi.org/10.4103/jpbs.JPBS_322_19] [PMID: 32742112]
[108]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[109]
Slika L, Patra D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev Med Chem 2020; 20(12): 1072-82.
[http://dx.doi.org/10.2174/1389557520666200414161316] [PMID: 32286941]
[110]
Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020; 34(11): 2911-20.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[111]
Chen L, Hu C, Hood M, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients 2020; 12(4): 1193.
[http://dx.doi.org/10.3390/nu12041193] [PMID: 32344708]
[112]
Gasmi A, Mujawdiya PK, Noor S, et al. Polyphenols in metabolic diseases. Molecules 2022; 27(19): 6280.
[http://dx.doi.org/10.3390/molecules27196280] [PMID: 36234817]
[113]
Goyal M. Potential of Ayurveda in the prevention and management of post-COVID complications. Ayu 2020; 41(2): 69-71.
[http://dx.doi.org/10.4103/ayu.ayu_284_21] [PMID: 34908790]
[114]
Girija PLT, Sivan N. Ayurvedic treatment of COVID-19: A case report. J Ayurveda Integr Med 2022; 13(1): 100329.
[http://dx.doi.org/10.1016/j.jaim.2020.06.001] [PMID: 32680602]
[115]
Kumar Verma A, Kumar V, Singh S, et al. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137: 111356.
[http://dx.doi.org/10.1016/j.biopha.2021.111356] [PMID: 33561649]
[116]
Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: In silico evidence for cues from Ayurveda. Futur J Pharm Sci 2021; 7(1): 13.
[http://dx.doi.org/10.1186/s43094-020-00171-6] [PMID: 33457429]
[117]
Arora R, Chawla R, Marwah R, et al. Potential of complementary and alternative medicine in preventive management of novel H1N1 Flu (Swine Flu) pandemic: Thwarting potential disasters in the bud. Evid Based Complement Alternat Med 2011; 2011: 1-16.
[http://dx.doi.org/10.1155/2011/586506] [PMID: 20976081]
[118]
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine Plus 2021; 1(3): 100043.
[http://dx.doi.org/10.1016/j.phyplu.2021.100043] [PMID: 35399823]
[119]
Maurya D, Sharma D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel coronavirus (SARS-CoV-2) using molecular docking approach. ChemRxiv 2020.
[120]
Zhao Z, Li Y, Zhou L, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: A review. Phytomedicine 2021; 85: 153308.
[http://dx.doi.org/10.1016/j.phymed.2020.153308] [PMID: 32843234]
[121]
Tang W, Eisenbrand G. Chinese drugs of plant origin. Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Berlin, Heidelberg: Springer 1992.
[http://dx.doi.org/10.1007/978-3-642-73739-8]
[122]
Ali I, Alharbi OML. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ 2020; 728: 138861.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138861] [PMID: 32344226]
[123]
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[124]
Pavlova LV, Platonov IA, Kurkin VA, Novikova EA, Kolesnichenko IN. Determination of glycyrrhizic acid in roots of licorice by hplc method with subcritical dynamic extraction. Analytics and Control 2018; 22(3): 229-35.
[http://dx.doi.org/10.15826/analitika.2018.22.3.004]
[125]
Damle Joshi M. Glycyrrhiza glabra (Liquorice) - A potent medicinal herb. Int J Herb Med 2014; 132: 132-6.
[126]
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709-24.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[127]
Asl N, Hosseinzadeh H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. Faslnamah-i Giyahan-i Daruyi 2007; 6: 1-12.
[128]
Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species. Phytother Res 2008; 22(2): 141-8.
[http://dx.doi.org/10.1002/ptr.2295] [PMID: 17886224]
[129]
Anagha K, Deshpande DM, Priya L, Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an antiviral agent: A review. Int J Curr Microbiol App Sci 2014; 3(1): 657-65.
[130]
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel- Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10(3): 10.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[131]
Harwansh R, Patra K, Pareta S, Singh J, Biswas R. Pharmacological studies of Glycyrrhiza glabra- A review. Pharmacology. 2013; pp. 1032-8.
[132]
Thangavelu L, Geetha RV. Glycyrrhiza glabra Linn commonly known as liquorice: A therapeutic review. Int J Pharm Pharm Sci 2011; 3: 20-5.
[133]
Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826-32.
[http://dx.doi.org/10.2174/1389557519666190119111125] [PMID: 30659537]
[134]
Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
[135]
Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324: 54-75.
[http://dx.doi.org/10.1016/j.jneuroim.2018.09.003] [PMID: 30243185]
[136]
Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Handbook of Medicinal Plants (A complete source book). Jodhpur, India: Dr. Updesh Purohit for Agrobios 2003.
[137]
Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease 2020; 31(3): 270-6.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[138]
India Go. Post COVID Management Protocol. Delhi: Ministry of Health & Family Welfare 2020.
[139]
Krup V, Prakash H, Harini A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J Homeop Ayurv Med 2013; 2: 133.
[140]
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin-from molecule to biological function. Angew Chem Int Ed 2012; 51(22): 5308-32.
[http://dx.doi.org/10.1002/anie.201107724] [PMID: 22566109]
[141]
Kapustin MA, Chubavora AS, Cigankov VG, Kurchenko VP. Isolation of curcuminoids from the Curcuma longa and investigation of the composition of the obtained preparation using chromatographic methods of analysis. BSUTP 2016; 11: 248-62.
[142]
Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
[143]
Mythri HS, Mahto R. Multimodal ayurvedic approach in the management of moderate SARS-COV2 infection with co-morbidities – A case report. J Family Med Prim Care 2022; 11(1): 344-9.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_495_21] [PMID: 35309621]
[144]
Upadhyay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 2010; 1(2): 112-21.
[http://dx.doi.org/10.4103/0974-7788.64405] [PMID: 20814526]
[145]
Nadeem M, Muhammad Anjum F, Issa Khan M, Tehseen S, El-Ghorab A, Iqbal Sultan J. Nutritional and medicinal aspects of coriander (Coriandrum sativum L.). Br Food J 2013; 115(5): 743-55.
[http://dx.doi.org/10.1108/00070701311331526]
[146]
Wiggers HJ, Zaioncz S, Cheleski J, Mainardes R, Khalil N. Curcumin, a multitarget phytochemical: Challenges and perspectives. Stud Nat Prod Chem 2017; 53: 243-76.
[http://dx.doi.org/10.1016/B978-0-444-63930-1.00007-7]
[147]
Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[148]
Conti P, Caraffa A, Gallenga CE, et al. Coronavirus-19 (SARS- CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J Biol Regul Homeost Agents 2020; 34(6): 1971-5.
[PMID: 33016027]
[149]
Valizadeh H, Abdolmohammadi-vahid S, Danshina S, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89(Pt B): 107088.
[http://dx.doi.org/10.1016/j.intimp.2020.107088] [PMID: 33129099]
[150]
Quispe C, Cruz-Martins N, Manca ML, et al. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/3149223] [PMID: 34584616]
[151]
Jena D, Kanungo N, Nayak V, Chainy G, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci Rep 2020; 11: 2043.
[152]
Chen TY, Chen DY, Wen HW, et al. Inhibition of enveloped viruses infectivity by curcumin. PLoS One 2013; 8(5): e62482.
[http://dx.doi.org/10.1371/journal.pone.0062482] [PMID: 23658730]
[153]
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[154]
Srivastava A, Singh D. Destabilizing the structural integrity of SARS-CoV2 receptor proteins by curcumin along with hydroxychloroquine: An insilco approach for a combination therapy. ChemRxiv 2020.
[155]
Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem J 2008; 410(1): 147-55.
[http://dx.doi.org/10.1042/BJ20070891] [PMID: 17953519]
[156]
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864.
[PMID: 24877064]
[157]
Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[158]
Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[159]
Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2. Pharmaceuticals (Basel) 2022; 15(9): 1049.
[http://dx.doi.org/10.3390/ph15091049] [PMID: 36145270]
[160]
Nabirotchkin S, Peluffo A, Bouaziz J, Cohen D. Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against COVID-19. Preprints 2020; 2020030302.2020;
[161]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[162]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[163]
Pandey P, Rane JS, Chatterjee A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J Biomol Struct Dyn 2021; 39(16): 6306-16.
[http://dx.doi.org/10.1080/07391102.2020.1796811] [PMID: 32698689]
[164]
Gidwani B, Bhattacharya R, Shukla SS, Pandey RK. Indian spices: Past, present and future challenges as the engine for bio-enhancement of drugs: Impact of COVID-19. J Sci Food Agric 2022; 102(8): 3065-77.
[http://dx.doi.org/10.1002/jsfa.11771] [PMID: 35043421]
[165]
Yücel Ç, Şeker Karatoprak G, Bahadir O, Akkol E, Barak TH. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13: 902551.
[166]
Hudson J, Vimalanathan S. Echinacea-a source of potent antivirals for respiratory virus infections. Pharmaceuticals 2011; 4(7): 1019-31.
[http://dx.doi.org/10.3390/ph4071019]
[167]
Zhang P, Liu X, Liu H, et al. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb Pathog 2018; 114: 124-8.
[http://dx.doi.org/10.1016/j.micpath.2017.11.026] [PMID: 29170045]
[168]
Chen CJ, Michaelis M, Hsu HK, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol 2008; 120(1): 108-11.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[169]
Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 2011; 90(1): 64-9.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy