Review Article

Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications

Author(s): Wasan Alwahsh, Shariza Sahudin*, Hatim Alkhatib, Mohammad F. Bostanudin and Mohammad Alwahsh

Volume 25, Issue 7, 2024

Published on: 26 April, 2024

Page: [492 - 511] Pages: 20

DOI: 10.2174/0113894501301747240417103321

Price: $65

Abstract

The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.

Keywords: Chitosan, nanoparticles, pulmonary, nasal, nanocarrier, liposome, dendrimers, drug delivery.

« Previous
Graphical Abstract
[1]
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci 2015; 10(6): 481-9.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[2]
Costa-Gouveia J, Pancani E, Jouny S, et al. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 2017; 7(1): 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[3]
Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-Based Drug delivery System: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm 2021; 18(10): 3671-718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[4]
Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Dru Deli Revi 2014; 73: 50-62.
[http://dx.doi.org/10.1016/j.addr.2013.08.0115]
[5]
Zhu L, Lu L, Wang S, et al. Oral Absorption Basics. Dev Solid Oral Dosage Forms. (2nd.). 2017; pp. 297-329.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00011-X]
[6]
Abuhelwa AY, Williams DB, Upton RN, Foster DJR. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm 2017; 112: 234-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234]
[7]
Deshmukh R, Bandyopadhyay N, Abed SN, Bandopadhyay S, Pal Y, Deb PK. Strategies for pulmonary delivery of drugs. Elsevier eBooks. 2020; pp. 85-129.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00003-X]
[8]
Peng T, Lin S, Niu B, et al. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016; 6(4): 308-18.
[http://dx.doi.org/10.1016/j.apsb.2016.03.011] [PMID: 27471671]
[9]
Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME. Management of chronic obstructive pulmonary disease beyond the lungs. Lancet Respir Med 2016; 4(11): 911-24.
[http://dx.doi.org/10.1016/S2213-2600(16)00097-7] [PMID: 27264777]
[10]
Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 2022; 27(5): 1543.
[http://dx.doi.org/10.3390/molecules27051543] [PMID: 35268643]
[11]
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm 2014; 86(1): 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[12]
Sakagami M. in vitro, ex-vivo and in vivo methods of lung absorption for inhaled drugs. Adv Drug Deliv Rev 2020; 161-162: 63-74.
[http://dx.doi.org/10.1016/j.addr.2020.07.025] [PMID: 32763274]
[13]
Hussain A, Arnold JJ, Khan MA, Ahsan F. Absorption enhancers in pulmonary protein delivery. J Control Release 2004; 94(1): 15-24.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.001] [PMID: 14684268]
[14]
Dua K, Wadhwa R, Singhvi G, et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80(6): 714-30.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[15]
Mohamed N, Madian NG. Evaluation of the mechanical, physical and antimicrobial properties of chitosan thin films doped with greenly synthesized silver nanoparticles. Mater Today Commun 2020; 25101372
[http://dx.doi.org/10.1016/j.mtcomm.2020.101372]
[16]
Khdair A, Hamad I, Alkhatib H, et al. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci 2016; 93: 38-44.
[http://dx.doi.org/10.1016/j.ejps.2016.07.012] [PMID: 27473308]
[17]
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Desi Devel and Thera 2016; 483.
[http://dx.doi.org/10.2147/dddt.s99651]
[18]
Smith A, Perelman M, Hinchcliffe M. Chitosan. Hum Vaccin Immunother 2014; 10(3): 797-807.
[http://dx.doi.org/10.4161/hv.27449] [PMID: 24346613]
[19]
Yeul VS, Rayalu SS. Unprecedented Chitin and Chitosan: A Chemical Overview. J Polym Environ 2013; 21(2): 606-14.
[http://dx.doi.org/10.1007/s10924-012-0458-x]
[20]
Kumari S, Kishor R. Chitin and chitosan: origin, properties, and applications. Elsevier eBooks. 2020; pp. 1-33.
[http://dx.doi.org/10.1016/B978-0-12-817970-3.00001-8]
[21]
Bastiaens L, Soetemans L, D’Hondt E, Elst K. Sources of Chitin and Chitosan and Their Isolation. In: Broek LAM, Boeriu CG, Eds. Chitin and Chitosan. (1st ed.). Wiley 2019; pp. 1-34.
[http://dx.doi.org/10.1002/9781119450467.ch1]
[22]
Riofrio A, Alcivar T, Baykara H. Environmental and Economic viability of Chitosan production in Guayas-Ecuador: A Robust investment and life cycle analysis. ACS Omega 2021; 6(36): 23038-51.
[http://dx.doi.org/10.1021/acsomega.1c01672] [PMID: 34549104]
[23]
Wu QX, Lin DQ, Yao SJ. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 2014; 12(12): 6236-53.
[http://dx.doi.org/10.3390/md12126236] [PMID: 25532565]
[24]
Sun Y, Ma X, Hu H. Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems. Mar Drugs 2021; 19(6): 345.
[http://dx.doi.org/10.3390/md19060345] [PMID: 34208540]
[25]
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol 2017; 105(Pt 2): 1358-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[26]
Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol 2020; 150: 1072-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[27]
Santos LF, Correia IJ, Silva AS, Mano JF. Biomaterials for drug delivery patches. Eur J Pharm Sci 2018; 118: 49-66.
[http://dx.doi.org/10.1016/j.ejps.2018.03.020] [PMID: 29572160]
[28]
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d’horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2021; 169: 103-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.083] [PMID: 33338522]
[29]
Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C 2017; 77: 1349-62.
[http://dx.doi.org/10.1016/j.msec.2017.03.198] [PMID: 28532012]
[30]
Wu P, Yi J, Feng L, et al. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Int J Biol Macromol 2020; 155: 708-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.011] [PMID: 32259538]
[31]
Li T, Hu X, Zhang Q, et al. Poly(acrylic acid)-chitosan @ tannic acid double-network self-healing hydrogel based on ionic coordination. Polym Adv Technol 2020; 31(7): 1648-60.
[http://dx.doi.org/10.1002/pat.4893]
[32]
Jana S, Jana S, Eds. Functional Chitosan: Drug Delivery and Biomedical Applications. Singapore: Springer Singapore 2019.
[http://dx.doi.org/10.1007/978-981-15-0263-7]
[33]
He W, Guo X, Xiao L, Feng M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 2009; 382(1-2): 234-43.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.038] [PMID: 19686826]
[34]
Abourehab MAS, Pramanik S, Abdelgawad MA, et al. Recent advances of chitosan formulations in biomedical applications. Int J Mol Sci 2022; 23(18): 10975.
[http://dx.doi.org/10.3390/ijms231810975] [PMID: 36142887]
[35]
Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release 2017; 260: 213-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.010] [PMID: 28625671]
[36]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[37]
Silva M, Calado R, Marto J, et al. ́Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 2017; 15(12): 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[38]
Wang W, Meng Q, Li Q, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci 2020; 21(2): 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[39]
Jeon S, Yoo CY, Park SN. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 2015; 129: 7-14.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.018] [PMID: 25819360]
[40]
Chen MC, Mi FL, Liao ZX, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65(6): 865-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[41]
Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019; 5(5)e01684
[http://dx.doi.org/10.1016/j.heliyon.2019.e01684] [PMID: 31193324]
[42]
Manek E, Darvas F, Petroianu GA. Use of biodegradable, Chitosan-Based nanoparticles in the treatment of Alzheimer’s disease. Molecules 2020; 25(20): 4866.
[http://dx.doi.org/10.3390/molecules25204866] [PMID: 33096898]
[43]
Mishra B, Singh J. Novel drug delivery systems and significance in respiratory diseases. Elsevier eBooks. 2020; pp. 57-95.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00004-2]
[44]
Hizawa N. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin Exp Allergy 2016; 46(5): 678-87.
[http://dx.doi.org/10.1111/cea.12731] [PMID: 27009427]
[45]
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 2013; 1(5): 402-13.
[http://dx.doi.org/10.1016/S2213-2600(13)70072-9] [PMID: 24429205]
[46]
Borghardt JM, Kloft C, Sharma A. Inhaled therapy in Respiratory Disease: The complex interplay of pulmonary kinetic processes. Can Respir J 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/2732017] [PMID: 30018677]
[47]
Raissy HH, Kelly HW, Harkins M, Szefler SJ. Inhaled corticosteroids in lung diseases. Am J Respir Crit Care Med 2013; 187(8): 798-803.
[http://dx.doi.org/10.1164/rccm.201210-1853PP] [PMID: 23370915]
[48]
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326: 222-44.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.011] [PMID: 32681948]
[49]
Simonsson BG. Beta2-Receptor Agonists Tachyphylaxis and Combination with Other Drugs. Progress in Respiration Research. 2015; pp. 315-22.
[http://dx.doi.org/10.1159/000411444]
[50]
Newman SP. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev 2018; 133: 5-18.
[http://dx.doi.org/10.1016/j.addr.2018.04.010] [PMID: 29653129]
[51]
Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015; 219: 500-18.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[52]
Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther 2013; 140(2): 176-85.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.008] [PMID: 23811125]
[53]
Cui X, Gutheil E. Three-dimensional unsteady large eddy simulation of the vortex structures and the mono-disperse particle dispersion in the idealized human upper respiratory system. J Aerosol Sci 2017; 114: 195-208.
[http://dx.doi.org/10.1016/j.jaerosci.2017.09.005]
[54]
Bailey AG, Hashish AH, Williams TJ. Drug delivery by inhalation of charged particles. J Electrost 1998; 44(1-2): 3-10.
[http://dx.doi.org/10.1016/S0304-3886(98)00017-5]
[55]
Yao Z, Zhao T, Su W, You S, Wang CH. Towards understanding respiratory particle transport and deposition in the human respiratory system: Effects of physiological conditions and particle properties. J Hazard Mater 2022; 439129669
[http://dx.doi.org/10.1016/j.jhazmat.2022.129669] [PMID: 35908402]
[56]
Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007; 6(1): 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[57]
Arnold J, Ahsan F, Meezan E, Pillion DJ. Nasal administration of low molecular weight heparin. J Pharm Sci 2002; 91(7): 1707-14.
[http://dx.doi.org/10.1002/jps.10171] [PMID: 12115833]
[58]
Aung H, Sivakumar A, Gholami S, Venkateswaran SP, Gorain B, Shadab . An overview of the anatomy and physiology of the lung. Elsevier eBooks. 2019; pp. 1-20.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00001-0]
[59]
Candemir S, Antani S. A review on lung boundary detection in chest X-rays. Int J CARS 2019; 14(4): 563-76.
[http://dx.doi.org/10.1007/s11548-019-01917-1] [PMID: 30730032]
[60]
Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010; 18(1): 8-23.
[http://dx.doi.org/10.1016/j.devcel.2009.12.010] [PMID: 20152174]
[61]
Hsia CCW, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Comprehensive Physiology 2016; 827-95.
[http://dx.doi.org/10.1002/cphy.c150028]
[62]
AL- Ahmed A, Sadoon A. COmparative anatomical, histological and histochemical study of (larynx, trachea and syrinx) between mature and immature males of local duck (anas platyrhnchos). Magallat al-Basrat Li-l-Abhat al-Baytariyyat 2021; 19(1): 10-34.
[http://dx.doi.org/10.23975/bjvetr.2021.170597]
[63]
Ochs M, Nyengaard JR, Jung A, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med 2004; 169(1): 120-4.
[http://dx.doi.org/10.1164/rccm.200308-1107OC] [PMID: 14512270]
[64]
Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 2017; 312(2): L243-57.
[http://dx.doi.org/10.1152/ajplung.00326.2016] [PMID: 27913424]
[65]
Wood JD. Normal anatomy, digestion, absorption. Elsevier eBooks. 2019; pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-814330-8.00001-9]
[66]
Stauber H, Waisman D, Korin N, Sznitman J. Red blood cell dynamics in biomimetic microfluidic networks of pulmonary alveolar capillaries. Biomicrofluidics 2017; 11(1)014103
[http://dx.doi.org/10.1063/1.4973930] [PMID: 28090238]
[67]
Gil J, Bachofen H, Gehr P, Weibel ER. Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol 1979; 47(5): 990-1001.
[http://dx.doi.org/10.1152/jappl.1979.47.5.990] [PMID: 511725]
[68]
Holm C, Tegeler J, Mayr M, Pfeiffer U, von Donnersmarck GH, Muïhlbauer W. Effect of crystalloid resuscitation and inhalation injury on extravascular lung water: clinical implications. Chest 2002; 121(6): 1956-62.
[http://dx.doi.org/10.1378/chest.121.6.1956] [PMID: 12065363]
[69]
Chatterjee R, Maity M, Hasnain S, Nayak AK. 2022.Chitosan: source, chemistry, and properties.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00001-7]
[70]
Mikušová V, Mikuš P. Advances in Chitosan-Based nanoparticles for drug delivery. Int J Mol Sci 2021; 22(17): 9652.
[http://dx.doi.org/10.3390/ijms22179652] [PMID: 34502560]
[71]
An X, Zha D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine 2020; 15(20): 1981-93.
[http://dx.doi.org/10.2217/nnm-2020-0198] [PMID: 32605499]
[72]
Guisasola E, Baeza A, Asín L, de la Fuente JM, Vallet-Regí M. Heating at the nanoscale through drug-delivery devices: fabrication and synergic effects in cancer treatment with nanoparticles. Small Methods 2018; 2(9)1800007
[http://dx.doi.org/10.1002/smtd.201800007]
[73]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[74]
Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 2015; 11(2): 313-27.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[75]
Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater 2021; 13(1): 52.
[http://dx.doi.org/10.1038/s41427-021-00320-0]
[76]
Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in Non-Parenteral Drug delivery. Pharmaceutics 2017; 9(4): 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[77]
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25(1): 150-9.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[78]
Nho R. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine 2020; 29102242
[http://dx.doi.org/10.1016/j.nano.2020.102242] [PMID: 32561255]
[79]
Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 842-71.
[http://dx.doi.org/10.1002/wnan.1401] [PMID: 27016134]
[80]
Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 2017; 50(2): 310-9.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[81]
Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv 2016; 13(8): 1177-94.
[http://dx.doi.org/10.1080/17425247.2016.1178232] [PMID: 27087148]
[82]
Quiñones JP, Peniche H, Péniche C. Chitosan based Self-Assembled nanoparticles in drug delivery. Polymers 2018; 10(3): 235.
[http://dx.doi.org/10.3390/polym10030235] [PMID: 30966270]
[83]
Shim S, Yoo HS. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar Drugs 2020; 18(12): 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[84]
Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B Mater Biol Med 2016; 4(23): 4060-71.
[http://dx.doi.org/10.1039/C6TB00308G] [PMID: 32264607]
[85]
Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 2016; 222: 67-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.008] [PMID: 26686663]
[86]
Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int J Biol Macromol 2020; 154: 433-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.148] [PMID: 32194103]
[87]
Debnath SK, Saisivam S, Debanth M, Omri A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS One 2018; 13(1)e0190976
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[88]
Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci 2018; 124: 273-87.
[http://dx.doi.org/10.1016/j.ejps.2018.08.038] [PMID: 30176365]
[89]
Rawal T, Parmar R, Tyagi RK, Butani S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces 2017; 154: 321-30.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[90]
Ahmad MI, Ungphaiboon S, Srichana T. The development of dimple-shaped chitosan carrier for ethambutol dihydrochloride dry powder inhaler. Drug Dev Ind Pharm 2015; 41(5): 791-800.
[http://dx.doi.org/10.3109/03639045.2014.903493] [PMID: 24694185]
[91]
Ullah F, Shah KU, Shah SU, et al. Synthesis, Characterization and in vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers 2022; 14(17): 3564.
[http://dx.doi.org/10.3390/polym14173564] [PMID: 36080637]
[92]
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym 2016; 138: 114-22.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.072] [PMID: 26794744]
[93]
Shah S, Maheshwari H, Soniwala M, Chavda J. Pulmonary delivery of linezolid nanoparticles for treatment of tuberculosis: Design, development, and optimization. J Pharm Innov 2022; 17(1): 46-59.
[http://dx.doi.org/10.1007/s12247-020-09491-9]
[94]
Aldawsari HM, Alhakamy NA, Padder R, Husain M, Md S. Preparation and characterization of Chitosan Coated PLGA nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 lung cancer cells. Coatings 2020; 10(5): 439.
[http://dx.doi.org/10.3390/coatings10050439]
[95]
Chandrasekaran M, Kim K, Chun S. Antibacterial activity of chitosan nanoparticles: a review. Processes 2020; 8(9): 1173.
[http://dx.doi.org/10.3390/pr8091173]
[96]
Kim ES, Kim DY, Lee JS, Lee HG. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydr Polym 2021; 267118157
[http://dx.doi.org/10.1016/j.carbpol.2021.118157] [PMID: 34119131]
[97]
Soliman GM, Zhang YL, Merle G, Cerruti M, Barralet J. Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties. Eur J Pharm Biopharm 2014; 88(3): 1026-37.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.003] [PMID: 25281213]
[98]
Fortunato G, Guex AG, Popa AM, Rossi RM, Hufenus R. Molecular weight driven structure formation of PEG based e-spun polymer blend fibres. Polymer 2014; 55(14): 3139-48.
[http://dx.doi.org/10.1016/j.polymer.2014.04.053]
[99]
Nogueira DR, Scheeren LE, Pilar Vinardell M, Mitjans M, Rosa Infante M, Rolim CMB. Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery. Mater Sci Eng C 2015; 57: 100-6.
[http://dx.doi.org/10.1016/j.msec.2015.07.036] [PMID: 26354244]
[100]
Abbas Y, Azzazy HME, Tammam S, et al. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue. Colloids Surf B Biointerfaces 2016; 146: 19-30.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.031] [PMID: 27244047]
[101]
Gulati N, Nagaich U, Saraf SA. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci Pharm 2013; 81(3): 843-54.
[http://dx.doi.org/10.3797/scipharm.1208-18] [PMID: 24106677]
[102]
Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 2014; 15(6): 1598-602.
[http://dx.doi.org/10.1208/s12249-014-0189-5] [PMID: 25142821]
[103]
Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J Drug Target 2013; 21(8): 759-69.
[http://dx.doi.org/10.3109/1061186X.2013.818676] [PMID: 23879335]
[104]
Lv Y, Zhang J, Wang C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): preparation and evaluation in asthma mice. Bioengineered 2021; 12(1): 3029-39.
[http://dx.doi.org/10.1080/21655979.2021.1940622] [PMID: 34180764]
[105]
Rukmangathen R, Yallamalli IM, Yalavarthi PR. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery. Drug Dev Ind Pharm 2019; 45(8): 1342-50.
[http://dx.doi.org/10.1080/03639045.2019.1619759] [PMID: 31094571]
[106]
Tzeyung A, Md S, Bhattamisra S, et al. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 2019; 11(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics11010026] [PMID: 30634665]
[107]
Hanafy AS, Farid RM, ElGamal SS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: preparation and detection in rat brain. Drug Dev Ind Pharm 2015; 41(12): 2055-68.
[http://dx.doi.org/10.3109/03639045.2015.1062897] [PMID: 26133084]
[108]
Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 2017; 7(42): 25978-86.
[http://dx.doi.org/10.1039/C7RA02861J]
[109]
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang V. When Albumin meets Liposomes: a feasible drug carrier for biomedical applications. Pharmaceuticals 2021; 14(4): 296.
[http://dx.doi.org/10.3390/ph14040296] [PMID: 33810483]
[110]
Wang Q, Liu W, Wang J, Liu H, Chen Y. Preparation and pharmacokinetic study of daidzein long-circulating liposomes. Nanoscale Res Lett 2019; 14(1): 321.
[http://dx.doi.org/10.1186/s11671-019-3164-y] [PMID: 31617108]
[111]
Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 2012; 161(3): 781-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.040] [PMID: 22659331]
[112]
Manconi M, Manca ML, Valenti D, et al. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int J Pharm 2017; 525(1): 203-10.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.044] [PMID: 28438698]
[113]
Echaide M, Autilio C, Arroyo R, Pérez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr 2017; 1859(9): 1725-39.
[http://dx.doi.org/10.1016/j.bbamem.2017.03.015] [PMID: 28341439]
[114]
Gonzalez Gomez A, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis 2020; 6(5): 896-908.
[http://dx.doi.org/10.1021/acsinfecdis.9b00357] [PMID: 32208673]
[115]
Del Prado-Audelo ML, Caballero-Florán IH, Sharifi-Rad J, et al. Chitosan-decorated nanoparticles for drug delivery. J Drug Deliv Sci Technol 2020; 59101896
[http://dx.doi.org/10.1016/j.jddst.2020.101896]
[116]
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176113851
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[117]
Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids 2020; 165104984
[http://dx.doi.org/10.1016/j.supflu.2020.104984]
[118]
Yu JY, Chuesiang P, Shin GH, Park HJ. Post-Processing techniques for the improvement of liposome stability. Pharmaceutics 2021; 13(7): 1023.
[http://dx.doi.org/10.3390/pharmaceutics13071023] [PMID: 34371715]
[119]
Li R, Deng L, Cai Z, et al. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater Sci Eng C 2017; 80: 156-64.
[http://dx.doi.org/10.1016/j.msec.2017.05.136] [PMID: 28866151]
[120]
Peng J, Wang Q, Guo M, et al. Development of inhalable Chitosan-Coated oxymatrine liposomes to alleviate RSV-Infected mice. Int J Mol Sci 2022; 23(24): 15909.
[http://dx.doi.org/10.3390/ijms232415909] [PMID: 36555548]
[121]
Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 2020; 156: 1455-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.190] [PMID: 31770553]
[122]
Kamaruzzaman NF, Tan LP, Hamdan RH, et al. Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci 2019; 20(11): 2747.
[http://dx.doi.org/10.3390/ijms20112747] [PMID: 31167476]
[123]
Hsu HJ, Bugno J, Lee S, Hong S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(1)e1409
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[124]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[125]
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: implications for chronic airway diseases. Int J Nanomedicine 2020; 15: 3803-26.
[http://dx.doi.org/10.2147/IJN.S242516] [PMID: 32547029]
[126]
Restani RB, Silva AS, Pires RF, et al. Nano-in-Micro POxylated polyurea dendrimers and Chitosan dry powder formulations for pulmonary delivery. Part Part Syst Charact 2016; 33(11): 851-8.
[http://dx.doi.org/10.1002/ppsc.201600123]
[127]
Liu KC, Yeo Y. Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier. Mol Pharm 2013; 10(5): 1695-704.
[http://dx.doi.org/10.1021/mp300522p] [PMID: 23510114]
[128]
Leng ZH, Zhuang QF, Li YC, et al. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym 2013; 98(1): 1173-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.021] [PMID: 23987460]
[129]
Jose S, Ansa CR, Cinu TA, et al. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. Int J Pharm 2013; 441(1-2): 516-26.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.049] [PMID: 23147411]
[130]
Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res 2020; 10(2): 339-53.
[http://dx.doi.org/10.1007/s13346-019-00690-7] [PMID: 31872342]
[131]
Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 2019; 560: 282-93.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.012] [PMID: 30772458]
[132]
Ding Y, Shen SZ, Sun H, et al. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C 2015; 48: 487-98.
[http://dx.doi.org/10.1016/j.msec.2014.12.036] [PMID: 25579950]
[133]
Fernández-Paz E, Feijoo-Siota L, Gaspar MM, Csaba N, Remuñán-López C. Microencapsulated Chitosan-Based nanocapsules: a new platform for pulmonary gene delivery. Pharmaceutics 2021; 13(9): 1377.
[http://dx.doi.org/10.3390/pharmaceutics13091377] [PMID: 34575452]
[134]
Yang T, Wen B, Liu K, et al. Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. Artificial Cells Nanomedi Biotechnol 2018; 46(sup2): 552-64.
[http://dx.doi.org/10.1080/21691401.2018.1463231]
[135]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 2014; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[136]
Sécher T, Dalonneau E, Ferreira M, et al. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release 2019; 303: 24-33.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.005] [PMID: 30981816]
[137]
Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv 2015; 22(4): 455-66.
[http://dx.doi.org/10.3109/10717544.2013.866992] [PMID: 24329559]
[138]
Chaudhary S, Kumar S, Kumar V, Sharma R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 2020; 152: 154-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.276] [PMID: 32109479]
[139]
Elshamy S, Khadizatul K, Uemura K, Nakajima M, Neves MA. Chitosan-based film incorporated with essential oil nanoemulsion foreseeing enhanced antimicrobial effect. J Food Sci Technol 2021; 58(9): 3314-27.
[http://dx.doi.org/10.1007/s13197-020-04888-3] [PMID: 34366449]
[140]
Bi F, Qin Y, Chen D, Kan J, Liu J. Development of active packaging films based on chitosan and nano-encapsulated luteolin. Int J Biol Macromol 2021; 182: 545-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.063] [PMID: 33857507]
[141]
Luesakul U, Puthong S, Sansanaphongpricha K, Muangsin N. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract. Carbohydr Polym 2020; 230115625
[http://dx.doi.org/10.1016/j.carbpol.2019.115625] [PMID: 31887856]
[142]
Fachel FNS, Medeiros-Neves B, Dal Prá M, et al. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery. in vitro studies. Carbohydr Polym 2018; 199: 572-82.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.054] [PMID: 30143164]
[143]
Al ayoub Y, Gopalan RC, Najafzadeh M, et al. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int J Pharm 2019; 557: 254-63.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.042] [PMID: 30597263]
[144]
Shah K, Chan LW, Wong TW. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv 2017; 24(1): 1631-47.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[145]
Xu M, Zhang L, Guo Y, et al. Nanoemulsion co-loaded with xiap sirna and gambogic acid for inhalation therapy of lung cancer. Int J Mol Sci 2022; 23(22): 14294.
[http://dx.doi.org/10.3390/ijms232214294] [PMID: 36430771]
[146]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances 2020; 10(45): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[147]
Ahmadifard Z, Ahmeda A, Rasekhian M, Moradi S, Arkan E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J Drug Deliv Sci Technol 2020; 57101621
[http://dx.doi.org/10.1016/j.jddst.2020.101621]
[148]
Vieira ACC, Chaves LL, Pinheiro M, et al. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr Polym 2021; 252116978
[http://dx.doi.org/10.1016/j.carbpol.2020.116978] [PMID: 33183580]
[149]
Rosière R, Van Woensel M, Gelbcke M, et al. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid Nanoparticles for Lung Tumor Therapy by Inhalation. Mol Pharm 2018; 15(3): 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[150]
Rodenak-Kladniew B, Scioli Montoto S, Sbaraglini ML, et al. Hybrid Ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties. Int J Pharm 2019; 569118575
[http://dx.doi.org/10.1016/j.ijpharm.2019.118575] [PMID: 31356956]
[151]
Abdelaziz HM, Freag MS, Elzoghby AO. Solid lipid nanoparticle-based drug delivery for lung cancer. Elsevier eBooks. 2019; pp. 95-121.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00005-8]
[152]
Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 2011; 7(1): 40-9.
[http://dx.doi.org/10.1016/j.nano.2010.06.008] [PMID: 20620235]
[153]
Francis AP, Devasena T. Toxicity of carbon nanotubes: A review. Toxicol Ind Health 2018; 34(3): 200-10.
[http://dx.doi.org/10.1177/0748233717747472] [PMID: 29506458]
[154]
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2003; 77(1): 126-34.
[http://dx.doi.org/10.1093/toxsci/kfg243] [PMID: 14514958]
[155]
Raviglione M, Sulis G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect Dis Rep 2016; 8(2): 6570.
[http://dx.doi.org/10.4081/idr.2016.6570] [PMID: 27403269]
[156]
Boczkowski J, Lanone S. Respiratory toxicities of nanomaterials — A focus on carbon nanotubes. Adv Drug Deliv Rev 2012; 64(15): 1694-9.
[http://dx.doi.org/10.1016/j.addr.2012.05.011] [PMID: 22641117]
[157]
Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013; 46(3): 702-13.
[http://dx.doi.org/10.1021/ar300028m] [PMID: 22999420]
[158]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[159]
Mallakpour S, Azadi E, Hussain CM. Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. New J Chem 2021; 45(8): 3756-77.
[http://dx.doi.org/10.1039/D0NJ06035F]
[160]
Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl 2019; 33(7): 989-96.
[http://dx.doi.org/10.1177/0885328218814988] [PMID: 30509120]
[161]
Li K, Gao Q, Yadavalli G, et al. Selective adsorption of Gd 3+ on a magnetically retrievable imprinted chitosan/carbon nanotube composite with high capacity. ACS Appl Mater Interfaces 2015; 7(38): 21047-55.
[http://dx.doi.org/10.1021/acsami.5b07560] [PMID: 26355685]
[162]
Singh RP, Sharma G, Sonali , et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C 2017; 77: 446-58.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[163]
Cirillo G, Vittorio O, Kunhardt D, et al. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials 2019; 12(18): 2889.
[http://dx.doi.org/10.3390/ma12182889] [PMID: 31500165]
[164]
Hellfritzsch M, Scherließ R. Mucosal vaccination via the respiratory tract. Pharmaceutics 2019; 11(8): 375.
[http://dx.doi.org/10.3390/pharmaceutics11080375] [PMID: 31374959]
[165]
Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015; 20(3): 380-9.
[http://dx.doi.org/10.1016/j.drudis.2014.09.020] [PMID: 25281854]
[166]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[167]
Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 2013; 3(1): 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[168]
Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 2019; 10(1): 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[169]
Wang J, Li W, Zhang L, et al. Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Applied Materials & Interfaces 2017; 9(33): 27441-52.
[http://dx.doi.org/10.1021/acsami.7b06464]
[170]
Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics. Ther Deliv 2013; 4(3): 369-94.
[http://dx.doi.org/10.4155/tde.13.6] [PMID: 23442082]
[171]
Ni S, Liu Y, Tang Y, et al. GABAB receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym 2018; 179: 135-44.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.075] [PMID: 29111036]
[172]
Wang F, Wang Y, Ma Q, Cao Y, Yu B. Development and characterization of folic acid-conjugated chitosan nanoparticles for targeted and controlled delivery of gemcitabinein lung cancer therapeutics. Artif Cells Nanomed Biotechnol 2017; 45(8): 1530-8.
[http://dx.doi.org/10.1080/21691401.2016.1260578] [PMID: 27894196]
[173]
Silva S, Arinaminpathy N, Atun R, Goosby E, Reid M. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: a full-income analysis. Lancet Glob Health 2021; 9(10): e1372-9.
[http://dx.doi.org/10.1016/S2214-109X(21)00299-0] [PMID: 34487685]
[174]
Chakaya J, Khan M, Ntoumi F, et al. Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis 2021; 113(Suppl 1) (Suppl. 1): S7-S12.
[http://dx.doi.org/10.1016/j.ijid.2021.02.107] [PMID: 33716195]
[175]
Prabhu P, Fernandes T, Chaubey P, et al. Mannose-conjugated chitosan nanoparticles for delivery of Rifampicin to Osteoarticular tuberculosis. Drug Deliv Transl Res 2021; 11(4): 1509-19.
[http://dx.doi.org/10.1007/s13346-021-01003-7] [PMID: 34021478]
[176]
Ieven M, Coenen S, Loens K, et al. GRACE consortium. Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries. Clin Microbiol Infect 2018; 24(11): 1158-63.
[http://dx.doi.org/10.1016/j.cmi.2018.02.004] [PMID: 29447989]
[177]
Krause JC, Panning M, Hengel H, Henneke P. The role of multiplex PCR in respiratory tract infections in children. Dtsch Arztebl Int 2014; 111(38): 639-45.
[http://dx.doi.org/10.3238/arztebl.2014.0639] [PMID: 25316519]
[178]
Gondil VS, Harjai K, Chhibber S. Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. J Drug Deliv Sci Technol 2021; 61102142
[http://dx.doi.org/10.1016/j.jddst.2020.102142]
[179]
Bowen SJ, Hull J. The basic science of cystic fibrosis. Paediatr Child Health 2015; 25(4): 159-64.
[http://dx.doi.org/10.1016/j.paed.2014.12.008]
[180]
Zhang G, Mo S, Fang B, et al. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2019; 133: 58-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.066] [PMID: 30981773]
[181]
Qiu Y, Xu D, Sui G, et al. Gentamicin decorated phosphatidylcholine-chitosan nanoparticles against biofilms and intracellular bacteria. Int J Biol Macromol 2020; 156: 640-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.090] [PMID: 32304789]
[182]
Mishra B, Mishra M, Yadav SK. Antibacterial loaded spray dried chitosan polyelectrolyte complexes as dry powder aerosol for the treatment of lung infections. Iran J Pharm Res 2017; 16(1): 74-92.
[PMID: 28496463]
[183]
Fu YY, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomedicine 2019; 14: 1805-15.
[http://dx.doi.org/10.2147/IJN.S186571] [PMID: 30880981]
[184]
Wu T, Liao W, Wang W, et al. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr Polym 2018; 197: 403-13.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.034] [PMID: 30007629]
[185]
Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide. Pharm Dev Technol 2021; 26(2): 181-92.
[http://dx.doi.org/10.1080/10837450.2020.1852570] [PMID: 33213232]
[186]
Patel BK, Parikh RH, Aboti PS. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J Drug Deliv 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/370938] [PMID: 24024034]
[187]
Nguyen TV, Nguyen TTH, Wang SL, Vo TPK, Nguyen AD. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 2017; 43(6): 3527-37.
[http://dx.doi.org/10.1007/s11164-016-2428-8]
[188]
Deacon J, Abdelghany SM, Quinn DJ, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release 2015; 198: 55-61.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.022] [PMID: 25481442]
[189]
Duan RR, Hao K, Yang T. Air pollution and chronic obstructive pulmonary disease. Chronic Dis Transl Med 2020; 6(4): 260-9.
[http://dx.doi.org/10.1016/j.cdtm.2020.05.004] [PMID: 33336171]
[190]
Widdicombe JG. Overview of neural pathways in allergy and asthma. Pulm Pharmacol Ther 2003; 16(1): 23-30.
[http://dx.doi.org/10.1016/S1094-5539(02)00178-5] [PMID: 12657497]
[191]
Kaur G, Goyal J, Behera PK, et al. Unraveling the role of chitosan for nasal drug delivery systems: A review. Carbohydr Polym Technol Appl 2023; 5100316
[http://dx.doi.org/10.1016/j.carpta.2023.100316]
[192]
Zhang WF, Zhou HY, Chen XG, Tang SH, Zhang JJ. Biocompatibility study of theophylline/chitosan/β-cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med 2009; 20(6): 1321-30.
[http://dx.doi.org/10.1007/s10856-008-3680-2] [PMID: 19132506]
[193]
Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS. Chitosan IFN-gamma-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet Vaccines Ther 2003; 1(1): 3.
[http://dx.doi.org/10.1186/1479-0556-1-3] [PMID: 14613519]
[194]
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10(2): 113-32.
[http://dx.doi.org/10.4155/tde-2018-0062] [PMID: 30678550]
[195]
Feng ZQ, Sun CG, Zheng ZJ, Hu ZB, Mu DZ, Zhang WF. Optimization of spray-drying conditions and pharmacodynamics study of theophylline/chitosan/β-cyclodextrin microspheres. Dry Technol 2015; 33(1): 55-65.
[http://dx.doi.org/10.1080/07373937.2014.935857]
[196]
Rajivgandhi G, Saravanan K, Ramachandran G, et al. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. Int J Biol Macromol 2020; 164: 4010-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.169] [PMID: 32853609]
[197]
Vogelmeier CF, Criner GJ, Martínez FJ, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report. Respirology 2017; 22(3): 575-601.
[http://dx.doi.org/10.1111/resp.13012] [PMID: 28150362]
[198]
Zhao K, Zhang Y, Zhang X, et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedi 2014; 4609.
[http://dx.doi.org/10.2147/IJN.S70633]
[199]
Tatlow D, Tatlow C, Tatlow S, Tatlow S. A novel concept for treatment and vaccination against Covid-19 with an inhaled chitosan-coated DNA vaccine encoding a secreted spike protein portion. Clin Exp Pharmacol Physiol 2020; 47(11): 1874-8.
[http://dx.doi.org/10.1111/1440-1681.13393] [PMID: 32881059]
[200]
Vila A, Sánchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 2004; 57(1): 123-31.
[http://dx.doi.org/10.1016/j.ejpb.2003.09.006] [PMID: 14729088]
[201]
Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2017; 2(10): 17056.
[http://dx.doi.org/10.1038/natrevmats.2017.56]
[202]
Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. Beni Suef Univ J Basic Appl Sci 2022; 11(1): 35.
[http://dx.doi.org/10.1186/s43088-022-00215-1] [PMID: 35284578]
[203]
Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting in vitro transcribed mRNA against cancer immunotherapy: a contemporary appraisal of the current landscape. Curr Issues Mol Biol 2023; 45(11): 9181-214.
[http://dx.doi.org/10.3390/cimb45110576] [PMID: 37998753]
[204]
Weissman D. mRNA transcript therapy. Expert Rev Vaccines 2015; 14(2): 265-81.
[http://dx.doi.org/10.1586/14760584.2015.973859] [PMID: 25359562]
[205]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[206]
Dirisala A, Uchida S, Tockary TA, et al. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J Drug Target 2019; 27(5-6): 670-80.
[http://dx.doi.org/10.1080/1061186X.2018.1550646] [PMID: 30499743]
[207]
Soliman OY, Alameh MG, De Cresenzo G, Buschmann MD, Lavertu M. Efficiency of Chitosan/Hyaluronan-Based mRNA delivery systems in vitro: influence of composition and structure. J Pharm Sci 2020; 109(4): 1581-93.
[http://dx.doi.org/10.1016/j.xphs.2019.12.020] [PMID: 31891675]
[208]
Forenzo C, Larsen J. Complex coacervates as a promising vehicle for mRNA delivery: A Comprehensive review of recent advances and challenges. Mol Pharm 2023; 20(9): 4387-403. a
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00439] [PMID: 37561647]
[209]
Steinle H, Ionescu TM, Schenk S, et al. Incorporation of synthetic mRNA in injectable Chitosan-Alginate hybrid hydrogels for local and sustained expression of exogenous proteins in cells. Int J Mol Sci 2018; 19(5): 1313.
[http://dx.doi.org/10.3390/ijms19051313] [PMID: 29702615]
[210]
Maiyo F, Singh M. Folate-Targeted mRNA delivery using Chitosan-Functionalized selenium nanoparticles: Potential in cancer immunotherapy. Pharmaceuticals 2019; 12(4): 164.
[http://dx.doi.org/10.3390/ph12040164] [PMID: 31690043]
[211]
Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018; 8(1): 16776.
[http://dx.doi.org/10.1038/s41598-018-34960-0] [PMID: 30425265]
[212]
Zhu D, Cheng H, Li J, et al. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C 2016; 61: 79-84.
[http://dx.doi.org/10.1016/j.msec.2015.12.024] [PMID: 26838827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy