Review Article

N -甲基- D -天冬氨酸(NMDA)受体拮抗剂及其药理意义:药物化学视角概述

卷 31, 期 29, 2024

发表于: 17 April, 2024

页: [4725 - 4744] 页: 20

弟呕挨: 10.2174/0109298673288031240405061759

conference banner
摘要

N -甲基- D -天冬氨酸(NMDA)受体,即肌力性谷氨酸受体,在突触可塑性、大脑生长、记忆和学习中起重要作用。NMDA的激活是由神经递质谷氨酸和协同激动剂(甘氨酸或d -丝氨酸)结合完成的。然而,NMDA的过度激活会增加细胞内钙的流入,从而导致各种神经系统疾病和障碍。因此,为了防止兴奋性毒性和神经元死亡,必须使用NMDA拮抗剂来抑制NMDA。本文综述了NMDA亚基的结构以及激动剂(甘氨酸和d -丝氨酸)和拮抗剂(伊芬地尔等)结合后引起的构象变化。此外,报道了来自不同来源的NMDA拮抗剂,如合成、半合成和天然资源,并解释了它们的作用机制和药理作用。该综合报告还讨论了NMDA抑制剂的化学间隔以及用于测试NMDA拮抗剂的体内和体外模型。由于血脑屏障(BBB)是防止各种药物分子渗透的主要膜,我们还详细介绍了药物化学方法来提高其拮抗剂的有效性。

关键词: N -甲基- D -天冬氨酸受体拮抗剂,阿尔茨海默病,药理意义,嗜离子性谷氨酸受体,中风,癫痫。

[1]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[2]
Chen, K.; Yang, L.N.; Lai, C.; Liu, D.; Zhu, L.Q. Role of Grina/Nmdara1 in the central nervous system diseases. Curr. Neuropharmacol., 2020, 18(9), 861-867.
[http://dx.doi.org/10.2174/1570159X18666200303104235] [PMID: 32124700]
[3]
Wang, J.X.; Furukawa, H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol., 2019, 54, 34-42.
[http://dx.doi.org/10.1016/j.sbi.2018.12.009] [PMID: 30703613]
[4]
Mayor, D.; Tymianski, M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology, 2018, 134(Pt B), 178-188.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.050] [PMID: 29203179]
[5]
Sachana, M.; Rolaki, A.; Price, B.A. Development of the adverse outcome pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol. Appl. Pharmacol., 2018, 354, 153-175.
[http://dx.doi.org/10.1016/j.taap.2018.02.024] [PMID: 29524501]
[6]
Ugale, V; Dhote, A; Narwade, R; Khadse, S; Reddy, PN; Shirkhedkar, A GluN2B/N-methyl-d-aspartate receptor antagonists: Advances in design, synthesis, and pharmacological evaluation studies. CNS Neurol. Disord. Drug Targets, 2021, 20(9), 822-862.
[7]
Rajani, V.; Sengar, A.S.; Salter, M.W. Tripartite signalling by NMDA receptors. Mol. Brain, 2020, 13(1), 23.
[http://dx.doi.org/10.1186/s13041-020-0563-z] [PMID: 32070387]
[8]
Vieira, M.; Yong, X.L.H.; Roche, K.W.; Anggono, V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem., 2020, 154(2), 121-143.
[http://dx.doi.org/10.1111/jnc.14970] [PMID: 31978252]
[9]
Regan, M.C.; Hernandez, R.A.; Furukawa, H. A structural biology perspective on NMDA receptor pharmacology and function. Curr. Opin. Struct. Biol., 2015, 33, 68-75.
[http://dx.doi.org/10.1016/j.sbi.2015.07.012] [PMID: 26282925]
[10]
Grand, T.; Abi Gerges, S.; David, M.; Diana, M.A.; Paoletti, P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun., 2018, 9(1), 4769.
[http://dx.doi.org/10.1038/s41467-018-07236-4] [PMID: 30425244]
[11]
Romero-Hernandez, A.; Simorowski, N.; Karakas, E.; Furukawa, H. Molecular basis for subtype specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino-terminal domain. Neuron, 2016, 92(6), 1324-1336.
[http://dx.doi.org/10.1016/j.neuron.2016.11.006] [PMID: 27916457]
[12]
Stroebel, D.; Mony, L.; Paoletti, P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology, 2021, 193, 108631.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108631] [PMID: 34058193]
[13]
Tian, M.; Ye, S. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Sci. Rep., 2016, 6(1), 34751.
[http://dx.doi.org/10.1038/srep34751] [PMID: 27713495]
[14]
Chou, T.H.; Epstein, M.; Michalski, K.; Fine, E.; Biggin, P.C.; Furukawa, H. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol., 2022, 29(6), 507-518.
[http://dx.doi.org/10.1038/s41594-022-00772-0] [PMID: 35637422]
[15]
Painuli, S.; Semwal, P.; Zam, W.; Taheri, Y.; Ezzat, S.M.; Zuo, P.; Li, L.; Kumar, D.; Rad, S.J.; Martins, C.N. NMDA inhibitors: A potential contrivance to assist in management of Alzheimer’s disease. Comb. Chem. High Throughput Screen., 2023, 26(12), 2099-2112.
[http://dx.doi.org/10.2174/1386207325666220428112541] [PMID: 36476432]
[16]
Zhu, S.; Paoletti, P. Allosteric modulators of NMDA receptors: Multiple sites and mechanisms. Curr. Opin. Pharmacol., 2015, 20, 14-23.
[http://dx.doi.org/10.1016/j.coph.2014.10.009] [PMID: 25462287]
[17]
Warnet, X.L.; Krog, B.H.; Quispe, S.O.G.; Poulsen, H.; Kjaergaard, M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur. J. Neurosci., 2021, 54(8), 6713-6739.
[http://dx.doi.org/10.1111/ejn.14842] [PMID: 32464691]
[18]
Haddow, K.; Kind, P.C.; Hardingham, G.E. NMDA receptor C-terminal domain signalling in development, maturity, and disease. Int. J. Mol. Sci., 2022, 23(19), 11392.
[http://dx.doi.org/10.3390/ijms231911392] [PMID: 36232696]
[19]
Wilbek, T.S.; Skovgaard, T.; Sorrell, F.J.; Knapp, S.; Berthelsen, J.; Strømgaard, K. Identification and characterization of a small-molecule inhibitor of death-associated protein kinase 1. ChemBioChem, 2015, 16(1), 59-63.
[http://dx.doi.org/10.1002/cbic.201402512] [PMID: 25382253]
[20]
Sapkota, K.; Dore, K.; Tang, K.; Irvine, M.; Fang, G.; Burnell, E.S.; Malinow, R.; Jane, D.E.; Monaghan, D.T. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochem. Pharmacol., 2019, 159, 140-153.
[http://dx.doi.org/10.1016/j.bcp.2018.11.018] [PMID: 30503374]
[21]
Paoletti, P.; Neyton, J. NMDA receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol., 2007, 7(1), 39-47.
[http://dx.doi.org/10.1016/j.coph.2006.08.011] [PMID: 17088105]
[22]
Gonda, X. Basic pharmacology of NMDA receptors. Curr. Pharm. Des., 2012, 18(12), 1558-1567.
[http://dx.doi.org/10.2174/138161212799958521] [PMID: 22280436]
[23]
Zhu, S.; Stein, R.A.; Yoshioka, C.; Lee, C.H.; Goehring, A.; Mchaourab, H.S.; Gouaux, E. Mechanism of NMDA receptor inhibition and activation. Cell, 2016, 165(3), 704-714.
[http://dx.doi.org/10.1016/j.cell.2016.03.028] [PMID: 27062927]
[24]
Ferreira, I.L.; Bajouco, L.M.; Mota, S.I.; Auberson, Y.P.; Oliveira, C.R.; Rego, A.C. Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium, 2012, 51(2), 95-106.
[http://dx.doi.org/10.1016/j.ceca.2011.11.008] [PMID: 22177709]
[25]
Saura, CA; Valero, J. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev Neurosci, 2011, 22(2), 153-169.
[http://dx.doi.org/10.1515/rns.2011.018]
[26]
Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev., 2009, 89(1), 121-145.
[http://dx.doi.org/10.1152/physrev.00017.2008] [PMID: 19126756]
[27]
Du, H.; Guo, L.; Wu, X.; Sosunov, A.A.; McKhann, G.M.; Chen, J.X.; Yan, S.S. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(12), 2517-2527.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.004] [PMID: 23507145]
[28]
Zhang, Y.; Li, P.; Feng, J.; Wu, M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci., 2016, 37(7), 1039-1047.
[http://dx.doi.org/10.1007/s10072-016-2546-5] [PMID: 26971324]
[29]
Sonsalla, P.K.; Albers, D.S.; Zeevalk, G.D. Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids, 1998, 14(1-3), 69-74.
[http://dx.doi.org/10.1007/BF01345245] [PMID: 9871444]
[30]
Meredith, G.E.; Totterdell, S.; Beales, M.; Meshul, C.K. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson’s disease. Exp. Neurol., 2009, 219(1), 334-340.
[http://dx.doi.org/10.1016/j.expneurol.2009.06.005] [PMID: 19523952]
[31]
Erickson, C.A.; Posey, D.J.; Stigler, K.A.; Mullett, J.; Katschke, A.R.; McDougle, C.J. A retrospective study of memantine in children and adolescents with pervasive developmental disorders. Psychopharmacology, 2007, 191(1), 141-147.
[http://dx.doi.org/10.1007/s00213-006-0518-9] [PMID: 17016714]
[32]
Reiff, M. Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder. J. Dev. Behav. Pediatr., 2001, 22(5), 339.
[http://dx.doi.org/10.1097/00004703-200110000-00018]
[33]
Harris, B.R.; Prendergast, M.A.; Gibson, D.A.; Rogers, D.T.; Blanchard, J.A.; Holley, R.C.; Fu, M.C.; Hart, S.R.; Pedigo, N.W.; Littleton, J.M. Acamprosate inhibits the binding and neurotoxic effects of trans-ACPD, suggesting a novel site of action at metabotropic glutamate receptors. Alcohol. Clin. Exp. Res., 2002, 26(12), 1779-1793.
[http://dx.doi.org/10.1111/j.1530-0277.2002.tb02484.x] [PMID: 12500101]
[34]
Altinoz, M.A.; Ozpinar, A.; Hacker, E.; Ozpinar, A. A hypothetical proposal to employ meperidine and tamoxifen in treatment of glioblastoma. Role of P-glycoprotein, ceramide and metabolic pathways. Clin. Neurol. Neurosurg., 2022, 215, 107208.
[http://dx.doi.org/10.1016/j.clineuro.2022.107208] [PMID: 35316699]
[35]
Fogaça, M.V.; Fukumoto, K.; Franklin, T.; Liu, R.J.; Duman, C.H.; Vitolo, O.V.; Duman, R.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology, 2019, 44(13), 2230-2238.
[http://dx.doi.org/10.1038/s41386-019-0501-x] [PMID: 31454827]
[36]
Antoniu, S.A.; Apostu, M.; Alexinschi, O.; Mosoiu, D. Dextromethorphan for chronic neuropathic pain in palliative care. Expert Rev. Qual. Life Cancer Care, 2017, 2(1), 5-12.
[http://dx.doi.org/10.1080/23809000.2017.1264259]
[37]
Ostadhadi, S.; Javidan, N.A.; Chamanara, M.; Akbarian, R.; Imran-Khan, M.; Ghasemi, M.; Dehpour, A.R. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test. Brain Res. Bull., 2017, 134, 136-141.
[http://dx.doi.org/10.1016/j.brainresbull.2017.07.016] [PMID: 28754288]
[38]
Thigpen, J.C.; Odle, B.L.; Harirforoosh, S. Opioids: A review of pharmacokinetics and pharmacodynamics in neonates, infants, and children. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(5), 591-609.
[http://dx.doi.org/10.1007/s13318-019-00552-0] [PMID: 31006834]
[39]
Tetteh, H.; Lee, M.; Lau, C.G.; Yang, S.; Yang, S. Tinnitus: Prospects for pharmacological interventions with a seesaw model. Neuroscientist, 2018, 24(4), 353-367.
[http://dx.doi.org/10.1177/1073858417733415] [PMID: 29283017]
[40]
Gatius, T.M.; Hill, L.X.; Rio, M.L.; Castarlenas, L.; Fabius, S.; Santana, N.; Vilaró, M.T.; Artigas, F.; Scorza, M.C.; Castañé, A. Discrimination of motor and sensorimotor effects of phencyclidine and MK-801: Involvement of GluN2C-containing NMDA receptors in psychosis-like models. Neuropharmacology, 2022, 213, 109079.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109079] [PMID: 35561792]
[41]
Novakov, I.A.; Sheikin, D.S.; Navrotskii, M.B.; Mkrtchyan, A.S.; Brunilina, L.L.; Balakin, K.V. Dexoxadrol and its bioisosteres: Structure, synthesis, and pharmacological activity. Russ. Chem. Bull., 2020, 69(9), 1625-1671.
[http://dx.doi.org/10.1007/s11172-020-2946-9]
[42]
Farber, N.B.; Jiang, X-P.; Heinkel, C.; Nemmers, B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol. Psychiatry, 2002, 7(7), 726-733.
[http://dx.doi.org/10.1038/sj.mp.4001087] [PMID: 12192617]
[43]
Turner, E.H. Esketamine for treatment-resistant depression: Seven concerns about efficacy and FDA approval. Lancet Psychiatry, 2019, 6(12), 977-979.
[http://dx.doi.org/10.1016/S2215-0366(19)30394-3] [PMID: 31680014]
[44]
Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol. Ther., 2016, 164, 170-182.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.010] [PMID: 27139517]
[45]
Shaibani, A.I.; Pope, L.E.; Thisted, R.; Hepner, A. Efficacy and safety of dextromethorphan/quinidine at two dosage levels for diabetic neuropathic pain: A double-blind, placebo-controlled, multicenter study. Pain Med., 2012, 13(2), 243-254.
[http://dx.doi.org/10.1111/j.1526-4637.2011.01316.x] [PMID: 22314263]
[46]
Cummings, J.L.; Lyketsos, C.G.; Peskind, E.R.; Porsteinsson, A.P.; Mintzer, J.E.; Scharre, D.W.; De La Gandara, J.E.; Agronin, M.; Davis, C.S.; Nguyen, U.; Shin, P.; Tariot, P.N.; Siffert, J. Effect of dextromethorphan-quinidine on agitation in patients with Alzheimer disease dementia: A randomized clinical trial. JAMA, 2015, 314(12), 1242-1254.
[http://dx.doi.org/10.1001/jama.2015.10214] [PMID: 26393847]
[47]
Kawai, N.; Niwa, A.; Abe, T. Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res., 1982, 247(1), 169-171.
[http://dx.doi.org/10.1016/0006-8993(82)91044-7] [PMID: 6127145]
[48]
Takeuchi, A.; Onodera, K. Effects of kainic acid on the glutamate receptors of the crayfish muscle. Neuropharmacology, 1975, 14(9), 619-625.
[http://dx.doi.org/10.1016/0028-3908(75)90084-2] [PMID: 1178118]
[49]
Shinozaki, H.; Shibuya, I. Potentiation of glutamate-induced depolarization by kainic acid in the crayfish opener muscle. Neuropharmacology, 1974, 13(10-11), 1057-1065.
[http://dx.doi.org/10.1016/0028-3908(74)90096-3] [PMID: 4437724]
[50]
Serefko, A.; Szopa, A.; Wlaź, A.; Wośko, S.; Wlaź, P.; Poleszak, E. Synergistic antidepressant-like effect of the joint administration of caffeine and NMDA receptor ligands in the forced swim test in mice. J. Neural Transm., 2016, 123(4), 463-472.
[http://dx.doi.org/10.1007/s00702-015-1467-4] [PMID: 26510772]
[51]
Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J., 2020, 28(4), 445-451.
[http://dx.doi.org/10.1016/j.jsps.2020.02.005] [PMID: 32273803]
[52]
Chindo, B.A.; Howes, M.J.R.; Abuhamdah, S.; Yakubu, M.I.; Ayuba, G.I.; Battison, A.; Chazot, P.L. New insights into the anticonvulsant effects of essential oil from Melissa officinalis L. (Lemon Balm). Front. Pharmacol., 2021, 12, 760674.
[http://dx.doi.org/10.3389/fphar.2021.760674] [PMID: 34721045]
[53]
Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci., 2007, 104(33), 13501-13506.
[http://dx.doi.org/10.1073/pnas.0704391104] [PMID: 17675408]
[54]
Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol., 2014, 49(1), 512-528.
[http://dx.doi.org/10.1007/s12035-013-8535-2] [PMID: 24030726]
[55]
Kang, J.; Kim, E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front. Mol. Neurosci., 2015, 8, 17.
[http://dx.doi.org/10.3389/fnmol.2015.00017] [PMID: 26074764]
[56]
Lenart, J.; Augustyniak, J.; Lazarewicz, J.W.; Zieminska, E. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: A screening test. Toxicology, 2020, 440, 152500.
[http://dx.doi.org/10.1016/j.tox.2020.152500] [PMID: 32428529]
[57]
Kumar, H.; Sharma, B. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res. Bull., 2016, 124, 27-39.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.013] [PMID: 27034117]
[58]
Burket, J.A.; Deutsch, S.I. Metabotropic functions of the NMDA receptor and an evolving rationale for exploring NR2A-selective positive allosteric modulators for the treatment of autism spectrum disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 142-160.
[http://dx.doi.org/10.1016/j.pnpbp.2018.11.017] [PMID: 30481555]
[59]
Zhan, Y.; Xia, J.; Wang, X. Effects of glutamate-related drugs on anxiety and compulsive behavior in rats with obsessive-compulsive disorder. Int. J. Neurosci., 2020, 130(6), 551-560.
[http://dx.doi.org/10.1080/00207454.2019.1684276] [PMID: 31680595]
[60]
Su, L.D.; Wang, N.; Han, J.; Shen, Y. Group 1 metabotropic glutamate receptors in neurological and psychiatric diseases: Mechanisms and prospective. Neuroscientist, 2022, 28(5), 453-468.
[http://dx.doi.org/10.1177/10738584211021018] [PMID: 34088252]
[61]
Maksymetz, J.; Moran, S.P.; Conn, P.J. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol. Brain, 2017, 10(1), 15.
[http://dx.doi.org/10.1186/s13041-017-0293-z] [PMID: 28446243]
[62]
Varnamkhasti, B.S.; Jafari, S.; Taghavi, F.; Alaei, L.; Izadi, Z.; Lotfabadi, A.; Dehghanian, M.; Jaymand, M.; Derakhshankhah, H.; Saboury, A.A. Cell-penetrating peptides: As a promising theranostics strategy to circumvent the blood-brain barrier for CNS diseases. Curr. Drug Deliv., 2020, 17(5), 375-386.
[http://dx.doi.org/10.2174/1567201817666200415111755] [PMID: 32294035]
[63]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[64]
Krizbai, I.; Nyúl-Tóth, Á.; Bauer, H.C.; Farkas, A.; Traweger, A.; Haskó, J.; Bauer, H.; Wilhelm, I. Pharmaceutical targeting of the brain. Curr. Pharm. Des., 2016, 22(35), 5442-5462.
[http://dx.doi.org/10.2174/1381612822666160726144203] [PMID: 27464716]
[65]
Botti, G.; Dalpiaz, A.; Pavan, B. Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics, 2021, 13(8), 1144.
[http://dx.doi.org/10.3390/pharmaceutics13081144] [PMID: 34452105]
[66]
Grabrucker, A.M.; Chhabra, R.; Belletti, D.; Forni, F.; Vandelli, M.A.; Ruozi, B.; Tosi, G. Nanoparticles as blood-brain barrier permeable CNS targeted drug delivery systems. In: The Blood Brain Barrier (BBB); Springer, 2014; pp. 71-89.
[67]
Vilella, A.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Galliani, M.; Semeghini, V.; Forni, F.; Zoli, M.; Vandelli, M.; Tosi, G. Endocytosis of nanomedicines: The case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics, 2015, 7(2), 74-89.
[http://dx.doi.org/10.3390/pharmaceutics7020074] [PMID: 26102358]
[68]
Begley, DJ; Bellettato, CM; Scarpa, M Central nervous system aspects, neurodegeneration, and the blood-brain barrier. In: Lysosomal Storage Disorders: A Practical Guide, 2nd ed.; Wiley, 2022.
[69]
Wang, T.; Wu, M.B.; Zhang, R.H.; Chen, Z.J.; Hua, C.; Lin, J.P.; Yang, L.R. Advances in computational structure-based drug design and application in drug discovery. Curr. Top. Med. Chem., 2015, 16(9), 901-916.
[http://dx.doi.org/10.2174/1568026615666150825142002] [PMID: 26303430]
[70]
Tajima, N.; Simorowski, N.; Yovanno, R.A.; Regan, M.C.; Michalski, K.; Gómez, R.; Lau, A.Y.; Furukawa, H. Development and characterization of functional antibodies targeting NMDA receptors. Nat. Commun., 2022, 13(1), 923.
[http://dx.doi.org/10.1038/s41467-022-28559-3] [PMID: 35177668]
[71]
Stępnicki, P.; Kondej, M.; Koszła, O.; Żuk, J.; Kaczor, A.A. Multi-targeted drug design strategies for the treatment of schizophrenia. Expert Opin. Drug Discov., 2021, 16(1), 101-114.
[http://dx.doi.org/10.1080/17460441.2020.1816962] [PMID: 32915109]
[72]
Rosini, M.; Simoni, E.; Minarini, A.; Melchiorre, C. Multi- target design strategies in the context of Alzheimer’s disease: Acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res., 2014, 39(10), 1914-1923.
[http://dx.doi.org/10.1007/s11064-014-1250-1] [PMID: 24493627]
[73]
Pardridge, W.M. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin. Drug Deliv., 2015, 12(2), 207-222.
[http://dx.doi.org/10.1517/17425247.2014.952627] [PMID: 25138991]
[74]
Chang, R.; Knox, J.; Chang, J.; Derbedrossian, A.; Vasilevko, V.; Cribbs, D.; Boado, R.J.; Pardridge, W.M.; Sumbria, R.K. Blood–brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s disease. Mol. Pharm., 2017, 14(7), 2340-2349.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00200] [PMID: 28514851]
[75]
Timothy, J. Combination of a NMDA receptor antagonist and a MAO-inhibitor or a GADPH-inhibitor for the treatment of central nervous system-related conditions. EP Patent 1715843A1, 2011.
[76]
Guitton, M.; Puel, J.L.; Pujol, R. Use of an NMDA receptor antagonist for the treatment of tinnitus induced by cochlear excitotoxicity. KR Patent 101429735B1, 2005.
[77]
R. U. S. A. Data, S. Gupta, and G. Samoriski, “(12) Patent Application Publication (10) Pub. No.: US 2010 / 0076073 A1,” vol. 1, no. 19, 2010.
[78]
Buratti, S.; Giacheri, E.; Palmieri, A.; Tibaldi, J.; Brisca, G.; Riva, A.; Striano, P.; Mancardi, M.M.; Nobili, L.; Moscatelli, A. Ketamine as advanced second-line treatment in benzodiazepine-refractory convulsive status epilepticus in children. Epilepsia, 2023, 64(4), 797-810.
[http://dx.doi.org/10.1111/epi.17550] [PMID: 36792542]
[79]
Vasquez, A.; Gaínza-Lein, M.; Sánchez Fernández, I.; Abend, N.S.; Anderson, A.; Brenton, J.N.; Carpenter, J.L.; Chapman, K.; Clark, J.; Gaillard, W.D.; Glauser, T.; Goldstein, J.; Goodkin, H.P.; Lai, Y.C.; Loddenkemper, T.; McDonough, T.L.; Mikati, M.A.; Nayak, A.; Payne, E.; Riviello, J.; Tchapyjnikov, D.; Topjian, A.A.; Wainwright, M.S.; Tasker, R.C. Hospital emergency treatment of convulsive status epilepticus: Comparison of pathways from ten pediatric research centers. Pediatr. Neurol., 2018, 86, 33-41.
[http://dx.doi.org/10.1016/j.pediatrneurol.2018.06.004] [PMID: 30075875]
[80]
Singh, A.; Stredny, C.M.; Loddenkemper, T. Pharmacotherapy for pediatric convulsive status epilepticus. CNS Drugs, 2020, 34(1), 47-63.
[http://dx.doi.org/10.1007/s40263-019-00690-8] [PMID: 31879852]
[81]
Alkhachroum, A.; Der-Nigoghossian, C.A.; Mathews, E.; Massad, N.; Letchinger, R.; Doyle, K.; Chiu, W.T.; Kromm, J.; Rubinos, C.; Velazquez, A.; Roh, D.; Agarwal, S.; Park, S.; Connolly, E.S.; Claassen, J. Ketamine to treat super-refractory status epilepticus. Neurology, 2020, 95(16), e2286-e2294.
[http://dx.doi.org/10.1212/WNL.0000000000010611] [PMID: 32873691]
[82]
Jacobwitz, M.; Mulvihill, C.; Kaufman, M.C.; Gonzalez, A.K.; Resendiz, K.; MacDonald, J.M.; Francoeur, C.; Helbig, I.; Topjian, A.A.; Abend, N.S. Ketamine for management of neonatal and pediatric refractory status epilepticus. Neurology, 2022, 99(12), e1227-e1238.
[http://dx.doi.org/10.1212/WNL.0000000000200889] [PMID: 35817569]
[83]
Rosati, A.; L’Erario, M.; Bianchi, R.; Olivotto, S.; Battaglia, D.I.; Darra, F.; Biban, P.; Biggeri, A.; Catelan, D.; Danieli, G.; Mondardini, M.C.; Cordelli, D.M.; Amigoni, A.; Cesaroni, E.; Conio, A.; Costa, P.; Lombardini, M.; Meleleo, R.; Pugi, A.; Tornaboni, E.E.; Santarone, M.E.; Vittorini, R.; Sartori, S.; Marini, C.; Vigevano, F.; Mastrangelo, M.; Pulitanò, S.M.; Izzo, F.; Fusco, L. KETASER01 protocol: What went right and what went wrong. Epilepsia Open, 2022, 7(3), 532-540.
[http://dx.doi.org/10.1002/epi4.12627] [PMID: 35833327]
[84]
Sampietro, A.; Pérez-Areales, F.J.; Martínez, P.; Arce, E.M.; Galdeano, C.; Torrero, M.D. Unveiling the multitarget anti-Alzheimer drug discovery landscape: A bibliometric analysis. Pharmaceuticals, 2022, 15(5), 545.
[http://dx.doi.org/10.3390/ph15050545] [PMID: 35631371]
[85]
Potasiewicz, A.; Krawczyk, M.; Gzielo, K.; Popik, P.; Nikiforuk, A. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors enhance procognitive effects of conventional anti-Alzheimer drugs in scopolamine-treated rats. Behav. Brain Res., 2020, 385, 112547.
[http://dx.doi.org/10.1016/j.bbr.2020.112547] [PMID: 32087183]
[86]
Albertini, C.; Salerno, A.; de Pinheiro, S.M.P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev., 2021, 41(5), 2606-2633.
[http://dx.doi.org/10.1002/med.21699] [PMID: 32557696]
[87]
Lista, S.; Vergallo, A.; Teipel, S.J.; Lemercier, P.; Giorgi, F.S.; Gabelle, A.; Garaci, F.; Mercuri, N.B.; Babiloni, C.; Gaire, B.P.; Koronyo, Y.; Hamaoui, K.M.; Hampel, H.; Nisticò, R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer’s disease: Relevance for precision medicine in neurodegenerative diseases. Ageing Res. Rev., 2023, 84, 101819.
[http://dx.doi.org/10.1016/j.arr.2022.101819] [PMID: 36526257]
[88]
McClure, E.W.; Daniels, R.N. Classics in chemical neuroscience: Dextromethorphan (DXM). ACS Chem. Neurosci., 2023, 14(12), 2256-2270.
[http://dx.doi.org/10.1021/acschemneuro.3c00088] [PMID: 37290117]
[89]
Silva, A.R.; Oliveira, D.R.J. Pharmacokinetics and pharmacodynamics of dextromethorphan: Clinical and forensic aspects. Drug Metab. Rev., 2020, 52(2), 258-282.
[http://dx.doi.org/10.1080/03602532.2020.1758712] [PMID: 32393072]
[90]
Campos-Mañas, M.C.; Cuevas, S.M.; Ferrer, I.; Thurman, E.M.; Pérez, S.J.A.; Agüera, A. Determination of dextromethorphan and dextrorphan solar photo-transformation products by LC/Q-TOF-MS: Laboratory scale experiments and real water samples analysis. Environ. Pollut., 2020, 265(Pt A), 114722.
[http://dx.doi.org/10.1016/j.envpol.2020.114722] [PMID: 32454378]
[91]
Chia, J.S.M.; Izham, N.A.M.; Farouk, A.A.O.; Sulaiman, M.R.; Mustafa, S.; Hutchinson, M.R.; Perimal, E.K. Zerumbone modulates α2A-adrenergic, TRPV1, and NMDA NR2B receptors plasticity in CCI-induced neuropathic pain in vivo and LPS-induced SH-SY5Y neuroblastoma in vitro models. Front. Pharmacol., 2020, 11, 92.
[http://dx.doi.org/10.3389/fphar.2020.00092] [PMID: 32194397]
[92]
Halliwell, R.F.; Peters, J.A.; Lambert, J.J. The mechanism of action and pharmacological specificity of the anticonvulsant NMDA antagonist MK-801: A voltage clamp study on neuronal cells in culture. Br. J. Pharmacol., 1989, 96(2), 480-494.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb11841.x] [PMID: 2647206]
[93]
Övey, İ.S.; Nazıroğlu, M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. J. Recept. Signal Transduct. Res., 2021, 41(3), 273-283.
[http://dx.doi.org/10.1080/10799893.2020.1806321] [PMID: 32781866]
[94]
Guo, H.; Camargo, L.M.; Yeboah, F.; Digan, M.E.; Niu, H.; Pan, Y.; Reiling, S.; Llavina, S.G.; Weihofen, W.A.; Wang, H.R.; Shanker, Y.G.; Stams, T.; Bill, A. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci. Rep., 2017, 7(1), 11608.
[http://dx.doi.org/10.1038/s41598-017-11947-x] [PMID: 28912557]
[95]
Dingle, Y.T.L.; Liaudanskaya, V.; Finnegan, L.T.; Berlind, K.C.; Mizzoni, C.; Georgakoudi, I.; Nieland, T.J.F.; Kaplan, D.L. Functional characterization of three-dimensional cortical cultures for in vitro modeling of brain networks. iScience, 2020, 23(8), 101434.
[http://dx.doi.org/10.1016/j.isci.2020.101434] [PMID: 32805649]
[96]
Lv, S.; Yao, K.; Zhang, Y.; Zhu, S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology, 2023, 225, 109378.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109378] [PMID: 36539011]
[97]
Zhou, Q.; Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology, 2013, 74, 69-75.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.030] [PMID: 23583930]
[98]
Rodriguez, C.M.; Rodríguez, G.C.; Villalobos, C.; Núñez, L. Role of toll like receptor 4 in Alzheimer’s disease. Front. Immunol., 2020, 11, 1588.
[http://dx.doi.org/10.3389/fimmu.2020.01588] [PMID: 32983082]
[99]
Özgün, A.; Marote, A.; Behie, L.A.; Salgado, A.; Garipcan, B. Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation. J. Neural Transm., 2019, 126(10), 1281-1290.
[http://dx.doi.org/10.1007/s00702-019-02045-5] [PMID: 31317262]
[100]
Groth, R.D.; Dunbar, R.L.; Mermelstein, P.G. Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun., 2003, 311(4), 1159-1171.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.002] [PMID: 14623302]
[101]
Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci., 2013, 14(9), 593-608.
[http://dx.doi.org/10.1038/nrn3531] [PMID: 23942469]
[102]
Matta, C.; Juhász, T.; Fodor, J.; Hajdú, T.; Katona, É.; Somogyi, S.C.; Takács, R.; Vágó, J.; Oláh, T.; Bartók, Á.; Varga, Z.; Panyi, G.; Csernoch, L.; Zákány, R. N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Commun. Signal., 2019, 17(1), 166.
[http://dx.doi.org/10.1186/s12964-019-0487-3] [PMID: 31842918]
[103]
Garcia-Durillo, M.; Frenguelli, B.G. Antagonism of P2X7 receptors enhances lorazepam action in delaying seizure onset in an in vitro model of status epilepticus. Neuropharmacology, 2023, 239, 109647.
[http://dx.doi.org/10.1016/j.neuropharm.2023.109647] [PMID: 37459909]
[104]
Companys-Alemany, J.; Turcu, A.L.; Bellver-Sanchis, A.; Loza, M.I.; Brea, J.M.; Canudas, A.M.; Leiva, R.; Vázquez, S.; Pallàs, M.; Ferré, G.C. A novel NMDA receptor antagonist protects against cognitive decline presented by senescent mice. Pharmaceutics, 2020, 12(3), 284.
[http://dx.doi.org/10.3390/pharmaceutics12030284] [PMID: 32235699]
[105]
Gattuso, J.J.; Wilson, C.; Hannan, A.J.; Renoir, T. Acute administration of the NMDA receptor antagonists ketamine and MK-801 reveals dysregulation of glutamatergic signalling and sensorimotor gating in the Sapap3 knockout mouse model of compulsive-like behaviour. Neuropharmacology, 2023, 239, 109689.
[http://dx.doi.org/10.1016/j.neuropharm.2023.109689] [PMID: 37597609]
[106]
Mony, L.; Kew, J.N.C.; Gunthorpe, M.J.; Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. Br. J. Pharmacol., 2009, 157(8), 1301-1317.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00304.x] [PMID: 19594762]
[107]
Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: Disease models and outcome measures. J. Pain, 2013, 14(11), 1255-1269.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[108]
Bouali-Benazzouz, R.; Landry, M.; Benazzouz, A.; Fossat, P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog. Neurobiol., 2021, 201, 102030.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102030] [PMID: 33711402]
[109]
Thouaye, M.; Yalcin, I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol. Ther., 2023, 251, 108546.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108546] [PMID: 37832728]
[110]
Huang, J.C.; Salt, T.E.; Voaden, M.J.; Marshall, J. Non- competitive NMDA-receptor antagonists and anoxic degeneration of the ERG B-wave in vitro. Eye, 1991, 5(4), 476-480.
[http://dx.doi.org/10.1038/eye.1991.77] [PMID: 1660413]
[111]
Siu, A.; Drachtman, R. Dextromethorphan: A review of N-methyl-d-aspartate receptor antagonist in the management of pain. CNS Drug Rev., 2007, 13(1), 96-106.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00006.x] [PMID: 17461892]
[112]
Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther., 2016, 159, 1-22.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.016] [PMID: 26826604]
[113]
Welch, L.; Sovner, R. The treatment of a chronic organic mental disorder with dextromethorphan in a man with severe mental retardation. Br. J. Psychiatry, 1992, 161(1), 118-120.
[http://dx.doi.org/10.1192/bjp.161.1.118] [PMID: 1638308]
[114]
Woodard, C.; Groden, J.; Goodwin, M.; Shanower, C.; Bianco, J. The treatment of the behavioral sequelae of autism with dextromethorphan: A case report. J. Autism Dev. Disord., 2005, 35(4), 515-518.
[http://dx.doi.org/10.1007/s10803-005-5041-z] [PMID: 16134036]
[115]
Chez, M.; Kile, S.; Lepage, C.; Parise, C.; Benabides, B.; Hankins, A. A randomized, placebo-controlled, blinded, crossover, pilot study of the effects of dextromethorphan/quinidine for the treatment of neurobehavioral symptoms in adults with autism. J. Autism Dev. Disord., 2020, 50(5), 1532-1538.
[http://dx.doi.org/10.1007/s10803-018-3703-x] [PMID: 30109474]
[116]
Pioro, E.P. Review of dextromethorphan 20 mg/quinidine 10 mg (NUEDEXTA®) for pseudobulbar affect. Neurol. Ther., 2014, 3(1), 15-28.
[http://dx.doi.org/10.1007/s40120-014-0018-5] [PMID: 26000221]
[117]
Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol., 2015, 24(4), 285-300.
[http://dx.doi.org/10.5607/en.2015.24.4.285] [PMID: 26713077]
[118]
Long, X.Y.; Wang, S.; Luo, Z.W.; Zhang, X.; Xu, H. Comparison of three administration modes for establishing a zebrafish seizure model induced by N-Methyl-D-aspartic acid. World J. Psychiatry, 2020, 10(7), 150-161.
[http://dx.doi.org/10.5498/wjp.v10.i7.150] [PMID: 32844092]
[119]
Lanznaster, D.; Dal-Cim, T.; Piermartiri, T.C.B.; Tasca, C.I. Guanosine: A neuromodulator with therapeutic potential in brain disorders. Aging Dis., 2016, 7(5), 657-679.
[http://dx.doi.org/10.14336/AD.2016.0208] [PMID: 27699087]
[120]
Kapur, J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open, 2018, 3(S2), 165-168.
[http://dx.doi.org/10.1002/epi4.12270] [PMID: 30564775]
[121]
Elmorsy, S.A.; Soliman, G.F.; Rashed, L.A.; Elgendy, H. Dexmedetomidine and propofol sedation requirements in an autistic rat model. Korean J. Anesthesiol., 2019, 72(2), 169-177.
[http://dx.doi.org/10.4097/kja.d.18.00005] [PMID: 29843508]
[122]
Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; Osredkar, J.; Urbina, M.A.; Fabjan, T.; El-Houfey, A.A.; Czaplińska, K.J.; Gątarek, P.; Chirumbolo, S. Oxidative stress in autism spectrum disorder. Mol. Neurobiol., 2020, 57(5), 2314-2332.
[http://dx.doi.org/10.1007/s12035-019-01742-2] [PMID: 32026227]

© 2024 Bentham Science Publishers | Privacy Policy