Review Article

基于壳聚糖的肺和鼻内药物递送系统纳米载体:其应用的综合概述

卷 25, 期 7, 2024

发表于: 26 April, 2024

页: [492 - 511] 页: 20

弟呕挨: 10.2174/0113894501301747240417103321

价格: $65

conference banner
摘要

优化呼吸系统健康是重要的,实现这一目标的途径之一是通过肺给药系统(PDDS)和鼻内给药(IND)的应用。PDDS可将药物立即输送到呼吸系统,具有持续的局部药物浓度、可调节的药物释放、延长作用时间和提高患者依从性等优点。IND以其非侵入性和快速起效而闻名,为其发展提供了一条有希望的道路。现代PDDS和IND采用多种聚合物,其中壳聚糖(CS)最为突出。CS是一种生物相容性和可生物降解的多糖,具有独特的物理化学性质,使其非常适合医疗和制药应用。CS中存在的多个带正电的氨基有利于其与带负电的粘膜相互作用,使CS容易吸附在粘膜表面。此外,cs基纳米载体一直是研究的重要课题。聚合物纳米颗粒(NPs)、脂质体、树状大分子、微球、纳米乳液、固体脂质纳米颗粒(SLNs)、碳纳米管和修饰的有效靶向系统都是增加壳聚糖肺给药的重要途径。本文综述了基于碳纳米管的纳米载体及其应用的最新研究进展。

关键词: 壳聚糖,纳米颗粒,肺,鼻,纳米载体,脂质体,树状大分子,药物输送。

« Previous
图形摘要
[1]
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci 2015; 10(6): 481-9.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[2]
Costa-Gouveia J, Pancani E, Jouny S, et al. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 2017; 7(1): 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[3]
Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-Based Drug delivery System: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm 2021; 18(10): 3671-718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[4]
Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Dru Deli Revi 2014; 73: 50-62.
[http://dx.doi.org/10.1016/j.addr.2013.08.0115]
[5]
Zhu L, Lu L, Wang S, et al. Oral Absorption Basics. Dev Solid Oral Dosage Forms. (2nd.). 2017; pp. 297-329.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00011-X]
[6]
Abuhelwa AY, Williams DB, Upton RN, Foster DJR. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm 2017; 112: 234-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234]
[7]
Deshmukh R, Bandyopadhyay N, Abed SN, Bandopadhyay S, Pal Y, Deb PK. Strategies for pulmonary delivery of drugs. Elsevier eBooks. 2020; pp. 85-129.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00003-X]
[8]
Peng T, Lin S, Niu B, et al. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016; 6(4): 308-18.
[http://dx.doi.org/10.1016/j.apsb.2016.03.011] [PMID: 27471671]
[9]
Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME. Management of chronic obstructive pulmonary disease beyond the lungs. Lancet Respir Med 2016; 4(11): 911-24.
[http://dx.doi.org/10.1016/S2213-2600(16)00097-7] [PMID: 27264777]
[10]
Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 2022; 27(5): 1543.
[http://dx.doi.org/10.3390/molecules27051543] [PMID: 35268643]
[11]
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm 2014; 86(1): 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[12]
Sakagami M. in vitro, ex-vivo and in vivo methods of lung absorption for inhaled drugs. Adv Drug Deliv Rev 2020; 161-162: 63-74.
[http://dx.doi.org/10.1016/j.addr.2020.07.025] [PMID: 32763274]
[13]
Hussain A, Arnold JJ, Khan MA, Ahsan F. Absorption enhancers in pulmonary protein delivery. J Control Release 2004; 94(1): 15-24.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.001] [PMID: 14684268]
[14]
Dua K, Wadhwa R, Singhvi G, et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80(6): 714-30.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[15]
Mohamed N, Madian NG. Evaluation of the mechanical, physical and antimicrobial properties of chitosan thin films doped with greenly synthesized silver nanoparticles. Mater Today Commun 2020; 25101372
[http://dx.doi.org/10.1016/j.mtcomm.2020.101372]
[16]
Khdair A, Hamad I, Alkhatib H, et al. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci 2016; 93: 38-44.
[http://dx.doi.org/10.1016/j.ejps.2016.07.012] [PMID: 27473308]
[17]
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Desi Devel and Thera 2016; 483.
[http://dx.doi.org/10.2147/dddt.s99651]
[18]
Smith A, Perelman M, Hinchcliffe M. Chitosan. Hum Vaccin Immunother 2014; 10(3): 797-807.
[http://dx.doi.org/10.4161/hv.27449] [PMID: 24346613]
[19]
Yeul VS, Rayalu SS. Unprecedented Chitin and Chitosan: A Chemical Overview. J Polym Environ 2013; 21(2): 606-14.
[http://dx.doi.org/10.1007/s10924-012-0458-x]
[20]
Kumari S, Kishor R. Chitin and chitosan: origin, properties, and applications. Elsevier eBooks. 2020; pp. 1-33.
[http://dx.doi.org/10.1016/B978-0-12-817970-3.00001-8]
[21]
Bastiaens L, Soetemans L, D’Hondt E, Elst K. Sources of Chitin and Chitosan and Their Isolation. In: Broek LAM, Boeriu CG, Eds. Chitin and Chitosan. (1st ed.). Wiley 2019; pp. 1-34.
[http://dx.doi.org/10.1002/9781119450467.ch1]
[22]
Riofrio A, Alcivar T, Baykara H. Environmental and Economic viability of Chitosan production in Guayas-Ecuador: A Robust investment and life cycle analysis. ACS Omega 2021; 6(36): 23038-51.
[http://dx.doi.org/10.1021/acsomega.1c01672] [PMID: 34549104]
[23]
Wu QX, Lin DQ, Yao SJ. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 2014; 12(12): 6236-53.
[http://dx.doi.org/10.3390/md12126236] [PMID: 25532565]
[24]
Sun Y, Ma X, Hu H. Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems. Mar Drugs 2021; 19(6): 345.
[http://dx.doi.org/10.3390/md19060345] [PMID: 34208540]
[25]
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol 2017; 105(Pt 2): 1358-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[26]
Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol 2020; 150: 1072-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[27]
Santos LF, Correia IJ, Silva AS, Mano JF. Biomaterials for drug delivery patches. Eur J Pharm Sci 2018; 118: 49-66.
[http://dx.doi.org/10.1016/j.ejps.2018.03.020] [PMID: 29572160]
[28]
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d’horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2021; 169: 103-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.083] [PMID: 33338522]
[29]
Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C 2017; 77: 1349-62.
[http://dx.doi.org/10.1016/j.msec.2017.03.198] [PMID: 28532012]
[30]
Wu P, Yi J, Feng L, et al. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Int J Biol Macromol 2020; 155: 708-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.011] [PMID: 32259538]
[31]
Li T, Hu X, Zhang Q, et al. Poly(acrylic acid)-chitosan @ tannic acid double-network self-healing hydrogel based on ionic coordination. Polym Adv Technol 2020; 31(7): 1648-60.
[http://dx.doi.org/10.1002/pat.4893]
[32]
Jana S, Jana S, Eds. Functional Chitosan: Drug Delivery and Biomedical Applications. Singapore: Springer Singapore 2019.
[http://dx.doi.org/10.1007/978-981-15-0263-7]
[33]
He W, Guo X, Xiao L, Feng M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 2009; 382(1-2): 234-43.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.038] [PMID: 19686826]
[34]
Abourehab MAS, Pramanik S, Abdelgawad MA, et al. Recent advances of chitosan formulations in biomedical applications. Int J Mol Sci 2022; 23(18): 10975.
[http://dx.doi.org/10.3390/ijms231810975] [PMID: 36142887]
[35]
Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release 2017; 260: 213-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.010] [PMID: 28625671]
[36]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[37]
Silva M, Calado R, Marto J, et al. ́Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 2017; 15(12): 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[38]
Wang W, Meng Q, Li Q, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci 2020; 21(2): 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[39]
Jeon S, Yoo CY, Park SN. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 2015; 129: 7-14.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.018] [PMID: 25819360]
[40]
Chen MC, Mi FL, Liao ZX, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65(6): 865-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[41]
Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019; 5(5)e01684
[http://dx.doi.org/10.1016/j.heliyon.2019.e01684] [PMID: 31193324]
[42]
Manek E, Darvas F, Petroianu GA. Use of biodegradable, Chitosan-Based nanoparticles in the treatment of Alzheimer’s disease. Molecules 2020; 25(20): 4866.
[http://dx.doi.org/10.3390/molecules25204866] [PMID: 33096898]
[43]
Mishra B, Singh J. Novel drug delivery systems and significance in respiratory diseases. Elsevier eBooks. 2020; pp. 57-95.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00004-2]
[44]
Hizawa N. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin Exp Allergy 2016; 46(5): 678-87.
[http://dx.doi.org/10.1111/cea.12731] [PMID: 27009427]
[45]
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 2013; 1(5): 402-13.
[http://dx.doi.org/10.1016/S2213-2600(13)70072-9] [PMID: 24429205]
[46]
Borghardt JM, Kloft C, Sharma A. Inhaled therapy in Respiratory Disease: The complex interplay of pulmonary kinetic processes. Can Respir J 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/2732017] [PMID: 30018677]
[47]
Raissy HH, Kelly HW, Harkins M, Szefler SJ. Inhaled corticosteroids in lung diseases. Am J Respir Crit Care Med 2013; 187(8): 798-803.
[http://dx.doi.org/10.1164/rccm.201210-1853PP] [PMID: 23370915]
[48]
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326: 222-44.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.011] [PMID: 32681948]
[49]
Simonsson BG. Beta2-Receptor Agonists Tachyphylaxis and Combination with Other Drugs. Progress in Respiration Research. 2015; pp. 315-22.
[http://dx.doi.org/10.1159/000411444]
[50]
Newman SP. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev 2018; 133: 5-18.
[http://dx.doi.org/10.1016/j.addr.2018.04.010] [PMID: 29653129]
[51]
Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015; 219: 500-18.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[52]
Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther 2013; 140(2): 176-85.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.008] [PMID: 23811125]
[53]
Cui X, Gutheil E. Three-dimensional unsteady large eddy simulation of the vortex structures and the mono-disperse particle dispersion in the idealized human upper respiratory system. J Aerosol Sci 2017; 114: 195-208.
[http://dx.doi.org/10.1016/j.jaerosci.2017.09.005]
[54]
Bailey AG, Hashish AH, Williams TJ. Drug delivery by inhalation of charged particles. J Electrost 1998; 44(1-2): 3-10.
[http://dx.doi.org/10.1016/S0304-3886(98)00017-5]
[55]
Yao Z, Zhao T, Su W, You S, Wang CH. Towards understanding respiratory particle transport and deposition in the human respiratory system: Effects of physiological conditions and particle properties. J Hazard Mater 2022; 439129669
[http://dx.doi.org/10.1016/j.jhazmat.2022.129669] [PMID: 35908402]
[56]
Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007; 6(1): 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[57]
Arnold J, Ahsan F, Meezan E, Pillion DJ. Nasal administration of low molecular weight heparin. J Pharm Sci 2002; 91(7): 1707-14.
[http://dx.doi.org/10.1002/jps.10171] [PMID: 12115833]
[58]
Aung H, Sivakumar A, Gholami S, Venkateswaran SP, Gorain B, Shadab . An overview of the anatomy and physiology of the lung. Elsevier eBooks. 2019; pp. 1-20.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00001-0]
[59]
Candemir S, Antani S. A review on lung boundary detection in chest X-rays. Int J CARS 2019; 14(4): 563-76.
[http://dx.doi.org/10.1007/s11548-019-01917-1] [PMID: 30730032]
[60]
Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010; 18(1): 8-23.
[http://dx.doi.org/10.1016/j.devcel.2009.12.010] [PMID: 20152174]
[61]
Hsia CCW, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Comprehensive Physiology 2016; 827-95.
[http://dx.doi.org/10.1002/cphy.c150028]
[62]
AL- Ahmed A, Sadoon A. COmparative anatomical, histological and histochemical study of (larynx, trachea and syrinx) between mature and immature males of local duck (anas platyrhnchos). Magallat al-Basrat Li-l-Abhat al-Baytariyyat 2021; 19(1): 10-34.
[http://dx.doi.org/10.23975/bjvetr.2021.170597]
[63]
Ochs M, Nyengaard JR, Jung A, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med 2004; 169(1): 120-4.
[http://dx.doi.org/10.1164/rccm.200308-1107OC] [PMID: 14512270]
[64]
Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 2017; 312(2): L243-57.
[http://dx.doi.org/10.1152/ajplung.00326.2016] [PMID: 27913424]
[65]
Wood JD. Normal anatomy, digestion, absorption. Elsevier eBooks. 2019; pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-814330-8.00001-9]
[66]
Stauber H, Waisman D, Korin N, Sznitman J. Red blood cell dynamics in biomimetic microfluidic networks of pulmonary alveolar capillaries. Biomicrofluidics 2017; 11(1)014103
[http://dx.doi.org/10.1063/1.4973930] [PMID: 28090238]
[67]
Gil J, Bachofen H, Gehr P, Weibel ER. Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol 1979; 47(5): 990-1001.
[http://dx.doi.org/10.1152/jappl.1979.47.5.990] [PMID: 511725]
[68]
Holm C, Tegeler J, Mayr M, Pfeiffer U, von Donnersmarck GH, Muïhlbauer W. Effect of crystalloid resuscitation and inhalation injury on extravascular lung water: clinical implications. Chest 2002; 121(6): 1956-62.
[http://dx.doi.org/10.1378/chest.121.6.1956] [PMID: 12065363]
[69]
Chatterjee R, Maity M, Hasnain S, Nayak AK. 2022.Chitosan: source, chemistry, and properties.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00001-7]
[70]
Mikušová V, Mikuš P. Advances in Chitosan-Based nanoparticles for drug delivery. Int J Mol Sci 2021; 22(17): 9652.
[http://dx.doi.org/10.3390/ijms22179652] [PMID: 34502560]
[71]
An X, Zha D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine 2020; 15(20): 1981-93.
[http://dx.doi.org/10.2217/nnm-2020-0198] [PMID: 32605499]
[72]
Guisasola E, Baeza A, Asín L, de la Fuente JM, Vallet-Regí M. Heating at the nanoscale through drug-delivery devices: fabrication and synergic effects in cancer treatment with nanoparticles. Small Methods 2018; 2(9)1800007
[http://dx.doi.org/10.1002/smtd.201800007]
[73]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[74]
Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 2015; 11(2): 313-27.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[75]
Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater 2021; 13(1): 52.
[http://dx.doi.org/10.1038/s41427-021-00320-0]
[76]
Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in Non-Parenteral Drug delivery. Pharmaceutics 2017; 9(4): 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[77]
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25(1): 150-9.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[78]
Nho R. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine 2020; 29102242
[http://dx.doi.org/10.1016/j.nano.2020.102242] [PMID: 32561255]
[79]
Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 842-71.
[http://dx.doi.org/10.1002/wnan.1401] [PMID: 27016134]
[80]
Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 2017; 50(2): 310-9.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[81]
Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv 2016; 13(8): 1177-94.
[http://dx.doi.org/10.1080/17425247.2016.1178232] [PMID: 27087148]
[82]
Quiñones JP, Peniche H, Péniche C. Chitosan based Self-Assembled nanoparticles in drug delivery. Polymers 2018; 10(3): 235.
[http://dx.doi.org/10.3390/polym10030235] [PMID: 30966270]
[83]
Shim S, Yoo HS. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar Drugs 2020; 18(12): 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[84]
Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B Mater Biol Med 2016; 4(23): 4060-71.
[http://dx.doi.org/10.1039/C6TB00308G] [PMID: 32264607]
[85]
Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 2016; 222: 67-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.008] [PMID: 26686663]
[86]
Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int J Biol Macromol 2020; 154: 433-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.148] [PMID: 32194103]
[87]
Debnath SK, Saisivam S, Debanth M, Omri A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS One 2018; 13(1)e0190976
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[88]
Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci 2018; 124: 273-87.
[http://dx.doi.org/10.1016/j.ejps.2018.08.038] [PMID: 30176365]
[89]
Rawal T, Parmar R, Tyagi RK, Butani S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces 2017; 154: 321-30.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[90]
Ahmad MI, Ungphaiboon S, Srichana T. The development of dimple-shaped chitosan carrier for ethambutol dihydrochloride dry powder inhaler. Drug Dev Ind Pharm 2015; 41(5): 791-800.
[http://dx.doi.org/10.3109/03639045.2014.903493] [PMID: 24694185]
[91]
Ullah F, Shah KU, Shah SU, et al. Synthesis, Characterization and in vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers 2022; 14(17): 3564.
[http://dx.doi.org/10.3390/polym14173564] [PMID: 36080637]
[92]
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym 2016; 138: 114-22.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.072] [PMID: 26794744]
[93]
Shah S, Maheshwari H, Soniwala M, Chavda J. Pulmonary delivery of linezolid nanoparticles for treatment of tuberculosis: Design, development, and optimization. J Pharm Innov 2022; 17(1): 46-59.
[http://dx.doi.org/10.1007/s12247-020-09491-9]
[94]
Aldawsari HM, Alhakamy NA, Padder R, Husain M, Md S. Preparation and characterization of Chitosan Coated PLGA nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 lung cancer cells. Coatings 2020; 10(5): 439.
[http://dx.doi.org/10.3390/coatings10050439]
[95]
Chandrasekaran M, Kim K, Chun S. Antibacterial activity of chitosan nanoparticles: a review. Processes 2020; 8(9): 1173.
[http://dx.doi.org/10.3390/pr8091173]
[96]
Kim ES, Kim DY, Lee JS, Lee HG. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydr Polym 2021; 267118157
[http://dx.doi.org/10.1016/j.carbpol.2021.118157] [PMID: 34119131]
[97]
Soliman GM, Zhang YL, Merle G, Cerruti M, Barralet J. Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties. Eur J Pharm Biopharm 2014; 88(3): 1026-37.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.003] [PMID: 25281213]
[98]
Fortunato G, Guex AG, Popa AM, Rossi RM, Hufenus R. Molecular weight driven structure formation of PEG based e-spun polymer blend fibres. Polymer 2014; 55(14): 3139-48.
[http://dx.doi.org/10.1016/j.polymer.2014.04.053]
[99]
Nogueira DR, Scheeren LE, Pilar Vinardell M, Mitjans M, Rosa Infante M, Rolim CMB. Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery. Mater Sci Eng C 2015; 57: 100-6.
[http://dx.doi.org/10.1016/j.msec.2015.07.036] [PMID: 26354244]
[100]
Abbas Y, Azzazy HME, Tammam S, et al. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue. Colloids Surf B Biointerfaces 2016; 146: 19-30.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.031] [PMID: 27244047]
[101]
Gulati N, Nagaich U, Saraf SA. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci Pharm 2013; 81(3): 843-54.
[http://dx.doi.org/10.3797/scipharm.1208-18] [PMID: 24106677]
[102]
Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 2014; 15(6): 1598-602.
[http://dx.doi.org/10.1208/s12249-014-0189-5] [PMID: 25142821]
[103]
Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J Drug Target 2013; 21(8): 759-69.
[http://dx.doi.org/10.3109/1061186X.2013.818676] [PMID: 23879335]
[104]
Lv Y, Zhang J, Wang C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): preparation and evaluation in asthma mice. Bioengineered 2021; 12(1): 3029-39.
[http://dx.doi.org/10.1080/21655979.2021.1940622] [PMID: 34180764]
[105]
Rukmangathen R, Yallamalli IM, Yalavarthi PR. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery. Drug Dev Ind Pharm 2019; 45(8): 1342-50.
[http://dx.doi.org/10.1080/03639045.2019.1619759] [PMID: 31094571]
[106]
Tzeyung A, Md S, Bhattamisra S, et al. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 2019; 11(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics11010026] [PMID: 30634665]
[107]
Hanafy AS, Farid RM, ElGamal SS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: preparation and detection in rat brain. Drug Dev Ind Pharm 2015; 41(12): 2055-68.
[http://dx.doi.org/10.3109/03639045.2015.1062897] [PMID: 26133084]
[108]
Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 2017; 7(42): 25978-86.
[http://dx.doi.org/10.1039/C7RA02861J]
[109]
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang V. When Albumin meets Liposomes: a feasible drug carrier for biomedical applications. Pharmaceuticals 2021; 14(4): 296.
[http://dx.doi.org/10.3390/ph14040296] [PMID: 33810483]
[110]
Wang Q, Liu W, Wang J, Liu H, Chen Y. Preparation and pharmacokinetic study of daidzein long-circulating liposomes. Nanoscale Res Lett 2019; 14(1): 321.
[http://dx.doi.org/10.1186/s11671-019-3164-y] [PMID: 31617108]
[111]
Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 2012; 161(3): 781-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.040] [PMID: 22659331]
[112]
Manconi M, Manca ML, Valenti D, et al. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int J Pharm 2017; 525(1): 203-10.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.044] [PMID: 28438698]
[113]
Echaide M, Autilio C, Arroyo R, Pérez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr 2017; 1859(9): 1725-39.
[http://dx.doi.org/10.1016/j.bbamem.2017.03.015] [PMID: 28341439]
[114]
Gonzalez Gomez A, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis 2020; 6(5): 896-908.
[http://dx.doi.org/10.1021/acsinfecdis.9b00357] [PMID: 32208673]
[115]
Del Prado-Audelo ML, Caballero-Florán IH, Sharifi-Rad J, et al. Chitosan-decorated nanoparticles for drug delivery. J Drug Deliv Sci Technol 2020; 59101896
[http://dx.doi.org/10.1016/j.jddst.2020.101896]
[116]
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176113851
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[117]
Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids 2020; 165104984
[http://dx.doi.org/10.1016/j.supflu.2020.104984]
[118]
Yu JY, Chuesiang P, Shin GH, Park HJ. Post-Processing techniques for the improvement of liposome stability. Pharmaceutics 2021; 13(7): 1023.
[http://dx.doi.org/10.3390/pharmaceutics13071023] [PMID: 34371715]
[119]
Li R, Deng L, Cai Z, et al. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater Sci Eng C 2017; 80: 156-64.
[http://dx.doi.org/10.1016/j.msec.2017.05.136] [PMID: 28866151]
[120]
Peng J, Wang Q, Guo M, et al. Development of inhalable Chitosan-Coated oxymatrine liposomes to alleviate RSV-Infected mice. Int J Mol Sci 2022; 23(24): 15909.
[http://dx.doi.org/10.3390/ijms232415909] [PMID: 36555548]
[121]
Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 2020; 156: 1455-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.190] [PMID: 31770553]
[122]
Kamaruzzaman NF, Tan LP, Hamdan RH, et al. Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci 2019; 20(11): 2747.
[http://dx.doi.org/10.3390/ijms20112747] [PMID: 31167476]
[123]
Hsu HJ, Bugno J, Lee S, Hong S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(1)e1409
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[124]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[125]
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: implications for chronic airway diseases. Int J Nanomedicine 2020; 15: 3803-26.
[http://dx.doi.org/10.2147/IJN.S242516] [PMID: 32547029]
[126]
Restani RB, Silva AS, Pires RF, et al. Nano-in-Micro POxylated polyurea dendrimers and Chitosan dry powder formulations for pulmonary delivery. Part Part Syst Charact 2016; 33(11): 851-8.
[http://dx.doi.org/10.1002/ppsc.201600123]
[127]
Liu KC, Yeo Y. Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier. Mol Pharm 2013; 10(5): 1695-704.
[http://dx.doi.org/10.1021/mp300522p] [PMID: 23510114]
[128]
Leng ZH, Zhuang QF, Li YC, et al. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym 2013; 98(1): 1173-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.021] [PMID: 23987460]
[129]
Jose S, Ansa CR, Cinu TA, et al. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. Int J Pharm 2013; 441(1-2): 516-26.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.049] [PMID: 23147411]
[130]
Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res 2020; 10(2): 339-53.
[http://dx.doi.org/10.1007/s13346-019-00690-7] [PMID: 31872342]
[131]
Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 2019; 560: 282-93.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.012] [PMID: 30772458]
[132]
Ding Y, Shen SZ, Sun H, et al. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C 2015; 48: 487-98.
[http://dx.doi.org/10.1016/j.msec.2014.12.036] [PMID: 25579950]
[133]
Fernández-Paz E, Feijoo-Siota L, Gaspar MM, Csaba N, Remuñán-López C. Microencapsulated Chitosan-Based nanocapsules: a new platform for pulmonary gene delivery. Pharmaceutics 2021; 13(9): 1377.
[http://dx.doi.org/10.3390/pharmaceutics13091377] [PMID: 34575452]
[134]
Yang T, Wen B, Liu K, et al. Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. Artificial Cells Nanomedi Biotechnol 2018; 46(sup2): 552-64.
[http://dx.doi.org/10.1080/21691401.2018.1463231]
[135]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 2014; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[136]
Sécher T, Dalonneau E, Ferreira M, et al. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release 2019; 303: 24-33.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.005] [PMID: 30981816]
[137]
Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv 2015; 22(4): 455-66.
[http://dx.doi.org/10.3109/10717544.2013.866992] [PMID: 24329559]
[138]
Chaudhary S, Kumar S, Kumar V, Sharma R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 2020; 152: 154-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.276] [PMID: 32109479]
[139]
Elshamy S, Khadizatul K, Uemura K, Nakajima M, Neves MA. Chitosan-based film incorporated with essential oil nanoemulsion foreseeing enhanced antimicrobial effect. J Food Sci Technol 2021; 58(9): 3314-27.
[http://dx.doi.org/10.1007/s13197-020-04888-3] [PMID: 34366449]
[140]
Bi F, Qin Y, Chen D, Kan J, Liu J. Development of active packaging films based on chitosan and nano-encapsulated luteolin. Int J Biol Macromol 2021; 182: 545-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.063] [PMID: 33857507]
[141]
Luesakul U, Puthong S, Sansanaphongpricha K, Muangsin N. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract. Carbohydr Polym 2020; 230115625
[http://dx.doi.org/10.1016/j.carbpol.2019.115625] [PMID: 31887856]
[142]
Fachel FNS, Medeiros-Neves B, Dal Prá M, et al. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery. in vitro studies. Carbohydr Polym 2018; 199: 572-82.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.054] [PMID: 30143164]
[143]
Al ayoub Y, Gopalan RC, Najafzadeh M, et al. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int J Pharm 2019; 557: 254-63.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.042] [PMID: 30597263]
[144]
Shah K, Chan LW, Wong TW. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv 2017; 24(1): 1631-47.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[145]
Xu M, Zhang L, Guo Y, et al. Nanoemulsion co-loaded with xiap sirna and gambogic acid for inhalation therapy of lung cancer. Int J Mol Sci 2022; 23(22): 14294.
[http://dx.doi.org/10.3390/ijms232214294] [PMID: 36430771]
[146]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances 2020; 10(45): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[147]
Ahmadifard Z, Ahmeda A, Rasekhian M, Moradi S, Arkan E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J Drug Deliv Sci Technol 2020; 57101621
[http://dx.doi.org/10.1016/j.jddst.2020.101621]
[148]
Vieira ACC, Chaves LL, Pinheiro M, et al. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr Polym 2021; 252116978
[http://dx.doi.org/10.1016/j.carbpol.2020.116978] [PMID: 33183580]
[149]
Rosière R, Van Woensel M, Gelbcke M, et al. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid Nanoparticles for Lung Tumor Therapy by Inhalation. Mol Pharm 2018; 15(3): 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[150]
Rodenak-Kladniew B, Scioli Montoto S, Sbaraglini ML, et al. Hybrid Ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties. Int J Pharm 2019; 569118575
[http://dx.doi.org/10.1016/j.ijpharm.2019.118575] [PMID: 31356956]
[151]
Abdelaziz HM, Freag MS, Elzoghby AO. Solid lipid nanoparticle-based drug delivery for lung cancer. Elsevier eBooks. 2019; pp. 95-121.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00005-8]
[152]
Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 2011; 7(1): 40-9.
[http://dx.doi.org/10.1016/j.nano.2010.06.008] [PMID: 20620235]
[153]
Francis AP, Devasena T. Toxicity of carbon nanotubes: A review. Toxicol Ind Health 2018; 34(3): 200-10.
[http://dx.doi.org/10.1177/0748233717747472] [PMID: 29506458]
[154]
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2003; 77(1): 126-34.
[http://dx.doi.org/10.1093/toxsci/kfg243] [PMID: 14514958]
[155]
Raviglione M, Sulis G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect Dis Rep 2016; 8(2): 6570.
[http://dx.doi.org/10.4081/idr.2016.6570] [PMID: 27403269]
[156]
Boczkowski J, Lanone S. Respiratory toxicities of nanomaterials — A focus on carbon nanotubes. Adv Drug Deliv Rev 2012; 64(15): 1694-9.
[http://dx.doi.org/10.1016/j.addr.2012.05.011] [PMID: 22641117]
[157]
Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013; 46(3): 702-13.
[http://dx.doi.org/10.1021/ar300028m] [PMID: 22999420]
[158]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[159]
Mallakpour S, Azadi E, Hussain CM. Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. New J Chem 2021; 45(8): 3756-77.
[http://dx.doi.org/10.1039/D0NJ06035F]
[160]
Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl 2019; 33(7): 989-96.
[http://dx.doi.org/10.1177/0885328218814988] [PMID: 30509120]
[161]
Li K, Gao Q, Yadavalli G, et al. Selective adsorption of Gd 3+ on a magnetically retrievable imprinted chitosan/carbon nanotube composite with high capacity. ACS Appl Mater Interfaces 2015; 7(38): 21047-55.
[http://dx.doi.org/10.1021/acsami.5b07560] [PMID: 26355685]
[162]
Singh RP, Sharma G, Sonali , et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C 2017; 77: 446-58.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[163]
Cirillo G, Vittorio O, Kunhardt D, et al. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials 2019; 12(18): 2889.
[http://dx.doi.org/10.3390/ma12182889] [PMID: 31500165]
[164]
Hellfritzsch M, Scherließ R. Mucosal vaccination via the respiratory tract. Pharmaceutics 2019; 11(8): 375.
[http://dx.doi.org/10.3390/pharmaceutics11080375] [PMID: 31374959]
[165]
Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015; 20(3): 380-9.
[http://dx.doi.org/10.1016/j.drudis.2014.09.020] [PMID: 25281854]
[166]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[167]
Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 2013; 3(1): 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[168]
Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 2019; 10(1): 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[169]
Wang J, Li W, Zhang L, et al. Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Applied Materials & Interfaces 2017; 9(33): 27441-52.
[http://dx.doi.org/10.1021/acsami.7b06464]
[170]
Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics. Ther Deliv 2013; 4(3): 369-94.
[http://dx.doi.org/10.4155/tde.13.6] [PMID: 23442082]
[171]
Ni S, Liu Y, Tang Y, et al. GABAB receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym 2018; 179: 135-44.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.075] [PMID: 29111036]
[172]
Wang F, Wang Y, Ma Q, Cao Y, Yu B. Development and characterization of folic acid-conjugated chitosan nanoparticles for targeted and controlled delivery of gemcitabinein lung cancer therapeutics. Artif Cells Nanomed Biotechnol 2017; 45(8): 1530-8.
[http://dx.doi.org/10.1080/21691401.2016.1260578] [PMID: 27894196]
[173]
Silva S, Arinaminpathy N, Atun R, Goosby E, Reid M. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: a full-income analysis. Lancet Glob Health 2021; 9(10): e1372-9.
[http://dx.doi.org/10.1016/S2214-109X(21)00299-0] [PMID: 34487685]
[174]
Chakaya J, Khan M, Ntoumi F, et al. Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis 2021; 113(Suppl 1) (Suppl. 1): S7-S12.
[http://dx.doi.org/10.1016/j.ijid.2021.02.107] [PMID: 33716195]
[175]
Prabhu P, Fernandes T, Chaubey P, et al. Mannose-conjugated chitosan nanoparticles for delivery of Rifampicin to Osteoarticular tuberculosis. Drug Deliv Transl Res 2021; 11(4): 1509-19.
[http://dx.doi.org/10.1007/s13346-021-01003-7] [PMID: 34021478]
[176]
Ieven M, Coenen S, Loens K, et al. GRACE consortium. Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries. Clin Microbiol Infect 2018; 24(11): 1158-63.
[http://dx.doi.org/10.1016/j.cmi.2018.02.004] [PMID: 29447989]
[177]
Krause JC, Panning M, Hengel H, Henneke P. The role of multiplex PCR in respiratory tract infections in children. Dtsch Arztebl Int 2014; 111(38): 639-45.
[http://dx.doi.org/10.3238/arztebl.2014.0639] [PMID: 25316519]
[178]
Gondil VS, Harjai K, Chhibber S. Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. J Drug Deliv Sci Technol 2021; 61102142
[http://dx.doi.org/10.1016/j.jddst.2020.102142]
[179]
Bowen SJ, Hull J. The basic science of cystic fibrosis. Paediatr Child Health 2015; 25(4): 159-64.
[http://dx.doi.org/10.1016/j.paed.2014.12.008]
[180]
Zhang G, Mo S, Fang B, et al. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2019; 133: 58-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.066] [PMID: 30981773]
[181]
Qiu Y, Xu D, Sui G, et al. Gentamicin decorated phosphatidylcholine-chitosan nanoparticles against biofilms and intracellular bacteria. Int J Biol Macromol 2020; 156: 640-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.090] [PMID: 32304789]
[182]
Mishra B, Mishra M, Yadav SK. Antibacterial loaded spray dried chitosan polyelectrolyte complexes as dry powder aerosol for the treatment of lung infections. Iran J Pharm Res 2017; 16(1): 74-92.
[PMID: 28496463]
[183]
Fu YY, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomedicine 2019; 14: 1805-15.
[http://dx.doi.org/10.2147/IJN.S186571] [PMID: 30880981]
[184]
Wu T, Liao W, Wang W, et al. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr Polym 2018; 197: 403-13.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.034] [PMID: 30007629]
[185]
Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide. Pharm Dev Technol 2021; 26(2): 181-92.
[http://dx.doi.org/10.1080/10837450.2020.1852570] [PMID: 33213232]
[186]
Patel BK, Parikh RH, Aboti PS. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J Drug Deliv 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/370938] [PMID: 24024034]
[187]
Nguyen TV, Nguyen TTH, Wang SL, Vo TPK, Nguyen AD. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 2017; 43(6): 3527-37.
[http://dx.doi.org/10.1007/s11164-016-2428-8]
[188]
Deacon J, Abdelghany SM, Quinn DJ, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release 2015; 198: 55-61.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.022] [PMID: 25481442]
[189]
Duan RR, Hao K, Yang T. Air pollution and chronic obstructive pulmonary disease. Chronic Dis Transl Med 2020; 6(4): 260-9.
[http://dx.doi.org/10.1016/j.cdtm.2020.05.004] [PMID: 33336171]
[190]
Widdicombe JG. Overview of neural pathways in allergy and asthma. Pulm Pharmacol Ther 2003; 16(1): 23-30.
[http://dx.doi.org/10.1016/S1094-5539(02)00178-5] [PMID: 12657497]
[191]
Kaur G, Goyal J, Behera PK, et al. Unraveling the role of chitosan for nasal drug delivery systems: A review. Carbohydr Polym Technol Appl 2023; 5100316
[http://dx.doi.org/10.1016/j.carpta.2023.100316]
[192]
Zhang WF, Zhou HY, Chen XG, Tang SH, Zhang JJ. Biocompatibility study of theophylline/chitosan/β-cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med 2009; 20(6): 1321-30.
[http://dx.doi.org/10.1007/s10856-008-3680-2] [PMID: 19132506]
[193]
Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS. Chitosan IFN-gamma-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet Vaccines Ther 2003; 1(1): 3.
[http://dx.doi.org/10.1186/1479-0556-1-3] [PMID: 14613519]
[194]
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10(2): 113-32.
[http://dx.doi.org/10.4155/tde-2018-0062] [PMID: 30678550]
[195]
Feng ZQ, Sun CG, Zheng ZJ, Hu ZB, Mu DZ, Zhang WF. Optimization of spray-drying conditions and pharmacodynamics study of theophylline/chitosan/β-cyclodextrin microspheres. Dry Technol 2015; 33(1): 55-65.
[http://dx.doi.org/10.1080/07373937.2014.935857]
[196]
Rajivgandhi G, Saravanan K, Ramachandran G, et al. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. Int J Biol Macromol 2020; 164: 4010-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.169] [PMID: 32853609]
[197]
Vogelmeier CF, Criner GJ, Martínez FJ, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report. Respirology 2017; 22(3): 575-601.
[http://dx.doi.org/10.1111/resp.13012] [PMID: 28150362]
[198]
Zhao K, Zhang Y, Zhang X, et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedi 2014; 4609.
[http://dx.doi.org/10.2147/IJN.S70633]
[199]
Tatlow D, Tatlow C, Tatlow S, Tatlow S. A novel concept for treatment and vaccination against Covid-19 with an inhaled chitosan-coated DNA vaccine encoding a secreted spike protein portion. Clin Exp Pharmacol Physiol 2020; 47(11): 1874-8.
[http://dx.doi.org/10.1111/1440-1681.13393] [PMID: 32881059]
[200]
Vila A, Sánchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 2004; 57(1): 123-31.
[http://dx.doi.org/10.1016/j.ejpb.2003.09.006] [PMID: 14729088]
[201]
Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2017; 2(10): 17056.
[http://dx.doi.org/10.1038/natrevmats.2017.56]
[202]
Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. Beni Suef Univ J Basic Appl Sci 2022; 11(1): 35.
[http://dx.doi.org/10.1186/s43088-022-00215-1] [PMID: 35284578]
[203]
Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting in vitro transcribed mRNA against cancer immunotherapy: a contemporary appraisal of the current landscape. Curr Issues Mol Biol 2023; 45(11): 9181-214.
[http://dx.doi.org/10.3390/cimb45110576] [PMID: 37998753]
[204]
Weissman D. mRNA transcript therapy. Expert Rev Vaccines 2015; 14(2): 265-81.
[http://dx.doi.org/10.1586/14760584.2015.973859] [PMID: 25359562]
[205]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[206]
Dirisala A, Uchida S, Tockary TA, et al. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J Drug Target 2019; 27(5-6): 670-80.
[http://dx.doi.org/10.1080/1061186X.2018.1550646] [PMID: 30499743]
[207]
Soliman OY, Alameh MG, De Cresenzo G, Buschmann MD, Lavertu M. Efficiency of Chitosan/Hyaluronan-Based mRNA delivery systems in vitro: influence of composition and structure. J Pharm Sci 2020; 109(4): 1581-93.
[http://dx.doi.org/10.1016/j.xphs.2019.12.020] [PMID: 31891675]
[208]
Forenzo C, Larsen J. Complex coacervates as a promising vehicle for mRNA delivery: A Comprehensive review of recent advances and challenges. Mol Pharm 2023; 20(9): 4387-403. a
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00439] [PMID: 37561647]
[209]
Steinle H, Ionescu TM, Schenk S, et al. Incorporation of synthetic mRNA in injectable Chitosan-Alginate hybrid hydrogels for local and sustained expression of exogenous proteins in cells. Int J Mol Sci 2018; 19(5): 1313.
[http://dx.doi.org/10.3390/ijms19051313] [PMID: 29702615]
[210]
Maiyo F, Singh M. Folate-Targeted mRNA delivery using Chitosan-Functionalized selenium nanoparticles: Potential in cancer immunotherapy. Pharmaceuticals 2019; 12(4): 164.
[http://dx.doi.org/10.3390/ph12040164] [PMID: 31690043]
[211]
Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018; 8(1): 16776.
[http://dx.doi.org/10.1038/s41598-018-34960-0] [PMID: 30425265]
[212]
Zhu D, Cheng H, Li J, et al. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C 2016; 61: 79-84.
[http://dx.doi.org/10.1016/j.msec.2015.12.024] [PMID: 26838827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy