Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-tumoral Immunity and Chemo-preventive Effectiveness of Herbal Extracts of Curcumin, Ginger, Clove and Amygdaline in Ehrlich Ascites Carcinoma-Challenging Mice

Author(s): Soha Gomaa*, Mohamed Nassef, Randa El-Naggar, Ahmed Massoud and Mona El-Kholy

Volume 24, Issue 11, 2024

Published on: 15 April, 2024

Page: [826 - 835] Pages: 10

DOI: 10.2174/0118715206269038231203151111

Price: $65

conference banner
Abstract

Background: Due to its systemic toxicity, traditional chemotherapy of tumors is being taken into consideration. Herbal therapy, containing phytochemical polyphenol derivatives such as Curcumin (Cur), Ginger (Gin), Cloves (Clov) and Amygdaline (Amyg), is one of the numerous complementary and alternative approaches as an anti-cancer therapy and holds great promise for cancer chemo-prevention with fewer side effects.

Aim: The current study was designated to assess anti-tumoral immunity and anti-cancer and chemo-preventive effectiveness of herbal extracts of Cur, Ginger, Clov and Amyg in Ehrlich Ascites Carcinoma (EAC)-challenging mice.

Methods: Chemo-preventive efficacy of herbal extracts of Cur, Gin, Clov and Amyg were analyzed in vivo by examination of the apoptosis rate of EAC tumor cells by flow cytometry. The total numbers of EAC cells, splenocytes counts and leucocytes count with their differentials relative % in peripheral blood (PB) of EACchallenging mice were investigated.

Results: EAC-challenging mice treated with herbal extracts of Cur, Gin, Clov and Amyg showed a marked decline in EAC tumor cell count and a noticeable increase in apoptosis rate of EAC tumor cells, a remarkable decrease in serum level of cancer antigen 125 (CA-125) with an obvious increase in the number of splenocytes comparing to that in EAC-challenging mice treated with PBS alone. Moreover, the data indicated an insignificant change in the total leucocytes count and their differentials relative % of eosinophil, neutrophils, monocytes and lymphocytes in EAC-challenging mice treated with Cur and Amyg, but these parameters were markedly increased in EAC-challenging mice injected with Gin and Clov compared to that in EAC-challenging mice treated with PBS alone.

Conclusion: To conclude, the herbal extracts of Cur, Gin, Clov and Amyg may have anti-tumoral immunity and anti-cancer potency and potential to reduce the resistance to cancer conventional chemotherapy and exert cancer chemo-protective approaches with low adverse effects. Further research is necessary to determine the regimen's toxicity on various tissues and organs and to connect the diagnostic and therapeutic approaches used in the regimen's biomedical use.

Keywords: Herbal extracts, chemo-prevention, anti-tumor immunity, apoptosis, cancer, conventional chemotherapy.

Graphical Abstract
[1]
Torigoe, T.; Izumi, H.; Ishiguchi, H.; Yoshida, Y.; Tanabe, M.; Yoshida, T.; Igarashi, T.; Niina, I.; Wakasugi, T.; Imaizumi, T.; Momii, Y.; Kuwano, M.; Kohno, K. Cisplatin resistance and transcription factors. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 15-27.
[http://dx.doi.org/10.2174/1568011053352587] [PMID: 15720258]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[3]
Lin, S.R.; Fu, Y.S.; Tsai, M.J.; Cheng, H.; Weng, C.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int. J. Mol. Sci., 2017, 18(7), 1412.
[http://dx.doi.org/10.3390/ijms18071412] [PMID: 28671583]
[4]
Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933.
[http://dx.doi.org/10.3390/molecules26040933] [PMID: 33578780]
[5]
De Flora, S.; Ferguson, L.R. Overview of mechanisms of cancer chemopreventive agents. Mutat. Res., 2005, 591(1-2), 8-15.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.02.029] [PMID: 16107270]
[6]
George, B.P.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 2021, 10(9), 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]
[7]
Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res., 2008, 52(5), 507-526.
[http://dx.doi.org/10.1002/mnfr.200700326] [PMID: 18435439]
[8]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[9]
Noureini, S.K.; Wink, M. Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac. J. Cancer Prev., 2012, 13(5), 2305-2309.
[http://dx.doi.org/10.7314/APJCP.2012.13.5.2305] [PMID: 22901211]
[10]
Elsayed, E.A.; Sharaf-Eldin, M.A.; El-Enshasy, H.A.; Wadaan, M. In vitro assessment of anticancer properties of Moringa peregrine essential seed oil on different cell lines. Pak. J. Zool., 2016, 48, 853-859.
[11]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[12]
Ouyang, L.; Luo, Y.; Tian, M.; Zhang, S.Y.; Lu, R.; Wang, J.H.; Kasimu, R.; Li, X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif., 2014, 47(6), 506-515.
[http://dx.doi.org/10.1111/cpr.12143] [PMID: 25377084]
[13]
Pai, M.P.; Cottrell, M.L.; Kashuba, A.D.; Bertino, J.S. Pharmacokinetics and pharmacodynamics of anti-infective agents. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2015, pp. 252-262.
[14]
Chen, S.; Flower, A.; Ritchie, A.; Liu, J.; Molassiotis, A.; Yu, H.; Lewith, G. Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review. Lung Cancer, 2010, 68(2), 137-145.
[http://dx.doi.org/10.1016/j.lungcan.2009.11.008] [PMID: 20015572]
[15]
Fu, B.; Wang, N.; Tan, H.Y.; Li, S.; Cheung, F.; Feng, Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences. Front. Pharmacol., 2018, 9, 1394.
[http://dx.doi.org/10.3389/fphar.2018.01394] [PMID: 30555327]
[16]
Serafini, M.; Stanzione, A.; Foddai, S.; Anton, R.; Delmulle, L. The European role on traditional herbal medicinal products and traditional plant food supplements. J. Clin. Gastroenterol., 2012, 46(Suppl.), S93-S94.
[http://dx.doi.org/10.1097/MCG.0b013e318266b08f] [PMID: 22955367]
[17]
Aung, T.; Qu, Z.; Kortschak, R.; Adelson, D. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[18]
Gomez-Cadena, A.; Urueña, C.; Prieto, K.; Martinez-Usatorre, A.; Donda, A.; Barreto, A.; Romero, P.; Fiorentino, S. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis., 2016, 7(6), e2243.
[http://dx.doi.org/10.1038/cddis.2016.134] [PMID: 27253407]
[19]
Saetang, J.; Tedasen, A.; Sangkhathat, S.; Sangkaew, N.; Dokduang, S.; Prompat, N.; Taraporn, S.; Graidist, P. Low piperine fractional piper nigrum extract enhanced the antitumor immunity via regulating the Th1/Th2/Treg cell subsets on NMU-induced tumorigenesis rats. Planta Med., 2022, 88(7), 527-537.
[http://dx.doi.org/10.1055/a-1458-5646] [PMID: 33902130]
[20]
Lee, S.; Han, S.; Park, J.S.; Jeong, A.L.; Jung, S.H.; Choi, K.D.; Han, T-Y.; Han, I-Y.; Yang, Y. Herb mixture C5E aggravates doxorubicin-induced apoptosis of human breast cancer cell lines. J. Korean Soc. Appl. Biol. Chem., 2013, 56(5), 567-573.
[http://dx.doi.org/10.1007/s13765-013-3195-5]
[21]
Wang, Z.; Xie, C.; Huang, Y.; Lam, C.W.K.; Chow, M.S.S. Overcoming chemotherapy resistance with herbal medicines: Past, present and future perspectives. Phytochem. Rev., 2014, 13(1), 323-337.
[http://dx.doi.org/10.1007/s11101-013-9327-z]
[22]
Chen, S.; Wang, Z.; Huang, Y.; O’Barr, S.A.; Wong, R.A.; Yeung, S.; Chow, M.S.S. Ginseng and anticancer drug combination to improve cancer chemotherapy: A critical review. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/168940] [PMID: 24876866]
[23]
Koh, Y.C.; Ho, C.T.; Pan, M.H. Recent advances in cancer chemoprevention with phytochemicals. Yao Wu Shi Pin Fen Xi, 2020, 28(1), 14-37.
[http://dx.doi.org/10.38212/2224-6614.1219] [PMID: 31883602]
[24]
Shukla, Y.; Pal, S.K. Dietary cancer chemoprevention: An overview. Int. J. Hum. Genet., 2004, 4(4), 265-276.v.
[http://dx.doi.org/10.1080/09723757.2004.11885905]
[25]
Konga, A.K.; Muchandi, A.S.; Ponnaiah, G.P. Soxhlet extraction of Spirogyra sp. algae: An alternative fuel. Biofuels, 2017, 8(1), 29-35.
[http://dx.doi.org/10.1080/17597269.2016.1196328]
[26]
Halle, W.; Halder, M.; Worth, A.; Genschow, E. The Registry of Cytotoxicity: Toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals. Altern. Lab. Anim., 2003, 31(2), 89-198.
[http://dx.doi.org/10.1177/026119290303100204] [PMID: 15612878]
[27]
Gothoskar, S.V.; Ranadive, K.J. Anticancer screening of SAN-AB: An extract of marking nut, Semecarpus anacardium. Indian J. Exp. Biol., 1971, 9(3), 372-375.
[PMID: 5144337]
[28]
Abdel Salam, S.R.; Salem, M.; Nassef, M.; Abdu, S.; El-Adl, R. Efficacy of combined administration of chemoimmunotherapy with bone marrow cells or granulocyte-colony stimulating factor-mobilized stem cells on expansion of myeloid and stem cells. Clin. Cancer Investig. J., 2017, 6(1), 73-80.
[http://dx.doi.org/10.4103/ccij.ccij_4_17]
[29]
Nassef, M. Immunobiochemical modulations caused by clomazone in Swiss albino mice. J. Basic Appl. Zool., 2017, 78, 1-8.
[30]
Gomaa, S. Adverse effects induced by diclofenac, ibuprofen, and paracetamol toxicity on immunological and biochemical parameters in Swiss albino mice. J. Basic Appl. Zool., 2018, 79(1), 1-9.
[31]
Fang, C.; Cao, Y.; Liu, X.; Zeng, X.T.; Li, Y. Serum CA125 is a predictive marker for breast cancer outcomes and correlates with molecular subtypes. Oncotarget, 2017, 8(38), 63963-63970.
[http://dx.doi.org/10.18632/oncotarget.19246] [PMID: 28969044]
[32]
Mondal, J.; Bishayee, K.; Panigrahi, A.K.; Khuda-Bukhsh, A.R. Low doses of ethanolic extract of Boldo (Peumus boldus) can ameliorate toxicity generated by cisplatin in normal liver cells of mice in vivo and in WRL-68 cells in vitro, but not in cancer cells in vivo or in vitro. J. Integr. Med., 2014, 12(5), 425-438.
[http://dx.doi.org/10.1016/S2095-4964(14)60045-5] [PMID: 25292342]
[33]
Lai, C.S.; Ho, C.T.; Pan, M.H. The cancer chemopreventive and therapeutic potential of tetrahydrocurcumin. Biomolecules, 2020, 10(6), 831.
[http://dx.doi.org/10.3390/biom10060831] [PMID: 32486019]
[34]
Rasmussen, P. Potion or poison? Ginger. J. Prim. Health Care, 2011, 3(3), 235-236.
[http://dx.doi.org/10.1071/HC11235] [PMID: 21892429]
[35]
Zadorozhna, M.; Mangieri, D. Mechanisms of chemopreventive and therapeutic proprieties of ginger extracts in cancer. Int. J. Mol. Sci., 2021, 22(12), 6599.
[http://dx.doi.org/10.3390/ijms22126599] [PMID: 34202966]
[36]
Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Kruzliak, P.; Mojzis, J.; Vybohova, D.; Adamkov, M.; Jasek, K.; Lasabova, Z.; Zubor, P.; Fialova, S.; Dokupilova, S.; Solar, P.; Pec, M.; Adamicova, K.; Danko, J.; Adamek, M.; Busselberg, D. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med., 2017, 21(11), 2837-2851.
[http://dx.doi.org/10.1111/jcmm.13197] [PMID: 28524540]
[37]
Park, H.J.; Yoon, S.H.; Han, L.S.; Zheng, L.T.; Jung, K.H.; Uhm, Y.K.; Lee, J.H.; Jeong, J.S.; Joo, W.S.; Yim, S.V.; Chung, J.H.; Hong, S.P. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J. Gastroenterol., 2005, 11(33), 5156-5161.
[PMID: 16127745]
[38]
Chen, Y.; Ma, J.; Wang, F.; Hu, J.; Cui, A.; Wei, C.; Yang, Q.; Li, F. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol. Immunotoxicol., 2013, 35(1), 43-51.
[http://dx.doi.org/10.3109/08923973.2012.738688] [PMID: 23137229]
[39]
Barakat, H.; Aljutaily, T.; Almujaydil, M.S.; Algheshairy, R.M.; Alhomaid, R.M.; Almutairi, A.S.; Alshimali, S.I.; Abdellatif, A.A.H. Amygdalin: A Review on its characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic and mechanisms, toxicity, and encapsulation. Biomolecules, 2022, 12(10), 1514.
[http://dx.doi.org/10.3390/biom12101514] [PMID: 36291723]
[40]
Lin, S.; Wen, J.; Xu, X.; Shi, J.; Zhang, W.; Zheng, T.; Hou, Y.; Zhang, Y.; Li, Z.; Wang, K.; Jin, J.; Yue, L.; Abay, B.; Li, M.; Yue, Q.; Fan, L. Amygdalin induced mitochondria-mediated apoptosis of lung cancer cells via regulating nfκb-1/nfκb signaling cascade in vitro and in vivo. Am. J. Chin. Med., 2022, 50(5), 1361-1386.
[http://dx.doi.org/10.1142/S0192415X22500586] [PMID: 35681261]
[41]
Hosny, S.; Sahyon, H.; Youssef, M.; Negm, A. Prunus Armeniaca L. seed extract and its amygdalin containing fraction induced mitochondrial-mediated apoptosis and autophagy in liver carcinogenesis. Anticancer. Agents Med. Chem., 2021, 21(5), 621-629.
[http://dx.doi.org/10.2174/1871520620666200608124003] [PMID: 32510292]
[42]
Si, Z.; Zhang, B. Amygdalin attenuates airway epithelium apoptosis, inflammation, and epithelial-mesenchymal transition through restraining the tlr4/nf-kappab signaling pathway on lps-treated beas-2b bronchial epithelial cells. Int. Arch. Allergy Immunol., 2021, 182(10), 997-1007.
[http://dx.doi.org/10.1159/000514209] [PMID: 34428767]
[43]
Alwan, A.M.; Afshari, J.T. In vivo growth inhibition of human caucasian prostate adenocarcinoma in nude mice induced by amygdalin with metabolic enzyme combinations. BioMed Res. Int., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/4767621] [PMID: 35637752]
[44]
Wang, R.; Zhang, D.; Tang, D.; Sun, K.; Peng, J.; Zhu, W.; Yin, S.; Wu, Y. Amygdalin inhibits TGFβ1-induced activation of hepatic stellate cells (HSCs) in vitro and CCl4-induced hepatic fibrosis in rats in vivo. Int. Immunopharmacol., 2021, 90, 107151.
[http://dx.doi.org/10.1016/j.intimp.2020.107151] [PMID: 33296784]
[45]
Xiao, Z.; Ji, Q.; Fu, Y.D.; Gao, S.Q.; Hu, Y.H.; Liu, W. Amygdalin ameliorates liver fibrosis through inhibiting activation of tgf-beta/smad signaling. Chin. J. Integr. Med., 2021, 11, 1-9.
[PMID: 34816365]
[46]
Zhang, C.; Lin, J.; Zhen, C.; Wang, F.; Sun, X.; Kong, X.; Gao, Y. Amygdalin protects against acetaminophen-induced acute liver failure by reducing inflammatory response and inhibiting hepatocyte death. Biochem. Biophys. Res. Commun., 2022, 602, 105-112.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.011] [PMID: 35259588]
[47]
Al-Khafaji, K.; Taskin, T.T. Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Comput. Methods Programs Biomed., 2020, 195, 105660.
[http://dx.doi.org/10.1016/j.cmpb.2020.105660] [PMID: 32726718]
[48]
Park, W.; Amin, A.R.M.R.; Chen, Z.G.; Shin, D.M. New perspectives of curcumin in cancer prevention. Cancer Prev. Res. , 2013, 6(5), 387-400.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0410] [PMID: 23466484]
[49]
Shanmugam, M.; Rane, G.; Kanchi, M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.; Alharbi, S.; Tan, B.; Kumar, A.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[50]
Yang, Z.J.; Huang, S.Y.; Zhou, D.D.; Xiong, R.G.; Zhao, C.N.; Fang, A.P.; Zhang, Y.J.; Li, H.B.; Zhu, H.L. Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants, 2022, 11(8), 1481.
[http://dx.doi.org/10.3390/antiox11081481] [PMID: 36009200]
[51]
Palipoch, S.; Punsawad, C.; Koomhin, P.; Suwannalert, P. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress. BMC Complement. Altern. Med., 2014, 14(1), 111.
[http://dx.doi.org/10.1186/1472-6882-14-111] [PMID: 24674233]
[52]
Kim, Y.J.; Jeon, Y.; Kim, T.; Lim, W.C.; Ham, J.; Park, Y.N.; Kim, T.J.; Ko, H. Combined treatment with zingerone and its novel derivative synergistically inhibits TGF-β1 induced epithelial-mesenchymal transition, migration and invasion of human hepatocellular carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(4), 1081-1088.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.042] [PMID: 28110870]
[53]
Lechner, J.F.; Stoner, G.D. Gingers and their purified components as cancer chemopreventative agents. Molecules, 2019, 24(16), 2859.
[http://dx.doi.org/10.3390/molecules24162859] [PMID: 31394732]
[54]
Wee, L.H.; Morad, N.A.; Aan, G.J.; Makpol, S.; Ngah, W.Z.W.; Yusof, Y.A.M. Mechanism of chemoprevention against colon cancer cells using combined Gelam honey and Ginger extract via mTOR and Wnt/β-catenin pathways. Asian Pac. J. Cancer Prev., 2015, 16(15), 6549-6556.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6549] [PMID: 26434873]
[55]
Vemuri, SK; Banala, RR; Subbaiah, GPV; Srivastava, SK; Reddy, AG; Malarvili, T Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study. Egyptian J. Basic Appl. Sci., 2017, 4(4), 332-344.
[http://dx.doi.org/10.1016/j.ejbas.2017.07.005]
[56]
Yekta, Z.P.; Ebrahimi, S.M.; Hosseini, M.; Nasrabadi, A.N.; Sedighi, S.; Surmaghi, M.H.S.; Madani, H. Ginger as a miracle against chemotherapy-induced vomiting. Iran. J. Nurs. Midwifery Res., 2012, 17(5), 325-329.
[PMID: 23853643]
[57]
Lete, I.; Alluέ, J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integrat. Med. Insightst, 2016, 11, S36273.
[http://dx.doi.org/10.4137/IMI.S36273]
[58]
Shukla, Y.; Singh, M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol., 2007, 45(5), 683-690.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[59]
Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer properties of eugenol: A review. Molecules, 2021, 26(23), 7407.
[http://dx.doi.org/10.3390/molecules26237407] [PMID: 34885992]
[60]
Fujisawa, S.; Murakami, Y. Eugenol and its role in chronic diseases. In: Drug Discovery from Mother Nature; Springer: Cham, 2016; pp. 45-66.
[http://dx.doi.org/10.1007/978-3-319-41342-6_3]
[61]
Moradi, B.; Heidari-Soureshjani, S.; Asadi-Samani, M.; Yang, Q. A systematic review of phytochemical and phytotherapeutic characteristics of bitter almond. Int. J. Pharmaceut. Phytopharmacol. Res., 2017, 7, 1-9.
[62]
Christodoulou, P.; Boutsikos, P.; Neophytou, C.M.; Kyriakou, T.C.; Christodoulou, M.I.; Papageorgis, P.; Stephanou, A.; Patrikios, I. Amygdalin as a chemoprotective agent in co-treatment with cisplatin. Front. Pharmacol., 2022, 13, 1013692.
[http://dx.doi.org/10.3389/fphar.2022.1013692] [PMID: 36204233]
[63]
Albogami, S.; Hassan, A.; Ahmed, N.; Alnefaie, A.; Alattas, A.; Alquthami, L.; Alharbi, A. Evaluation of the effective dose of amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. PeerJ., 2020, 8, e9232.
[http://dx.doi.org/10.7717/peerj.9232] [PMID: 32509470]
[64]
Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer potential and other pharmacological properties of (Prunus armeniaca L.): An updated overview. Plants, 2022, 11(14), 1885.
[http://dx.doi.org/10.3390/plants11141885] [PMID: 35890519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy