Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Ligand-Free, Copper-Catalyzed Coupling Reaction of Aryl Aluminum Reagents with N-Aryl Thiosuccinimides

Author(s): Zhihao Zhang, Xiaoying Jia, Jiaxia Pu, Lirong Han, Jinsong Hou and Qinghan Li*

Volume 21, Issue 12, 2024

Published on: 18 April, 2024

Page: [1055 - 1063] Pages: 9

DOI: 10.2174/0115701786298931240408083720

Price: $65

Open Access Journals Promotions 2
Abstract

A highly efficient and simple cross-coupling reaction of N-aryl aluminum reagents with Naryl thiosuccinimides for the synthesis of diarylsulide derivatives using CuCl (20 mol%) as a catalyst is reported. Under the optimum reaction conditions, the coupling reaction between aryl aluminum reagents with different substituents and N-aryl thiosuccinimides with different substituents can be carried out smoothly with 18-94% isolated yields of diarylsulides. The method avoids the use of expensive transition metals, such as Pd, Ir, or Rh, phosphine ligands, and has the advantages of simple operation and high reaction efficiency. The structures of all the target compounds are confirmed by 1HNMR and 13CNMR.

Keywords: Copper catalyst, aryl aluminum reagents, N-aryl thiosuccinimides, diarylsulide derivatives, cross-coupling reaction, ligand-free, synthesis.

Graphical Abstract
[1]
Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R.E.P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod., 2007, 70(3), 439-442.
[http://dx.doi.org/10.1021/np060593c] [PMID: 17269824]
[2]
Dunbar, K.L.; Scharf, D.H.; Litomska, A.; Hertweck, C. Chem. Rev., 2017, 117(8), 5521-5577.
[http://dx.doi.org/10.1021/acs.chemrev.6b00697] [PMID: 28418240]
[3]
Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Adv. Mater., 2011, 23(38), 4347-4370.
[http://dx.doi.org/10.1002/adma.201102007] [PMID: 21842474]
[4]
Takimiya, K.; Osaka, I.; Mori, T.; Nakano, M. Acc. Chem. Res., 2014, 47(5), 1493-1502.
[http://dx.doi.org/10.1021/ar400282g] [PMID: 24785263]
[5]
Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
[6]
Gómez Arrayás, R.; Carretero, J.C. Chem. Commun., 2011, 47(8), 2207-2211.
[http://dx.doi.org/10.1039/C0CC03978K] [PMID: 21127802]
[7]
Joyce, N.I.; Eady, C.C.; Silcock, P.; Perry, N.B.; van Klink, J.W. J. Agric. Food Chem., 2013, 61(7), 1449-1456.
[http://dx.doi.org/10.1021/jf304444s] [PMID: 23350988]
[8]
Eichman, C.C.; Stambuli, J.P. Molecules, 2011, 16(1), 590-608.
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
[9]
Bhowmik, A.; Yadav, M.; Fernandes, R.A. Org. Biomol. Chem., 2020, 18(13), 2447-2458.
[http://dx.doi.org/10.1039/D0OB00244E] [PMID: 32167117]
[10]
Winn, M.; Reilly, E.B.; Liu, G.; Huth, J.R.; Jae, H.S.; Freeman, J.; Pei, Z.; Xin, Z.; Lynch, J.; Kester, J.; von Geldern, T.W.; Leitza, S.; DeVries, P.; Dickinson, R.; Mussatto, D.; Okasinski, G.F. J. Med. Chem., 2001, 44(25), 4393-4403.
[http://dx.doi.org/10.1021/jm0103108] [PMID: 11728185]
[11]
Luo, R.Q.; Guo, S.P.; Xiao, H.L.; Li, Q.H. Tetrahedron, 2022, 103, 132564.
[http://dx.doi.org/10.1016/j.tet.2021.132564]
[12]
Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N.D. J. Org. Chem., 2019, 84(7), 4072-4085.
[http://dx.doi.org/10.1021/acs.joc.9b00075] [PMID: 30855958]
[13]
Fernandes, R.A.; Bhowmik, A.; Yadav, S.S. Org. Biomol. Chem., 2020, 18(47), 9583-9600.
[http://dx.doi.org/10.1039/D0OB02035D] [PMID: 33206103]
[14]
Reddy, V.P.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem., 2015, 13(24), 6803-6813.
[http://dx.doi.org/10.1039/C5OB00149H] [PMID: 26006765]
[15]
Sundaravelu, N.; Sangeetha, S.; Sekar, G. Org. Biomol. Chem., 2021, 19(7), 1459-1482.
[http://dx.doi.org/10.1039/D0OB02320E] [PMID: 33528480]
[16]
Yarmohammadi, N.; Ghadermazi, M.; Mozafari, R. RSC Advances, 2021, 11(16), 9366-9380.
[http://dx.doi.org/10.1039/D1RA01029H] [PMID: 35423431]
[17]
Yadav, M.; Sarma, B.; Jat, R.S.; Bhanuchandra, M. New J. Chem., 2022, 46(28), 13401-13405.
[http://dx.doi.org/10.1039/D2NJ01977A]
[18]
Zou, L.H.; Zhao, C.; Li, P.G.; Wang, Y.; Li, J. J. Org. Chem., 2017, 82(23), 12892-12898.
[http://dx.doi.org/10.1021/acs.joc.7b02384] [PMID: 29110477]
[19]
Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R.; Migliaccio, M. J. Org. Chem., 2000, 65(18), 5600-5608.
[http://dx.doi.org/10.1021/jo0003347] [PMID: 10970298]
[20]
Wang, X.; Cuny, G.D.; Noël, T. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7860-7864.
[http://dx.doi.org/10.1002/anie.201303483] [PMID: 23784666]
[21]
Xu, J.; Liu, R.Y.; Yeung, C.S.; Buchwald, S.L. ACS Catal., 2019, 9(7), 6461-6466.
[http://dx.doi.org/10.1021/acscatal.9b01913] [PMID: 31929949]
[22]
Vara, B.A.; Li, X.; Berritt, S.; Walters, C.R.; Petersson, E.J. Molander, G.A. Chem. Sci., 2017, 9(2), 336-344.
[http://dx.doi.org/10.1039/C7SC04292B] [PMID: 29629102]
[23]
Liu, D.; Ma, H.X.; Fang, P.; Mei, T.S. Angew. Chem. Int. Ed. Engl., 2019, 58(15), 5033-5037.
[http://dx.doi.org/10.1002/anie.201900956] [PMID: 30735304]
[24]
Hostier, T.; Ferey, V.; Ricci, G.; Gomez Pardo, D. Cossy. J. Org. Lett., 2015, 17(15), 3898-3901.
[http://dx.doi.org/10.1021/acs.orglett.5b01889] [PMID: 26205587]
[25]
Liu, C.; Szostak, M. Chem. Commun., 2018, 54(17), 2130-2133.
[http://dx.doi.org/10.1039/C8CC00271A] [PMID: 29419832]
[26]
Lee, S.C.; Liao, H.H.; Chatupheeraphat, A.; Rueping, M. Chemistry, 2018, 24(14), 3608-3612.
[http://dx.doi.org/10.1002/chem.201705842] [PMID: 29334411]
[27]
Li, Q.H.; Shao, X.B.; Ding, Y.; Wen, C.; Zhao, Z.G. Curr. Org. Chem., 2018, 22(15), 1523-1535.
[http://dx.doi.org/10.2174/1385272822666180704143509]
[28]
Li, Q.; Shao, X.; Zhang, G.; Ding, Y.; Yang, X.; Chen, F. Youji Huaxue, 2018, 38(4), 802-811.
[http://dx.doi.org/10.6023/cjoc201709041]
[29]
Li, Q.; Wang, J.; Wen, C.; Jiang, X.; Cao, K.; Wu, K.; Liang, M. Chin. Chem. Lett., 2019.
[http://dx.doi.org/10.1016/j.cclet.2019.02.028]
[30]
Li, Q.H.; Jiang, X.; Wu, K.; Luo, R.Q.; Zhang, Z.G.; Liang, M.; Huang, Z.Y. Mini Rev. Org. Chem., 2021, 18, 212-220.
[31]
Cheng, L.J.; Mankad, N.P. Chem. Soc. Rev., 2020, 49(22), 8036-8064.
[http://dx.doi.org/10.1039/D0CS00316F] [PMID: 32458840]
[32]
Savarin, C.; Srogl, J.; Liebeskind, L.S. Org. Lett., 2002, 4(24), 4309-4312.
[http://dx.doi.org/10.1021/ol026948a] [PMID: 12443085]
[33]
Li, Q.H.; Jeng, J.Y.; Gau, H.M. Eur. J. Org. Chem., 2014, 2014(35), 7916-7923.
[http://dx.doi.org/10.1002/ejoc.201403008]
[34]
Li, Q.H.; Liao, J.W.; Huang, Y.L.; Chiang, R.T.; Gau, H.M. Org. Biomol. Chem., 2014, 12(38), 7634-7642.
[http://dx.doi.org/10.1039/C4OB00677A] [PMID: 25143149]
[35]
Zhang, Z.; Mo, S.; Zhang, G.; Shao, X.B.; Li, Q.H.; Zhong, Y. Synlett, 2017, 5, 611-614.
[36]
Li, Q.; Zhang, Z.; Shao, X.; Zhang, G.; Li, X. Synthesis, 2017, 49(16), 3643-3653.
[http://dx.doi.org/10.1055/s-0036-1588177]
[37]
Mo, S.; Shao, X.B.; Zhang, G.; Li, Q.H. RSC Advances, 2017, 7(44), 27243-27247.
[http://dx.doi.org/10.1039/C7RA02758C]
[38]
Shao, X.B.; Zhang, Z.; Li, Q.H.; Zhao, Z.G. Org. Biomol. Chem., 2018, 16(26), 4797-4806.
[http://dx.doi.org/10.1039/C8OB00781K] [PMID: 29915845]
[39]
Shao, X.; Wen, C.; Zhang, G.; Cao, K.; Wu, L.; Li, Q. J. Organomet. Chem., 2018, 870, 68-75.
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.020]
[40]
Shao, X.B.; Jiang, X.; Li, Q.H.; Zhao, Z.G. Tetrahedron, 2018, 74(41), 6063-6070.
[http://dx.doi.org/10.1016/j.tet.2018.08.050]
[41]
Zhang, G.; Shao, X.; Li, Q.; Yang, X. Youji Huaxue, 2018, 38(6), 1538-1543.
[http://dx.doi.org/10.6023/cjoc201802019]
[42]
Wen, C.; Jiang, X.; Wu, K.; Luo, R.Q.; Li, Q.H. RSC Advances, 2020, 10, 19610-19614.
[http://dx.doi.org/10.1039/D0RA02984J] [PMID: 35515440]
[43]
Zhang, G.; Wu, K.; Wen, C.; Li, Q. J. Organomet. Chem., 2020, 906, 121040.
[http://dx.doi.org/10.1016/j.jorganchem.2019.121040]
[44]
Wu, C.; Li, Q.H. Tetrahedron, 2021, 96, 132370.
[http://dx.doi.org/10.1016/j.tet.2021.132370]
[45]
Xiao, H.L.; Zhang, G.; Luo, R.Q.; Li, Q.H. Tetrahedron, 2022, 103, 132549.
[http://dx.doi.org/10.1016/j.tet.2021.132549]
[46]
Li, Q.; Wen, C.; Wu, C.; Luo, R.; Chen, F. Synthesis, 2021, 53(20), 3847-3861.
[http://dx.doi.org/10.1055/a-1516-8745]
[47]
Liang, M.; Pu, J.X.; Jia, X.Y.; Han, L.R.; Li, Q.H. Lett. Org. Chem., 2023, 21(2), 116-123.
[http://dx.doi.org/10.2174/1570178620666230821142342]
[48]
Inamoto, K.; Hasegawa, C.; Kawasaki, J.; Hiroya, K.; Doi, T. Adv. Synth. Catal., 2010, 352(14-15), 2643-2655.
[http://dx.doi.org/10.1002/adsc.201000604]
[49]
Wang, Y.; Deng, J.; Chen, J.; Cao, F.; Hou, Y.; Yang, Y.; Deng, X.; Yang, J.; Wu, L.; Shao, X.; Shi, T.; Wang, Z. ACS Catal., 2020, 10(4), 2707-2712.
[http://dx.doi.org/10.1021/acscatal.9b04931]
[50]
Xu, X.Q.; Wang, W.Q.; Lu, L.; Zhang, J.Z.; Luo, J. Catal. Lett., 2022, 152, 3031-3045.
[http://dx.doi.org/10.1007/s10562-021-03908-x]
[51]
Wang, C.Y.; Tian, R.; Zhu, Y.M. Tetrahedron, 2021, 99, 132453.
[http://dx.doi.org/10.1016/j.tet.2021.132453]
[52]
Lai, C.S.; Kao, H-L.; Wang, Y-J.; Lee, C-F. Tetrahedron Lett., 2012, 53(33), 4365-4367.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.054]
[53]
Zhu, Y.C.; Li, Y.; Zhang, B.C.; Zhang, F.X.; Yang, Y-N.; Wang, X-S. Angew. Chem. Int. Ed. Engl., 2018, 57(18), 5129-5133.
[http://dx.doi.org/10.1002/anie.201801146] [PMID: 29512253]
[54]
Hirai, Y.; Uozumi, Y. Chem. Lett., 2011, 40(9), 934-935.
[http://dx.doi.org/10.1246/cl.2011.934]
[55]
Current Patent Assignee US5208259, 1993.
[56]
Norris, T.; Leeman, K. Org. Process Res. Dev., 2008, 12(5), 869-876.
[http://dx.doi.org/10.1021/op800098a]
[57]
Wu, P.; Ward, J.S.; Rissanen, K.; Bolm, C. Adv. Synth. Catal., 2023, 365(4), 522-526.
[http://dx.doi.org/10.1002/adsc.202201408]
[58]
Matsuzawa, T.; Uchida, K.; Yoshida, S.; Hosoya, T. Org. Lett., 2017, 19(20), 5521-5524.
[http://dx.doi.org/10.1021/acs.orglett.7b02599] [PMID: 28984457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy