Review Article

Cisplatin-Based Combination Therapy for Enhanced Cancer Treatment

Author(s): Qi Li, Siwei Chen, Xiao Wang, Jia Cai, Hongwu Huang, Shengsong Tang* and Dongxiu He*

Volume 25, Issue 7, 2024

Published on: 08 April, 2024

Page: [473 - 491] Pages: 19

DOI: 10.2174/0113894501294182240401060343

Price: $65

conference banner
Abstract

Cisplatin, a primary chemotherapeutic drug, is of great value in the realm of tumor treatment. However, its clinical efficacy is strictly hindered by issues, such as drug resistance, relapse, poor prognosis, and toxicity to normal tissue. Cisplatin-based combination therapy has garnered increasing attention in both preclinical and clinical cancer research for its ability to overcome resistance, reduce toxicity, and enhance anticancer effects. This review examines three primary co-administration strategies of cisplatin-based drug combinations and their respective advantages and disadvantages. Additionally, seven types of combination therapies involving cisplatin are discussed, focusing on their main therapeutic effects, mechanisms in preclinical research, and clinical applications. This review also discusses future prospects and challenges, aiming to offer guidance for the development of optimal cisplatin-based combination therapy regimens for improved cancer treatment.

Keywords: Cisplatin, co-administration strategy, combination therapy, improved cancer treatment, chemotherapeutic drug, nephrotoxicity, hepatotoxicity.

Graphical Abstract
[1]
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88: 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[2]
Chen Q, Yang Y, Lin X, et al. Platinum( IV ) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem Commun 2018; 54(42): 5369-72.
[http://dx.doi.org/10.1039/C8CC02791A] [PMID: 29744485]
[3]
Woods B, Wenzel MN, Williams T, Thomas SR, Jenkins RL, Casini A. Exo -functionalized metallacages as host-guest systems for the anticancer drug cisplatin. Front Chem 2019; 7: 68.
[http://dx.doi.org/10.3389/fchem.2019.00068] [PMID: 30834242]
[4]
Santos NAG, Ferreira RS, Santos AC. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2020; 136: 111079.
[http://dx.doi.org/10.1016/j.fct.2019.111079] [PMID: 31891754]
[5]
Shi M, McMillan KL, Wu J, et al. Cisplatin nephrotoxicity as a model of chronic kidney disease. Lab Invest 2018; 98(8): 1105-21.
[http://dx.doi.org/10.1038/s41374-018-0063-2] [PMID: 29858580]
[6]
Shahid F, Farooqui Z, Khan F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 2018; 827: 49-57.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.009] [PMID: 29530589]
[7]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[8]
Goel S, Sinha RJ, Bhaskar V, Aeron R, Sharma A, Singh V. Role of gemcitabine and cisplatin as neoadjuvant chemotherapy in muscle invasive bladder cancer: Experience over the last decade. Asian J Urol 2019; 6(3): 222-9.
[http://dx.doi.org/10.1016/j.ajur.2018.06.006] [PMID: 31297313]
[9]
Fan X, Wang T, Ji Z, Li Q, Shen H, Wang J. Synergistic combination therapy of lung cancer using lipid-layered cisplatin and oridonin co-encapsulated nanoparticles. Biomed Pharmacother 2021; 141: 111830.
[http://dx.doi.org/10.1016/j.biopha.2021.111830] [PMID: 34146851]
[10]
Wang MR, Chen RJ, Zhao F, et al. Effect of wenxia changfu formula combined with cisplatin reversing non-small cell lung cancer cell adhesion-mediated drug resistance. Front Pharmacol 2020; 11: 500137.
[http://dx.doi.org/10.3389/fphar.2020.500137] [PMID: 33041787]
[11]
Liu Y, Wang D, Liu H, et al. A clinically translatable ternary platinum(IV) prodrug for synergistically reversing drug resistance. J Med Chem 2023; 66(6): 4045-58.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01924] [PMID: 36897884]
[12]
Xu Y, Han X, Li Y, et al. Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity. ACS Nano 2019; 13(11): 13445-55.
[http://dx.doi.org/10.1021/acsnano.9b07032] [PMID: 31670945]
[13]
Manogaran P, Beeraka NM, Huang CY, Vijaya Padma V. Neferine and isoliensinine enhance ‘intracellular uptake of cisplatin’ and induce ‘ROS-mediated apoptosis’ in colorectal cancer cells A comparative study. Food Chem Toxicol 2019; 132: 110652.
[http://dx.doi.org/10.1016/j.fct.2019.110652] [PMID: 31255669]
[14]
Park HR, Jo SK, Cho HH, Jung U. Synergistic anti-cancer activity of MH-30 in a murine melanoma model treated with cisplatin and its alleviated effects against cisplatin-induced toxicity in mice. in vivo 2020; 34(4): 1845-56.
[http://dx.doi.org/10.21873/invivo.11979] [PMID: 32606154]
[15]
Yu J, Zhang Q, Li J, et al. Sequential administration of pemetrexed and cisplatin reprograms tumor immune microenvironment and potentiates PD-1/PD-L1 treatment in a lung cancer model. J Investig Med 2022; 70(3): 792-9.
[http://dx.doi.org/10.1136/jim-2021-002159] [PMID: 34872935]
[16]
Jangra A, Choi SA, Yang J, et al. Disulfiram potentiates the anticancer effect of cisplatin in atypical teratoid/rhabdoid tumors (AT/RT). Cancer Lett 2020; 486: 38-45.
[http://dx.doi.org/10.1016/j.canlet.2020.05.006] [PMID: 32428661]
[17]
Sonvico F, Barbieri S, Colombo P, et al. Combined hyaluronate-based films loaded with pemetrexed and cisplatin for the treatment of malignant pleural mesothelioma: Preliminary evaluation in an orthotopic tumor recurrence model. Eur J Pharm Sci 2018; 123: 89-97.
[http://dx.doi.org/10.1016/j.ejps.2018.07.035] [PMID: 30030099]
[18]
Lee Y, Kim HY, Nam BH, et al. First-iGAP: a randomized placebo-controlled Phase II study of first-line intercalated gefitinib and pemetrexed-cisplatin chemotherapy for never-smoker lung adenocarcinoma patients. Clin Lung Cancer 2020; 21(6): e572-82.
[http://dx.doi.org/10.1016/j.cllc.2020.05.003] [PMID: 32605893]
[19]
Sherif IO, Al-Gayyar MMH. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance. Life Sci 2018; 198: 87-93.
[http://dx.doi.org/10.1016/j.lfs.2018.02.027] [PMID: 29476769]
[20]
Liu L, Fan J, Ai G, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol Res 2019; 52(1): 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[21]
Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2023; 41(12): 2125-33.
[http://dx.doi.org/10.1200/JCO.22.02542] [PMID: 37068377]
[22]
Pourghadamyari H, Hassanvand F, Mohammadi T, et al. Sildenafil enhances cisplatin-induced apoptosis in human breast adenocarcinoma cells. J Cancer Res Ther 2020; 16(6): 1412-8.
[http://dx.doi.org/10.4103/jcrt.JCRT_675_19] [PMID: 33342806]
[23]
Huang Y, Wu H, Li X. Novel sequential treatment with palbociclib enhances the effect of cisplatin in RB-proficient triple-negative breast cancer. Cancer Cell Int 2020; 20(1): 501.
[http://dx.doi.org/10.1186/s12935-020-01597-x] [PMID: 33061853]
[24]
El-Gizawy MM, Hosny EN, Mourad HH, Abd-El Razik AN. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(10): 1941-53.
[http://dx.doi.org/10.1007/s00210-020-01888-0] [PMID: 32447466]
[25]
Islam SS, Aboussekhra A. Sequential combination of cisplatin with eugenol targets ovarian cancer stem cells through the Notch-Hes1 signalling pathway. J Exp Clin Cancer Res 2019; 38(1): 382.
[http://dx.doi.org/10.1186/s13046-019-1360-3] [PMID: 31470883]
[26]
Nishio M, Barlesi F, West H, et al. Atezolizumab plus chemotherapy for first-line treatment of nonsquamous NSCLC: results from the randomized phase 3 IMpower132 trial. J Thorac Oncol 2021; 16(4): 653-64.
[http://dx.doi.org/10.1016/j.jtho.2020.11.025] [PMID: 33333328]
[27]
Rischin D, King M, Kenny L, et al. Randomized trial of radiation therapy with weekly cisplatin or cetuximab in low-risk HPV-associated oropharyngeal cancer (TROG 12.01) a trans-tasman radiation oncology group study. Int J Radiat OncolBiolPhys 2021; 111(4): 876-66.
[28]
Zhou Q, Shao S, Wang J, et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol 2019; 14(8): 799-809.
[http://dx.doi.org/10.1038/s41565-019-0485-z] [PMID: 31263194]
[29]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[30]
Khan M, Zhao P, Khan A, et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 2019; 14: 3753-71.
[http://dx.doi.org/10.2147/IJN.S196651] [PMID: 31239661]
[31]
Cao M, Long M, Chen Q, et al. Development of β-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts. Pharm Res 2019; 36(8): 121.
[http://dx.doi.org/10.1007/s11095-019-2656-x] [PMID: 31214786]
[32]
Renault-Mahieux M, Vieillard V, Seguin J, et al. Co-encapsulation of fisetin and cisplatin into liposomes for glioma therapy: From formulation to cell evaluation. Pharmaceutics 2021; 13(7): 970.
[http://dx.doi.org/10.3390/pharmaceutics13070970] [PMID: 34206986]
[33]
You C, Wu H, Wang M, Gao Z, Sun B, Zhang X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater Sci Eng C 2018; 92: 453-62.
[http://dx.doi.org/10.1016/j.msec.2018.06.044] [PMID: 30184771]
[34]
Nan Y. Lung carcinoma therapy using epidermal growth factor receptor-targeted lipid polymeric nanoparticles co-loaded with cisplatin and doxorubicin. Oncol Rep 2019; 42(5): 2087-96.
[http://dx.doi.org/10.3892/or.2019.7323] [PMID: 31545462]
[35]
Wan X, Beaudoin JJ, Vinod N, et al. Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials 2019; 192: 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.032] [PMID: 30415101]
[36]
Liu J, Guo X, Luo Z, Zhang J, Li M, Cai K. Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale 2018; 10(28): 13737-50.
[http://dx.doi.org/10.1039/C8NR02971G] [PMID: 29992216]
[37]
Zhang Y, Fu X, Jia J, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oOxide nanoparticles. ACS Appl Mater Interfaces 2020; 12(39): 43408-21.
[http://dx.doi.org/10.1021/acsami.0c12042] [PMID: 32885649]
[38]
Inanc Surer S, Elçitepe TB, Akçay D, et al. A promising, novel radiosensitizer nanodrug complex for oral cavity cancer: cetuximab and cisplatin-conjugated gold nanoparticles. Balkan Med J 2021; 38(5): 278-86.
[http://dx.doi.org/10.5152/balkanmedj.2021.21013] [PMID: 34462254]
[39]
Zhang XK, Wang QW, Xu YJ, Sun HM, Wang L, Zhang LX. Co-delivery of cisplatin and oleanolic acid by silica nanoparticles-enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci 2021; 37(6): 505-12.
[http://dx.doi.org/10.1002/kjm2.12365] [PMID: 33559348]
[40]
Khan MM, Madni A, Tahir N, et al. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int J Nanomedicine 2020; 15: 2207-17.
[http://dx.doi.org/10.2147/IJN.S247893] [PMID: 32280215]
[41]
Ling X, Chen X, Riddell IA, et al. Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett 2018; 18(7): 4618-25.
[http://dx.doi.org/10.1021/acs.nanolett.8b01924] [PMID: 29902013]
[42]
Sun M, Shi Y, Dang U, Di Pasqua A. Phenethyl isothiocyanate and cisplatin co-Encapsulated in a liposomal nanoparticle for treatment of non-small cell lung cancer. Molecules 2019; 24(4): 801.
[http://dx.doi.org/10.3390/molecules24040801] [PMID: 30813352]
[43]
Guo XL, Kang XX, Wang YQ, et al. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019; 84: 367-77.
[http://dx.doi.org/10.1016/j.actbio.2018.12.007] [PMID: 30528609]
[44]
He L, Sun M, Cheng X, et al. pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy. J Colloid Interface Sci 2019; 541: 30-41.
[http://dx.doi.org/10.1016/j.jcis.2019.01.076] [PMID: 30682591]
[45]
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2021; 329: 805-32.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.014] [PMID: 33045313]
[46]
Yang MY, Zhao RR, Fang YF, Jiang JL, Yuan XT, Shao JW. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy. Int J Pharm 2019; 570: 118663.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118663] [PMID: 31493497]
[47]
Zacharioudakis E, Rodriguez R. Repurposing Platinum(IV) prodrugs to modulate mitochondrial metabolism. ACS Cent Sci 2023; 9(7): 1257-9.
[http://dx.doi.org/10.1021/acscentsci.3c00654] [PMID: 37521796]
[48]
Li X, Liu Y, Tian H. Current Developments in Pt(IV) Prodrugs Conjugated with Bioactive Ligands. Bioinorg Chem Appl 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/8276139] [PMID: 30402082]
[49]
Reithofer MR, Bytzek AK, Valiahdi SM, et al. Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes. J Inorg Biochem 2011; 105(1): 46-51.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.09.006] [PMID: 21134601]
[50]
Huang X, Wang M, Wang C, et al. Dual-targeting antitumor conjugates derived from platinum(IV) prodrugs and microtubule inhibitor CA-4 significantly exhibited potent ability to overcome cisplatin resistance. Bioorg Chem 2019; 92: 103236.
[http://dx.doi.org/10.1016/j.bioorg.2019.103236] [PMID: 31494328]
[51]
Ma ZY, Wang DB, Song XQ, et al. Chlorambucil-conjugated platinum(IV) prodrugs to treat triple-negative breast cancer in vitro and in vivo. Eur J Med Chem 2018; 157: 1292-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.065] [PMID: 30195239]
[52]
Huang X, Liu Z, Wang M, et al. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: in vitro and in vivo studies. Bioorg Chem 2020; 105: 104430.
[http://dx.doi.org/10.1016/j.bioorg.2020.104430] [PMID: 33171407]
[53]
Zhang H, Wu Y, Xu X, et al. Synthesis characterization of platinum (IV) complex curcumin backboned polyprodrugs: in vitro drug release anticancer activity. Polymers 2020; 13(1): 67.
[http://dx.doi.org/10.3390/polym13010067] [PMID: 33375302]
[54]
Mei H, Li J, Cai S, et al. Mitochondria-acting carrier-free nanoplatform self-assembled by α-tocopheryl succinate carrying cisplatin for combinational tumor therapy. Regen Biomater 2021; 8(4): rbab029.
[http://dx.doi.org/10.1093/rb/rbab029] [PMID: 34221448]
[55]
Xin J, Zhang K, Huang J, et al. Facile synthesis of aquo-cisplatin arsenite multidrug nanocomposites for overcoming drug resistance and efficient combination therapy. Biomater Sci 2019; 7(1): 262-71.
[http://dx.doi.org/10.1039/C8BM01039K] [PMID: 30465673]
[56]
Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharmac Sci 2021; 16(6): 762-71.
[http://dx.doi.org/10.1016/j.ajps.2021.08.001] [PMID: 35027952]
[57]
Tan J, Li C, Wang Q, et al. A carrier free nanostructure based on platinum(IV) prodrug enhances cellular uptake and cytotoxicity. Mol Pharm 2018; 15(4): 1724-8.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00070] [PMID: 29522683]
[58]
Xing L, Yang CX, Zhao D, et al. A carrier-free anti-inflammatory platinum (II) self-delivered nanoprodrug for enhanced breast cancer therapy. J Control Release 2021; 331: 460-71.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.037] [PMID: 33545218]
[59]
Zhang W, Tung CH. Cisplatin cross-Linked multifunctional nanodrugplexes for combination therapy. ACS Appl Mater Interfaces 2017; 9(10): 8547-55.
[http://dx.doi.org/10.1021/acsami.6b16500] [PMID: 28224786]
[60]
Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021; 268: 120557.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120557] [PMID: 33260095]
[61]
Han Y, Sun B, Cai H, Xuan Y. Simultaneously target of normal and stem cells-like gastric cancer cells via cisplatin and anti-CD133 CAR-T combination therapy. Cancer Immunol Immunother 2021; 70(10): 2795-803.
[http://dx.doi.org/10.1007/s00262-021-02891-x] [PMID: 33635343]
[62]
Wang L, Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020; 10(1): 54.
[http://dx.doi.org/10.1186/s13568-020-00990-z] [PMID: 32185543]
[63]
Mirrahimi M, Abed Z, Beik J, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 2019; 143: 178-85.
[http://dx.doi.org/10.1016/j.phrs.2019.01.005] [PMID: 30611856]
[64]
Hu J, Chen J, Ou Z, et al. Neoadjuvant immunotherapy, chemotherapy, and combination therapy in muscle-invasive bladder cancer: A multi-center real-world retrospective study. Cell Rep Med 2022; 3(11): 100785.
[http://dx.doi.org/10.1016/j.xcrm.2022.100785] [PMID: 36265483]
[65]
Wang Y, Qian J, Yang M, et al. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019; 225: 115206.
[http://dx.doi.org/10.1016/j.carbpol.2019.115206] [PMID: 31521263]
[66]
Yu T, Li Y, Gu X, Li Q. Development of a hyaluronic acid-based nanocarrier incorporating doxorubicin and cisplatin as a ph-sensitive and cd44-targeted anti-breast cancer drug delivery system. Front Pharmacol 2020; 11: 532457.
[http://dx.doi.org/10.3389/fphar.2020.532457] [PMID: 32982750]
[67]
Wang B, Hu W, Yan H, et al. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother 2021; 136: 111249.
[http://dx.doi.org/10.1016/j.biopha.2021.111249] [PMID: 33450493]
[68]
Tarannum M, Hossain MA, Holmes B, Yan S, Mukherjee P, Vivero-Escoto JL. Advanced nanoengineering approach for target-specific, spatiotemporal, and ratiometric delivery of gemcitabine–cisplatin combination for improved therapeutic outcome in pancreatic cancer. Small 2022; 18(2): 2104449.
[http://dx.doi.org/10.1002/smll.202104449] [PMID: 34758094]
[69]
Chen TY, Tsai MJ, Chang LC, Wu PC. Co-delivery of cisplatin and gemcitabine via viscous nanoemulsion for potential synergistic intravesical chemotherapy. Pharmaceutics 2020; 12(10): 949.
[http://dx.doi.org/10.3390/pharmaceutics12100949] [PMID: 33036448]
[70]
Liu Z, Chu W, Sun Q, et al. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int J Pharm 2021; 602: 120619.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120619] [PMID: 33887396]
[71]
Liu D, Zhang W, Liu X, Qiu R. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells. Drug Deliv 2021; 28(1): 776-86.
[http://dx.doi.org/10.1080/10717544.2021.1902022] [PMID: 33866910]
[72]
Ding N, Zhao Z, Yin N, et al. Co-delivery of gemcitabine and cisplatin via Poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) micelle to improve the in vivo stability and antitumor effect. Pharm Res 2021; 38(12): 2091-108.
[http://dx.doi.org/10.1007/s11095-021-03139-0] [PMID: 34893950]
[73]
Wu R, Zhang Z, Wang B, et al. Combination chemotherapy of lung cancer co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid–polymer hybrid nanoparticles. Drug Des Devel Ther 2020; 14: 2249-61.
[http://dx.doi.org/10.2147/DDDT.S246574] [PMID: 32606595]
[74]
Yang F, Li A, Liu H, Zhang H. Gastric cancer combination therapy: Synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther 2018; 12: 3321-33.
[http://dx.doi.org/10.2147/DDDT.S176879] [PMID: 30323564]
[75]
Lin C, Tao Y, Saw PE, Cao M, Huang H, Xu X. A polyprodrug-based nanoplatform for cisplatin prodrug delivery and combination cancer therapy. Chem Commun 2019; 55(93): 13987-90.
[http://dx.doi.org/10.1039/C9CC06567A] [PMID: 31687673]
[76]
Zhang P, Zhao S, Lu X, Shi Z, Liu H, Zhu B. Metformin enhances the sensitivity of colorectal cancer cells to cisplatin through ROS- mediated PI3K/Akt signaling pathway. Gene 2020; 745: 144623.
[http://dx.doi.org/10.1016/j.gene.2020.144623] [PMID: 32222530]
[77]
Wang H, Xia W, Long G, et al. Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Front Pharmacol 2020; 11: 599416.
[http://dx.doi.org/10.3389/fphar.2020.599416] [PMID: 33424608]
[78]
Man Q, Deng Y, Li P, et al. Licorice ameliorates cisplatin-induced hepatotoxicity through antiapoptosis, antioxidative stress, anti-Inflammation, and acceleration of metabolism. Front Pharmacol 2020; 11: 563750.
[http://dx.doi.org/10.3389/fphar.2020.563750] [PMID: 33240085]
[79]
Di Y, Xu T, Tian Y, et al. Ursolic acid protects against cisplatin-induced ototoxicity by inhibiting oxidative stress and TRPV1-mediated Ca2+-signaling. Int J Mol Med 2020; 46(2): 806-16.
[http://dx.doi.org/10.3892/ijmm.2020.4633] [PMID: 32626955]
[80]
Lu C, Wang H, Chen S, Yang R, Li H, Zhang G. Baicalein inhibits cell growth and increases cisplatin sensitivity of A549 and H460 cells via miR-424-3p and targeting PTEN/PI3K/Akt pathway. J Cell Mol Med 2018; 22(4): 2478-87.
[http://dx.doi.org/10.1111/jcmm.13556] [PMID: 29392841]
[81]
Zhang Z, Sun C, Zhang L, et al. Triptolide interferes with XRCC1/PARP1-mediated DNA repair and confers sensitization of triple-negative breast cancer cells to cisplatin. Biomed Pharmacother 2019; 109: 1541-6.
[http://dx.doi.org/10.1016/j.biopha.2018.11.008] [PMID: 30551406]
[82]
Moro M, Caiola E, Ganzinelli M, et al. Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol 2018; 13(11): 1692-704.
[http://dx.doi.org/10.1016/j.jtho.2018.07.102] [PMID: 30149143]
[83]
Zhu L, Huang S, Li J, et al. Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways. Gene 2020; 742: 144556.
[http://dx.doi.org/10.1016/j.gene.2020.144556] [PMID: 32165304]
[84]
Geng N, Zheng X, Wu M, Yang L, Li X, Chen J. Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis. Oncol Rep 2019; 42(5): 2108-16.
[http://dx.doi.org/10.3892/or.2019.7281] [PMID: 31432178]
[85]
Pascua SM, McGahey GE, Ma N, Wang JJ, Digman MA. Caffeine and cisplatin effectively targets the metabolism of a triple-negative breast cancer cell line assessed via phasor-FLIM. Int J Mol Sci 2020; 21(7): 2443.
[http://dx.doi.org/10.3390/ijms21072443] [PMID: 32244616]
[86]
Yu S, Gong L, Li N, Pan Y, Zhang L. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed Pharmacother 2018; 97: 213-24.
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[87]
Bravo-Cuellar A, Ortiz-Lazareno PC, Sierra-Díaz E, et al. Pentoxifylline sensitizes cisplatin-resistant human cervical cancer cells to cisplatin treatment: involvement of mitochondrial and NF-Kappa B pathways. Front Oncol 2020; 10: 592706.
[http://dx.doi.org/10.3389/fonc.2020.592706] [PMID: 33680921]
[88]
Zheng Z, You H, Feng Y, Zhang Z. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells. Mol Cell Biochem 2021; 476(7): 2575-85.
[http://dx.doi.org/10.1007/s11010-020-03856-x] [PMID: 32757174]
[89]
Yang Y, Lin Z, He P, Nie H, Yao Q, Zhang S. Inhibitory effect of astragalus polysaccharide combined with cisplatin on cell cycle and migration of nasopharyngeal carcinoma cell lines. Biol Pharm Bull 2021; 44(7): 926-31.
[http://dx.doi.org/10.1248/bpb.b20-00959] [PMID: 33952795]
[90]
Mondal J, Khuda-Bukhsh AR. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Mol Biol Rep 2020; 47(5): 3615-28.
[http://dx.doi.org/10.1007/s11033-020-05455-x] [PMID: 32314187]
[91]
Abdelrahim M, Esmail A, Xu J, et al. Gemcitabine plus cisplatin versus non-gemcitabine and cisplatin regimens as neoadjuvant treatment for cholangiocarcinoma patients prior to liver transplantation: An Institution Experience. Front Oncol 2022; 12: 908687.
[http://dx.doi.org/10.3389/fonc.2022.908687] [PMID: 35719974]
[92]
DeCastro GJ, Sui W, Pak JS, et al. A Phase I trial of intravesical cabazitaxel, gemcitabine and cisplatin for the treatment of nonmuscle invasive bacillus calmette-guérin unresponsive or recurrent/relapsing urothelial carcinoma of the bladder. J Urol 2020; 204(2): 247-53.
[http://dx.doi.org/10.1097/JU.0000000000000919] [PMID: 32118506]
[93]
Ogawa M, Yamamoto S, Inoue T, et al. Phase II study of second-line chemotherapy with paclitaxel, gemcitabine, and cisplatin for advanced urothelial carcinoma. Anticancer Res 2020; 40(3): 1613-8.
[http://dx.doi.org/10.21873/anticanres.14109] [PMID: 32132064]
[94]
Shroff RT, Javle MM, Xiao L, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: A phase 2 Clinical Trial. JAMA Oncol 2019; 5(6): 824-30.
[http://dx.doi.org/10.1001/jamaoncol.2019.0270] [PMID: 30998813]
[95]
Deleporte A, Van den Eynde M, Forget F, et al. Fortnightly or fractionated weekly docetaxel–cisplatin–5-FU as first-line treatment in advanced gastric and gastroesophageal junction adenocarcinoma: The randomized phase II DoGE study. Cancer Med 2021; 10(13): 4366-74.
[http://dx.doi.org/10.1002/cam4.3976] [PMID: 34057299]
[96]
Tempfer CB, Giger-Pabst U, Seebacher V, Petersen M, Dogan A, Rezniczek GA. A phase I, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis. Gynecol Oncol 2018; 150(1): 23-30.
[http://dx.doi.org/10.1016/j.ygyno.2018.05.001] [PMID: 29743140]
[97]
Yamada Y. Nucleic acid drugs—current status, issues, and expectations for exosomes. Cancers 2021; 13(19): 5002.
[http://dx.doi.org/10.3390/cancers13195002] [PMID: 34638486]
[98]
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123: 104602.
[http://dx.doi.org/10.1016/j.yexmp.2021.104602] [PMID: 33422487]
[99]
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14(1): 127.
[http://dx.doi.org/10.1186/s13048-021-00882-1] [PMID: 34593006]
[100]
Mirzaei S, Gholami MH, Hashemi F, et al. Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277: 119430.
[http://dx.doi.org/10.1016/j.lfs.2021.119430] [PMID: 33789144]
[101]
Mu C, Wang XL, Ruan Y, Sun JJ, Hu XR, Cheng Y. Recent advances in the contribution of circRNAs to cisplatin chemotherapy resistance in cancers. Neoplasma 2021; 68(6): 1119-31.
[http://dx.doi.org/10.4149/neo_2021_210624N846] [PMID: 34533032]
[102]
Seidl C, Panzitt K, Bertsch A, et al. MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett 2020; 469: 266-76.
[http://dx.doi.org/10.1016/j.canlet.2019.10.044] [PMID: 31697978]
[103]
Yuan W, Zhou R, Wang J, et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol Oncol 2019; 13(7): 1559-76.
[http://dx.doi.org/10.1002/1878-0261.12523] [PMID: 31131537]
[104]
Larrue R, Fellah S, Boukrout N, et al. miR-92a-3p regulates cisplatin-induced cancer cell death. Cell Death Dis 2023; 14(9): 603.
[http://dx.doi.org/10.1038/s41419-023-06125-z] [PMID: 37704611]
[105]
Zhang J, He W, Zheng D, He Q, Tan M, Jin J. Exosomal-miR-1184 derived from mesenchymal stem cells alleviates cisplatin-associated acute kidney injury. Mol Med Rep 2021; 24(5): 795.
[http://dx.doi.org/10.3892/mmr.2021.12435] [PMID: 34515319]
[106]
Aydin E, Cebeci A, Lekesizcan A. Prevention of cisplatin-induced nephrotoxicity by kidney-targeted siRNA delivery. Int J Pharm 2022; 628: 122268.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122268] [PMID: 36209978]
[107]
Cataldo A, Romero-Cordoba S, Plantamura I, et al. MiR-302b as a combinatorial therapeutic approach to improve cisplatin chemotherapy efficacy in human triple-negative breast cancer. Cancers 2020; 12(8): 2261.
[http://dx.doi.org/10.3390/cancers12082261] [PMID: 32806777]
[108]
Yan J, Zhang Y, Zheng L, et al. Let-7i miRNA and platinum loaded nano-graphene oxide platform for detection/reversion of drug resistance and synergetic chemical-photothermal inhibition of cancer cell. Chin Chem Lett 2022; 33(2): 767-72.
[http://dx.doi.org/10.1016/j.cclet.2021.08.018]
[109]
Gu TT, Li C, Xu Y, et al. Stimuli-responsive combination therapy of cisplatin and Nrf2 siRNA for improving antitumor treatment of osteosarcoma. Nano Res 2020; 13(3): 630-7.
[http://dx.doi.org/10.1007/s12274-020-2660-9]
[110]
Ma S, Li X, Ran M, et al. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm 2021; 601: 120577.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120577] [PMID: 33839227]
[111]
Zhang Y, Fu X, Jia J, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces 2020; 12(39): 43408-21.
[http://dx.doi.org/10.1021/acsami.0c12042] [PMID: 32885649]
[112]
Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol 2019; 30(2): 219-35.
[http://dx.doi.org/10.1093/annonc/mdy551] [PMID: 30608567]
[113]
Fournel L, Wu Z, Stadler N, et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 2019; 464: 5-14.
[http://dx.doi.org/10.1016/j.canlet.2019.08.005] [PMID: 31404614]
[114]
Shen N, Yang C, Zhang X, Tang Z, Chen X. Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater 2021; 135: 543-55.
[http://dx.doi.org/10.1016/j.actbio.2021.08.013] [PMID: 34400305]
[115]
Iannelli F, Zotti AI, Roca MS, et al. Valproic acid synergizes with cisplatin and cetuximab in vitro and in vivo in head and neck cancer by targeting the mechanisms of resistance. Front Cell Dev Biol 2020; 8: 732.
[http://dx.doi.org/10.3389/fcell.2020.00732] [PMID: 33015030]
[116]
Otsuka K, Mitsuhashi A, Goto H, et al. Anti-PD-1 antibody combined with chemotherapy suppresses the growth of mesothelioma by reducing myeloid-derived suppressor cells. Lung Cancer 2020; 146: 86-96.
[http://dx.doi.org/10.1016/j.lungcan.2020.05.023] [PMID: 32526602]
[117]
Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol 2018; 336: 175-203.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.004] [PMID: 29413890]
[118]
Wang N, Wang Z, Xu Z, Chen X, Zhu G. A cisplatin-loaded immunochemotherapeutic nanohybrid bearing immune checkpoint inhibitors for enhanced cervical cancer therapy. Angew Chem Int Ed 2018; 57(13): 3426-30.
[http://dx.doi.org/10.1002/anie.201800422] [PMID: 29405579]
[119]
El-Ashmawy NE, Salem ML, Khedr eg, El-Zamarany EA, Ibrahim AO. Dual-targeted therapeutic strategy combining CSC–DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model. Clin Transl Oncol 2020; 22(7): 1155-65.
[http://dx.doi.org/10.1007/s12094-019-02242-4] [PMID: 31748959]
[120]
Boilesen DR, Neckermann P, Willert T, et al. Efficacy and synergy with cisplatin of an adenovirus vectored therapeutic E1E2E6E7 vaccine against HPV genome-positive C3 cancers in mice. Cancer Immunol Res 2023; 11(2): 261-75.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0174] [PMID: 36534088]
[121]
Porchia BFMM, Aps LRMM, Moreno ACR, et al. Active immunization combined with cisplatin confers enhanced therapeutic protection and prevents relapses of HPV-induced tumors at different anatomical sites. Int J Biol Sci 2022; 18(1): 15-29.
[http://dx.doi.org/10.7150/ijbs.56644] [PMID: 34975315]
[122]
Cui Z, Xu D, Zhang F, et al. CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp Cell Res 2021; 405(2): 112677.
[http://dx.doi.org/10.1016/j.yexcr.2021.112677] [PMID: 34111474]
[123]
Fu Q, Wang J, Liu H. Chemo-immune synergetic therapy of esophageal carcinoma: trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles. Drug Deliv 2020; 27(1): 1535-43.
[http://dx.doi.org/10.1080/10717544.2020.1837294] [PMID: 33118428]
[124]
Wu T, Cui J, Gao J, Zhou H, Li A, Guo W. Pidotimod enhanced the anti-growth effect of cisplatin on lung cancer in mice via promoting anti-tumor immune response. Biochem Biophys Res Commun 2020; 528(4): 678-84.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.117] [PMID: 32513535]
[125]
Limagne E, Nuttin L, Thibaudin M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell 2022; 40(2): 136-152.e12.
[http://dx.doi.org/10.1016/j.ccell.2021.12.009] [PMID: 35051357]
[126]
Li J, Bai Y, Li Q, et al. CS1001-304: A phase III study of fluorouracil and cisplatin (FP) with CS1001, an anti-PD-L1 antibody, or placebo in unresectable locally advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC). J Clin Oncol 2021; 39(2): TPS255.
[http://dx.doi.org/10.1200/JCO.2021.39.3_suppl.TPS255]
[127]
Shibaki R, Akamatsu H, Kato T, et al. A phase II study of cisplatin plus vinorelbine combined with atezolizumab as adjuvant therapy for completely resected non-small-cell lung cancer with EGFR mutation (West Japan Oncology Group 11719L/ADJUST study). Ther Adv Med Oncol 2021; 13
[http://dx.doi.org/10.1177/1758835920987647] [PMID: 33613698]
[128]
Bando H, Kotani D, Tsushima T, et al. TENERGY: multicenter phase II study of Atezolizumab monotherapy following definitive Chemoradiotherapy with 5-FU plus Cisplatin in patients with unresectable locally advanced esophageal squamous cell carcinoma. BMC Cancer 2020; 20(1): 336.
[http://dx.doi.org/10.1186/s12885-020-06716-5] [PMID: 32312286]
[129]
Ikeda M, Ueno M, Morizane C, et al. A multicenter, open-label, phase I study of nivolumab alone or in combination with gemcitabine plus cisplatin in patients with unresectable or recurrent biliary tract cancer. J Clin Oncol 2019; 37(4_suppl): 306.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.306]
[130]
Ueno M, Ikeda M, Morizane C, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol 2019; 4(8): 611-21.
[http://dx.doi.org/10.1016/S2468-1253(19)30086-X] [PMID: 31109808]
[131]
Kelley RK, Ueno M, Yoo C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled. phase 3 trial 2023; 401(10391): 1853-65.
[http://dx.doi.org/10.1016/S0140-6736(23)00727-4]
[132]
Rose TL, Harrison MR, Deal AM, et al. Phase II study of gemcitabine and split-dose cisplatin plus pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive bladder cancer. J Clin Oncol 2021; 39(28): 3140-8.
[http://dx.doi.org/10.1200/JCO.21.01003] [PMID: 34428076]
[133]
Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed 2019; 58(4): 946-56.
[http://dx.doi.org/10.1002/anie.201805664] [PMID: 30048028]
[134]
Zhang L, Wan SS, Li CX, Xu L, Cheng H, Zhang XZ. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett 2018; 18(12): 7609-18.
[http://dx.doi.org/10.1021/acs.nanolett.8b03178] [PMID: 30383966]
[135]
Koo S, Park OK, Kim J, et al. Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic fenton reaction. ACS Nano 2022; 16(2): 2535-45.
[http://dx.doi.org/10.1021/acsnano.1c09171] [PMID: 35080370]
[136]
Gang GT, Kim YH, Noh JR, et al. Protective role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cisplatin-induced nephrotoxicity. Toxicol Lett 2013; 221(3): 165-75.
[http://dx.doi.org/10.1016/j.toxlet.2013.06.239] [PMID: 23831944]
[137]
Ren Z, Sun S, Sun R, et al. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv Mater 2020; 32(6): 1906024.
[http://dx.doi.org/10.1002/adma.201906024] [PMID: 31834662]
[138]
Liu J, Wu M, Pan Y, et al. Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification. Adv Funct Mater 2020; 30(13): 1908865.
[http://dx.doi.org/10.1002/adfm.201908865]
[139]
Yang K, Yu G, Yang Z, et al. Supramolecular polymerization-induced nanoassemblies for self-augmented cascade chemotherapy and chemodynamic therapy of tumor. Angew Chem Int Ed 2021; 60(32): 17570-8.
[http://dx.doi.org/10.1002/anie.202103721] [PMID: 34041833]
[140]
He Y, Jin X, Guo S, Zhao H, Liu Y, Ju H. Conjugated polymer-ferrocence nanoparticle as an NIR-II light powered nanoamplifier to enhance chemodynamic therapy. ACS Appl Mater Interfaces 2021; 13(27): 31452-61.
[http://dx.doi.org/10.1021/acsami.1c06613] [PMID: 34197086]
[141]
Chen Y, Yao Y, Zhou X, et al. Cascade-reaction-based nanodrug for combined chemo/starvation/chemodynamic therapy against multidrug-resistant tumors. ACS Appl Mater Interfaces 2019; 11(49): 46112-23.
[http://dx.doi.org/10.1021/acsami.9b15848] [PMID: 31722522]
[142]
Xiao T, He M, Xu F, et al. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano 2021; 15(12): 20377-90.
[http://dx.doi.org/10.1021/acsnano.1c08689] [PMID: 34860014]
[143]
Gao F, Sun M, Zhang J, et al. Fenton-like reaction and glutathione depletion by chiral manganese dioxide nanoparticles for enhanced chemodynamic therapy and chemotherapy. J Colloid Interface Sci 2022; 616: 369-78.
[http://dx.doi.org/10.1016/j.jcis.2022.02.060] [PMID: 35220185]
[144]
Xiang H, You C, Liu W, Wang D, Chen Y, Dong C. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021; 277: 121071.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121071] [PMID: 34450576]
[145]
Zhang Y, Lou J, Williams GR, et al. Cu2+-chelating mesoporous silica nanoparticles for synergistic chemotherapy/chemodynamic therapy. Pharmaceutics 2022; 14(6): 1200.
[http://dx.doi.org/10.3390/pharmaceutics14061200] [PMID: 35745773]
[146]
Jin Q, Yan S, Hu H, et al. Enhanced chemodynamic therapy and chemotherapy via delivery of a dual threat ArtePt and iodo-click reaction mediated glutathione consumption. Small Methods 2021; 5(12): 2101047.
[http://dx.doi.org/10.1002/smtd.202101047] [PMID: 34928038]
[147]
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17(11): 657-74.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[148]
Zhou B, Ma Y, Li L, et al. Pheophorbide co-encapsulated with Cisplatin in folate-decorated PLGA nanoparticles to treat nasopharyngeal carcinoma: Combination of chemotherapy and photodynamic therapy. Colloids Surf B Biointerfaces 2021; 208: 112100.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112100] [PMID: 34547704]
[149]
Xue K, Wang YN, Zhao X, Zhang HX, Yu D, Jin C. Synergistic effect of meta-tetra(hydroxyphenyl)chlorin-based photodynamic therapy followed by cisplatin on malignant Hep-2 cells. OncoTargets Ther 2019; 12: 5525-36.
[http://dx.doi.org/10.2147/OTT.S198422] [PMID: 31371990]
[150]
You C, Wu H, Wang M, Gao Z, Zhang X, Sun B. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology 2018; 29(1): 015601.
[http://dx.doi.org/10.1088/1361-6528/aa9a19] [PMID: 29130888]
[151]
Hu X, Li H, Li R, et al. A phase-change mediated intelligent nanoplatform for chemo/photothermal/photodynamic therapy of cancer. Adv Healthc Mater 2023; 12(5): 2202245.
[http://dx.doi.org/10.1002/adhm.202202245] [PMID: 36373209]
[152]
Busa P, Kankala R, Deng JP, Liu CL, Lee CH. Conquering cancer multi-Drug resistance using curcumin and cisplatin prodrug-encapsulated mesoporous silica nanoparticles for synergistic chemo- and photodynamic therapies. Nanomaterials 2022; 12(20): 3693.
[http://dx.doi.org/10.3390/nano12203693] [PMID: 36296885]
[153]
Gao Z, You C, Wu H, Wang M, Zhang X, Sun B. FA and cRGD dual modified lipid-polymer nanoparticles encapsulating polyaniline and cisplatin for highly effective chemo-photothermal combination therapy. J Biomater Sci Polym Ed 2018; 29(4): 397-411.
[http://dx.doi.org/10.1080/09205063.2017.1421348] [PMID: 29271285]
[154]
Qiang S, Hu X, Li R, et al. CuS nanoparticles-loaded and cisplatin prodrug conjugated Fe(III)-MOFs for MRI-guided combination of chemotherapy and NIR-II photothermal therapy. ACS Appl Mater Interfaces 2022; 14(32): 36503-14.
[http://dx.doi.org/10.1021/acsami.2c12727] [PMID: 35925873]
[155]
Monem AS, Sayed FA, Rageh MM, Mohamed N. Cytotoxicity and genotoxicity of gold nanorods assisted photothermal therapy against Ehrlich carcinoma in-vivo. Life Sci 2020; 257: 118108.
[http://dx.doi.org/10.1016/j.lfs.2020.118108] [PMID: 32682920]
[156]
Lange C, Bednarski P. Evaluation for synergistic effects by combinations of photodynamic therapy (PDT) with temoporfin (mTHPC) and Pt(II) complexes carboplatin, cisplatin or oxaliplatin in a set of five human cancer cell lines. Int J Mol Sci 2018; 19(10): 3183.
[http://dx.doi.org/10.3390/ijms19103183] [PMID: 30332729]
[157]
Chen Y, Zhang L, Li F, et al. Combination of chemotherapy and photodynamic therapy with oxygen self-supply in the form of mutual assistance for cancer therapy. Int J Nanomedicine 2021; 16: 3679-94.
[http://dx.doi.org/10.2147/IJN.S298146] [PMID: 34093012]
[158]
Wang D, Ma W, Huang Y, et al. Supramolecular nanoassemblies-mediated GSH depletion boosts synergistic chemo- and photodynamic therapy for immunogenicity enhancement. Chem Eng J 2023; 468: 143731.
[http://dx.doi.org/10.1016/j.cej.2023.143731]
[159]
Chen CT, Peng PC, Tsai T, Chien HF, Lee MJ. A novel treatment modality for malignant peripheral nerve sheath tumor using a dual-effect liposome to combine photodynamic therapy and chemotherapy. Pharmaceutics 2020; 12(4): 317.
[http://dx.doi.org/10.3390/pharmaceutics12040317] [PMID: 32252313]
[160]
Zhou H, Wang Y, Hou Y, et al. Co-delivery of cisplatin and chlorin e6 by poly(phosphotyrosine) for synergistic chemotherapy and photodynamic therapy. Chin J Chem 2022; 40(20): 2428-36.
[http://dx.doi.org/10.1002/cjoc.202200334]
[161]
Zhang X, Feng L, Dong Z, et al. Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. Int J Pharm 2020; 582: 119321.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119321] [PMID: 32289483]
[162]
Wang X, Gong Q, Song C, et al. Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol 2021; 418: 115484.
[http://dx.doi.org/10.1016/j.taap.2021.115484] [PMID: 33716044]
[163]
Wang Y, Xie D, Pan J, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci 2019; 7(12): 5270-82.
[http://dx.doi.org/10.1039/C9BM01192G] [PMID: 31603446]
[164]
Gao J, Wang F, Wang S, et al. Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy. Adv Sci 2020; 7(11): 1903642.
[http://dx.doi.org/10.1002/advs.201903642] [PMID: 32537410]
[165]
Gonzalez-Carmona MA, Bolch M, Jansen C, et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49(4): 437-47.
[http://dx.doi.org/10.1111/apt.15050] [PMID: 30637783]
[166]
Sun L, Jiang C, Li W, et al. Ce-based nanoparticles loaded with cisplatin for tumour radiotherapy. J Biomed Nanotechnol 2020; 16(10): 1482-94.
[http://dx.doi.org/10.1166/jbn.2020.2984] [PMID: 33422160]
[167]
Echevarria M, Chung CH, Kirtane K, et al. Survival results of phase I dose escalation of stereotactic body radiation therapy and concurrent cisplatin for re-irradiation of unresectable, recurrent head and neck squamous cell carcinoma. J Clin Oncol 2021; 39(15_suppl): e18020.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.e18020]
[168]
Takatsuki E, Kono T, Tomisato S, Ozawa H. Low-dose cisplatin-based radiation therapy for refractory recurrent respiratory papillomatosis. Laryngoscope 2023; lary.31096.
[http://dx.doi.org/10.1002/lary.31096] [PMID: 37812337]
[169]
Alamzadeh Z, Beik J, Mirrahimi M, et al. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci 2020; 145: 105235.
[http://dx.doi.org/10.1016/j.ejps.2020.105235] [PMID: 31991226]
[170]
Mirrahimi M, Beik J, Mirrahimi M, et al. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 2020; 158: 617-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.272] [PMID: 32387354]
[171]
Kuang Y, Zhang Y, Zhao Y, et al. Dual-stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-Guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces 2020; 12(32): 35928-39.
[http://dx.doi.org/10.1021/acsami.0c09422] [PMID: 32686939]
[172]
Shi Y, Zeng L, Pan Y, et al. Endo/exo-genous dual-stimuli responsive gold nanotetrapod-based nanoprobe for magnetic resonance imaging and enhanced multimodal therapeutics by amplifying·OH generation. Acta Biomater 2022; 154: 549-58.
[http://dx.doi.org/10.1016/j.actbio.2022.10.014] [PMID: 36243375]
[173]
Fukushima H, Yoshida S, Kijima T, et al. Combination of cisplatin and irradiation induces immunogenic cell death and potentiates postirradiation anti-PD-1 treatment efficacy in urothelial carcinoma. Int J Mol Sci 2021; 22(2): 535.
[http://dx.doi.org/10.3390/ijms22020535] [PMID: 33430352]
[174]
Vilas-Boas I, Moreira I, Rodrigues A. A complete sustained response of advanced non-small-cell lung cancer after immune checkpoint inhibitor, radiotherapy, and chemotherapy. Cureus 2022; 14(12): e32585.
[http://dx.doi.org/10.7759/cureus.32585] [PMID: 36654654]
[175]
Yimit A, Adebali O, Sancar A, Jiang Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat Commun 2019; 10(1): 309.
[http://dx.doi.org/10.1038/s41467-019-08290-2] [PMID: 30659176]
[176]
Deng S, Qian L, Liu L, et al. CIRCULAR RNA ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by interacting with AUF1. Cancer Sci 2023; 114(4): 1582-95.
[http://dx.doi.org/10.1111/cas.15723] [PMID: 36632741]
[177]
Zhang Q, Kuang G, He S, et al. Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett 2020; 20(5): 3039-49.
[http://dx.doi.org/10.1021/acs.nanolett.9b04981] [PMID: 32250633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy