Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Alleviating Neurodegenerative Diseases Associated with Mitochondrial Defects by Therapeutic Biomolecules

Author(s): Tanmoy Roy, Swarupanjali Padhi*, Rupa Mazumder, Chandana Majee, Saumya Das, Monika, Rashmi Mishra and Bhupinder Kapoor

Volume 24, Issue 16, 2024

Published on: 05 April, 2024

Page: [1377 - 1407] Pages: 31

DOI: 10.2174/0115680266299148240329062647

Price: $65

Abstract

Neurodegenerative diseases are emerging as a global health concern in the current scenario, and their association with mitochondrial defects has been a potential area of research. Mitochondria, one of the essential organelles of the cell, serve as the cell's powerhouse, producing energy and ensuring cellular health. Neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and Pelizaeus-Merzbacher disease have been found to be primarily triggered by mitochondrial malfunction. One of the key byproducts of mitochondrial respiration, reactive oxygen species, also contributes significantly to mitochondrial DNA mutations that eventually cause mitochondrial breakdown.

This review paper comprehensively examines the potential of therapeutic biomolecules, specifically mitochondria-specific antioxidants, in mitigating the impact of mitochondrial defects on neurodegenerative diseases. It provides a detailed analysis of the mechanisms involved in mitochondrial dysfunction, the potential therapeutic targets of these biomolecules, and their structureactivity relationship information are also discussed in this review.

Various research articles and publications were used extensively in compiling the data, and the structures of biomolecules were prepared using software such as ChemDraw and ChemSketch.

Crucial elements triggering mitochondrial abnormalities were identified and a tabular compilation of bioactive antioxidant compounds along with their therapeutic targets, was presented.

Mitochondria-specific antioxidant therapy is an innovative and promising strategy for the management of neurodegenerative diseases associated with mitochondrial defects. This review provides a thorough summary of the current state of research and promising avenues of research and development in this field, emphasizing the importance of further investigations and clinical trials to elucidate their therapeutic benefits.

Keywords: Neurodegenerative diseases, Mitochondrial malfunction, ROS, mtDNA mutation, Oxidative stress, Antioxidant therapy, Structure-activity relationship.

Graphical Abstract
[1]
Zhang, Y.; Yang, H.; Wei, D.; Zhang, X.; Wang, J.; Wu, X.; Chang, J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. Exploration, 2021, 1(3), 20210115.
[http://dx.doi.org/10.1002/EXP.20210115] [PMID: 37323688]
[2]
Betsinger, C.N.; Cristea, I.M. Mitochondrial function, metabolic regulation, and human disease viewed through the prism of sirtuin 4 (SIRT4) functions. J. Proteome Res., 2019, 18(5), 1929-1938.
[http://dx.doi.org/10.1021/acs.jproteome.9b00086] [PMID: 30913880]
[3]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[4]
Westermann, B. Molecular machinery of mitochondrial fusion and fission. J. Biol. Chem., 2008, 283(20), 13501-13505.
[http://dx.doi.org/10.1074/jbc.R800011200] [PMID: 18372247]
[5]
Escrivá, H.; Rodríguez-Peña, A.; Vallejo, C.G. Expression of mitochondrial genes and of the transcription factors involved in the biogenesis of mitochondria Tfam, NRF-1 and NRF-2, in rat liver, testis and brain. Biochimie, 1999, 81(10), 965-971.
[http://dx.doi.org/10.1016/S0300-9084(99)00223-0] [PMID: 10575350]
[6]
Ryoo, I.; Kwak, M.K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol. Appl. Pharmacol., 2018, 359, 24-33.
[http://dx.doi.org/10.1016/j.taap.2018.09.014] [PMID: 30236989]
[7]
Virbasius, C.A.; Virbasius, J.V.; Scarpulla, R.C. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev., 1993, 7(12a), 2431-2445.
[http://dx.doi.org/10.1101/gad.7.12a.2431] [PMID: 8253388]
[8]
Scarpulla, R.C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta Gene Struct. Expr., 2002, 1576(1-2), 1-14.
[http://dx.doi.org/10.1016/S0167-4781(02)00343-3] [PMID: 12031478]
[9]
Scarpulla, R.C. Nucleus-encoded regulators of mitochondrial function: Integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim. Biophys. Acta. Gene Regul. Mech., 2012, 1819(9-10), 1088-1097.
[http://dx.doi.org/10.1016/j.bbagrm.2011.10.011] [PMID: 22080153]
[10]
Mears, J.A. Mitochondrial biogenesis and quality control. In: The Structural Basis of Biological Energy Generation; Springer Netherlands: Dordrecht, 2014; pp. 451-476.
[http://dx.doi.org/10.1007/978-94-017-8742-0_24]
[11]
Zgorzynska, E.; Dziedzic, B.; Walczewska, A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(17), 9592.
[http://dx.doi.org/10.3390/ijms22179592] [PMID: 34502501]
[12]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[13]
Kang, D.; Kim, S.H.; Hamasaki, N. Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions. Mitochondrion, 2007, 7(1-2), 39-44.
[http://dx.doi.org/10.1016/j.mito.2006.11.017] [PMID: 17280879]
[14]
Smits, P.; Smeitink, J.; van den Heuvel, L. Mitochondrial translation and beyond: Processes implicated in combined oxidative phosphorylation deficiencies. J. Biomed. Biotechnol., 2010, 2010, 1-24.
[http://dx.doi.org/10.1155/2010/737385] [PMID: 20396601]
[15]
Kang, D.; Hamasaki, N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: Overview of its multiple roles. Ann. N. Y. Acad. Sci., 2005, 1042(1), 101-108.
[http://dx.doi.org/10.1196/annals.1338.010] [PMID: 15965051]
[16]
John, J.S. The control of mtDNA replication during differentiation and development. Biochimica et Biophysica Acta (BBA)-. General Subjects., 2014, 1840(4), 1345-1354.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.036]
[17]
Campbell, C.T.; Kolesar, J.E.; Kaufman, B.A. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta. Gene Regul. Mech., 2012, 1819(9-10), 921-929.
[http://dx.doi.org/10.1016/j.bbagrm.2012.03.002] [PMID: 22465614]
[18]
Lezza, A.M.S. Mitochondrial transcription factor A (TFAM): One actor for different roles. Front. Biol., 2012, 7(1), 30-39.
[http://dx.doi.org/10.1007/s11515-011-1175-x]
[19]
Shih, J.; Liu, L.; Mason, A.; Higashimori, H.; Donmez, G. Loss of SIRT 4 decreases GLT ‐1‐dependent glutamate uptake and increases sensitivity to kainic acid. J. Neurochem., 2014, 131(5), 573-581.
[http://dx.doi.org/10.1111/jnc.12942] [PMID: 25196144]
[20]
Komlos, D.; Mann, K.D.; Zhuo, Y.; Ricupero, C.L.; Hart, R.P.; Liu, A.Y.C.; Firestein, B.L. Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia, 2013, 61(3), 394-408.
[http://dx.doi.org/10.1002/glia.22442] [PMID: 23281078]
[21]
Starkov, A.A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci., 2008, 1147(1), 37-52.
[http://dx.doi.org/10.1196/annals.1427.015] [PMID: 19076429]
[22]
Schofield, J.H.; Schafer, Z.T. Mitochondrial reactive oxygen species and mitophagy: A complex and nuanced relationship. Antioxid. Redox Signal., 2021, 34(7), 517-530.
[http://dx.doi.org/10.1089/ars.2020.8058] [PMID: 32079408]
[23]
Zhao, L.; Ackerman, S.L. Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol., 2006, 18(4), 444-452.
[http://dx.doi.org/10.1016/j.ceb.2006.06.005] [PMID: 16781856]
[24]
Hassan, W.; Noreen, H.; Rehman, S.; Kamal, M.A.; da Rocha, J.B.T. Association of oxidative stress with neurological disorders. Curr. Neuropharmacol., 2022, 20(6), 1046-1072.
[http://dx.doi.org/10.2174/1570159X19666211111141246] [PMID: 34781871]
[25]
Kawamura, K.; Qi, F.; Kobayashi, J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J. Radiat. Res., 2018, 59(Suppl. 2), ii91-ii97.
[http://dx.doi.org/10.1093/jrr/rrx091] [PMID: 29415254]
[26]
Zhou, X.; Li, N.; Wang, Y.; Wang, Y.; Zhang, X.; Zhang, H. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion, 2011, 11(6), 886-892.
[http://dx.doi.org/10.1016/j.mito.2011.07.005] [PMID: 21835270]
[27]
Calabrese, V.; Lodi, R.; Tonon, C.; D’Agata, V.; Sapienza, M.; Scapagnini, G.; Mangiameli, A.; Pennisi, G.; Stella, A.M.G.; Butterfield, D.A. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J. Neurol. Sci., 2005, 233(1-2), 145-162.
[http://dx.doi.org/10.1016/j.jns.2005.03.012] [PMID: 15896810]
[28]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(39), 14205-14218.
[http://dx.doi.org/10.3748/wjg.v20.i39.14205] [PMID: 25339807]
[29]
Arena, G.; Valente, E.M. PINK1 in the limelight: Multiple functions of an eclectic protein in human health and disease. J. Pathol., 2017, 241(2), 251-263.
[http://dx.doi.org/10.1002/path.4815] [PMID: 27701735]
[30]
Corti, O.; Blomgren, K.; Poletti, A.; Beart, P.M. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J. Neurochem., 2020, 154(4), 354-371.
[http://dx.doi.org/10.1111/jnc.15002] [PMID: 32149395]
[31]
Henchcliffe, C.; Beal, M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol., 2008, 4(11), 600-609.
[http://dx.doi.org/10.1038/ncpneuro0924] [PMID: 18978800]
[32]
Qu, Z.; Sun, J.; Zhang, W.; Yu, J.; Zhuang, C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic. Biol. Med., 2020, 159, 87-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.028] [PMID: 32730855]
[33]
Baldelli, S.; Aquilano, K.; Ciriolo, M.R. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(8), 4137-4146.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.006] [PMID: 23597778]
[34]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956] [PMID: 29281123]
[35]
Johnson, J.; Mercado-Ayon, E.; Mercado-Ayon, Y.; Dong, Y.N.; Halawani, S.; Ngaba, L.; Lynch, D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys., 2021, 702, 108698.
[http://dx.doi.org/10.1016/j.abb.2020.108698] [PMID: 33259796]
[36]
Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. FASEB J., 2021, 35(6), e21620.
[http://dx.doi.org/10.1096/fj.202100067R] [PMID: 34048084]
[37]
Tuppen, H.A.L.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta Bioenerg., 2010, 1797(2), 113-128.
[http://dx.doi.org/10.1016/j.bbabio.2009.09.005] [PMID: 19761752]
[38]
Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med., 2015, 47(3), e150.
[http://dx.doi.org/10.1038/emm.2014.122] [PMID: 25766619]
[39]
Votyakova, T.V.; Reynolds, I.J. ΔΨ m ‐Dependent and ‐independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem., 2001, 79(2), 266-277.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00548.x] [PMID: 11677254]
[40]
Cui, H.; Kong, Y.; Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct., 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/646354] [PMID: 21977319]
[41]
Giorgio, M.; Migliaccio, E.; Orsini, F.; Paolucci, D.; Moroni, M.; Contursi, C.; Pelliccia, G.; Luzi, L.; Minucci, S.; Marcaccio, M.; Pinton, P.; Rizzuto, R.; Bernardi, P.; Paolucci, F.; Pelicci, P.G. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 2005, 122(2), 221-233.
[http://dx.doi.org/10.1016/j.cell.2005.05.011] [PMID: 16051147]
[42]
Herrmann, J.M.; Longen, S.; Weckbecker, D.; Depuydt, M. Biogenesis of mitochondrial proteins. Adv. Exp. Med. Biol., 2012, 748, 41-64.
[http://dx.doi.org/10.1007/978-1-4614-3573-0_3]
[43]
Reinecke, F.; Smeitink, J.A.M.; van der Westhuizen, F.H. OXPHOS gene expression and control in mitochondrial disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(12), 1113-1121.
[http://dx.doi.org/10.1016/j.bbadis.2009.04.003] [PMID: 19389473]
[44]
Saki, M.; Prakash, A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic. Biol. Med., 2017, 107, 216-227.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.050] [PMID: 27915046]
[45]
Lu, Z.; Xu, X.; Hu, X.; Fassett, J.; Zhu, G.; Tao, Y.; Li, J.; Huang, Y.; Zhang, P.; Zhao, B.; Chen, Y. PGC-1 α regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid. Redox Signal., 2010, 13(7), 1011-1022.
[http://dx.doi.org/10.1089/ars.2009.2940] [PMID: 20406135]
[46]
Saleem, A.; Adhihetty, P.J.; Hood, D.A. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol. Genomics, 2009, 37(1), 58-66.
[http://dx.doi.org/10.1152/physiolgenomics.90346.2008] [PMID: 19106183]
[47]
Liu, Y.J.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H. Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech. Ageing Dev., 2020, 186, 111212.
[http://dx.doi.org/10.1016/j.mad.2020.111212] [PMID: 32017944]
[48]
Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 204-224.
[http://dx.doi.org/10.1038/s41580-020-0210-7] [PMID: 32071438]
[49]
Ježek, J.; Cooper, K.; Strich, R. Reactive oxygen species and mitochondrial dynamics: The yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants, 2018, 7(1), 13.
[http://dx.doi.org/10.3390/antiox7010013] [PMID: 29337889]
[50]
Tschopp, J. Mitochondria: Sovereign of inflammation? Eur. J. Immunol., 2011, 41(5), 1196-1202.
[http://dx.doi.org/10.1002/eji.201141436] [PMID: 21469137]
[51]
Amor, S.; Peferoen, L.A.N.; Vogel, D.Y.S.; Breur, M.; van der Valk, P.; Baker, D.; van Noort, J.M. Inflammation in neurodegenerative diseases – An update. Immunology, 2014, 142(2), 151-166.
[http://dx.doi.org/10.1111/imm.12233] [PMID: 24329535]
[52]
Missiroli, S.; Genovese, I.; Perrone, M.; Vezzani, B.; Vitto, V.A.M.; Giorgi, C. The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J. Clin. Med., 2020, 9(3), 740.
[http://dx.doi.org/10.3390/jcm9030740] [PMID: 32182899]
[53]
Lamkanfi, M.; Dixit, V.M. Inflammasomes: Guardians of cytosolic sanctity. Immunol. Rev., 2009, 227(1), 95-105.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00730.x] [PMID: 19120479]
[54]
Wang, K.; Yao, Y.; Zhu, X.; Zhang, K.; Zhou, F.; Zhu, L. Amyloid β induces NLRP3 inflammasome activation in retinal pigment epithelial cells via NADPH oxidase‐ and mitochondria‐dependent ROS production. J. Biochem. Mol. Toxicol., 2017, 31(6), e21887.
[http://dx.doi.org/10.1002/jbt.21887] [PMID: 28004443]
[55]
Cameron, S.J.; Sheng, J.; Hosseinian, F.; Willmore, W.G. Nanoparticle effects on stress response pathways and nanoparticle–protein interactions. Int. J. Mol. Sci., 2022, 23(14), 7962.
[http://dx.doi.org/10.3390/ijms23147962] [PMID: 35887304]
[56]
Alrouji, M.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Saad, H.M.; Batiha, G.E.S. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer’s diseases. Diabetol. Metab. Syndr., 2023, 15(1), 101.
[http://dx.doi.org/10.1186/s13098-023-01082-1] [PMID: 37173803]
[57]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol. Neurobiol., 2013, 48(3), 875-882.
[http://dx.doi.org/10.1007/s12035-013-8475-x] [PMID: 23686772]
[58]
van Vliet, A.R.; Verfaillie, T.; Agostinis, P. New functions of mitochondria associated membranes in cellular signaling. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2253-2262.
[http://dx.doi.org/10.1016/j.bbamcr.2014.03.009] [PMID: 24642268]
[59]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[60]
Lindholm, D.; Wootz, H.; Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ., 2006, 13(3), 385-392.
[http://dx.doi.org/10.1038/sj.cdd.4401778] [PMID: 16397584]
[61]
Degechisa, S.T.; Dabi, Y.T.; Gizaw, S.T. The mitochondrial associated endoplasmic reticulum membranes: A platform for the pathogenesis of inflammation‐mediated metabolic diseases. Immun. Inflamm. Dis., 2022, 10(7), e647.
[http://dx.doi.org/10.1002/iid3.647] [PMID: 35759226]
[62]
Liu, J.; Yang, J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed. Pharmacother., 2022, 149, 112890.
[http://dx.doi.org/10.1016/j.biopha.2022.112890] [PMID: 35367757]
[63]
Swerdlow, R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1403-1416.
[http://dx.doi.org/10.3233/JAD-170585] [PMID: 29036828]
[64]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[65]
Shoshan-Barmatz, V.; Nahon-Crystal, E.; Shteinfer-Kuzmine, A.; Gupta, R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res., 2018, 131, 87-101.
[http://dx.doi.org/10.1016/j.phrs.2018.03.010] [PMID: 29551631]
[66]
Hernansanz-Agustín, P.; Enríquez, J.A. Enríquez, JAJA Generation of reactive oxygen species by mitochondria. Antioxidants, 2021, 10(3), 415.
[http://dx.doi.org/10.3390/antiox10030415] [PMID: 33803273]
[67]
Pinto, M.; Moraes, C.T. Mechanisms linking mtDNA damage and aging. Free Radic. Biol. Med., 2015, 85, 250-258.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.005] [PMID: 25979659]
[68]
Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep., 2018, 18(5), 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[69]
Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem. Soc. Trans., 2018, 46(4), 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[70]
Nguyen, M.; Wong, Y.C.; Ysselstein, D.; Severino, A.; Krainc, D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci., 2019, 42(2), 140-149.
[http://dx.doi.org/10.1016/j.tins.2018.11.001] [PMID: 30509690]
[71]
Pilsl, A.; Winklhofer, K.F. Parkin, PINK1 and mitochondrial integrity: Emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol., 2012, 123(2), 173-188.
[http://dx.doi.org/10.1007/s00401-011-0902-3] [PMID: 22057787]
[72]
Jodeiri Farshbaf, M.; Ghaedi, K. Huntington’s disease and mitochondria. Neurotox. Res., 2017, 32(3), 518-529.
[http://dx.doi.org/10.1007/s12640-017-9766-1] [PMID: 28639241]
[73]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[74]
Carmo, C; Naia, L Lopes, C Mitochondrial dysfunction in Huntington’s disease. Polyglutamine disorders, 2018, 59(83)
[http://dx.doi.org/10.1007/978-3-319-71779-1_3]
[75]
Todi, SV; Williams, AJ; Paulson, HL Polyglutamine disorders including huntington’s disease. Molecular neurology, 2007, 257-276.
[http://dx.doi.org/10.1016/B978-012369509-3.50019-6]
[76]
Sharma, A.; Behl, T.; Sharma, L.; Aelya, L.; Bungau, S. Mitochondrial dysfunction in Huntington’s disease: Pathogenesis and therapeutic opportunities. Curr. Drug Targets, 2021, 22(14), 1637-1667.
[http://dx.doi.org/10.2174/1389450122666210224105945] [PMID: 33655829]
[77]
Le Gall, L.; Anakor, E.; Connolly, O.; Vijayakumar, U.; Duddy, W.; Duguez, S. Molecular and cellular mechanisms affected in ALS. J. Pers. Med., 2020, 10(3), 101.
[http://dx.doi.org/10.3390/jpm10030101] [PMID: 32854276]
[78]
Calió, M.L.; Henriques, E.; Siena, A.; Bertoncini, C.R.A.; Gil-Mohapel, J.; Rosenstock, T.R. Mitochondrial dysfunction, neurogenesis, and epigenetics: Putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front. Neurosci., 2020, 14, 679.
[http://dx.doi.org/10.3389/fnins.2020.00679] [PMID: 32760239]
[79]
Magrì, A. VDAC and SOD1: Two major players in mitochondrial metabolism and in ALS; Archiv, 2015.
[80]
Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[81]
Nafisinia, M.; Sobreira, N.; Riley, L.; Gold, W.; Uhlenberg, B.; Weiß, C.; Boehm, C.; Prelog, K.; Ouvrier, R.; Christodoulou, J. Mutations in RARS cause a hypomyelination disorder akin to Pelizaeus–Merzbacher disease. Eur. J. Hum. Genet., 2017, 25(10), 1134-1141.
[http://dx.doi.org/10.1038/ejhg.2017.119] [PMID: 28905880]
[82]
Soderblom, C.; Blackstone, C. Traffic accidents: Molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol. Ther., 2006, 109(1-2), 42-56.
[http://dx.doi.org/10.1016/j.pharmthera.2005.06.001] [PMID: 16005518]
[83]
Bross, P.; Magnoni, R.; Sigaard Bie, A. Molecular chaperone disorders: Defective Hsp60 in neurodegeneration. Curr. Top. Med. Chem., 2013, 12(22), 2491-2503.
[http://dx.doi.org/10.2174/1568026611212220005] [PMID: 23339303]
[84]
Saugier-Veber, P.; Munnich, A.; Bonneau, D.; Rozet, J.M.; Le Merrer, M.; Gil, R.; Boespflug-Tanguy, O. X–linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat. Genet., 1994, 6(3), 257-262.
[http://dx.doi.org/10.1038/ng0394-257] [PMID: 8012387]
[85]
Niyazov, D.M.; Kahler, S.G.; Frye, R.E. Primary mitochondrial disease and secondary mitochondrial dysfunction: Importance of distinction for diagnosis and treatment. Mol. Syndromol., 2016, 7(3), 122-137.
[http://dx.doi.org/10.1159/000446586] [PMID: 27587988]
[86]
Floros, V.I.; Pyle, A.; Dietmann, S.; Wei, W.; Tang, W.C.W.; Irie, N.; Payne, B.; Capalbo, A.; Noli, L.; Coxhead, J.; Hudson, G.; Crosier, M.; Strahl, H.; Khalaf, Y.; Saitou, M.; Ilic, D.; Surani, M.A.; Chinnery, P.F. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol., 2018, 20(2), 144-151.
[http://dx.doi.org/10.1038/s41556-017-0017-8] [PMID: 29335530]
[87]
Kundu, P.; Das, M.; Tripathy, K.; Sahoo, S.K. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem. Neurosci., 2016, 7(12), 1658-1670.
[http://dx.doi.org/10.1021/acschemneuro.6b00207] [PMID: 27642670]
[88]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[89]
Zeng, K.W.; Wang, X.M.; Ko, H.; Kwon, H.C.; Cha, J.W.; Yang, H.O. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. Eur. J. Pharmacol., 2011, 672(1-3), 45-55.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.177] [PMID: 21978835]
[90]
Wen, H.; Fu, Z.; Wei, Y.; Zhang, X.; Ma, L.; Gu, L.; Li, J. Antioxidant activity and neuroprotective activity of stilbenoids in rat primary cortex neurons via the PI3K/Akt signalling pathway. Molecules, 2018, 23(9), 2328.
[http://dx.doi.org/10.3390/molecules23092328] [PMID: 30213108]
[91]
Lagoa, R.; Graziani, I.; Lopez-Sanchez, C.; Garcia-Martinez, V.; Gutierrez-Merino, C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta Bioenerg., 2011, 1807(12), 1562-1572.
[http://dx.doi.org/10.1016/j.bbabio.2011.09.022] [PMID: 22015496]
[92]
Sandoval-Acuña, C.; Lopez-Alarcón, C.; Aliaga, M.E.; Speisky, H. Inhibition of mitochondrial complex I by various non-steroidal anti-inflammatory drugs and its protection by quercetin via a coenzyme Q-like action. Chem. Biol. Interact., 2012, 199(1), 18-28.
[http://dx.doi.org/10.1016/j.cbi.2012.05.006] [PMID: 22652335]
[93]
Fiorani, M.; Guidarelli, A.; Blasa, M.; Azzolini, C.; Candiracci, M.; Piatti, E.; Cantoni, O. Mitochondria accumulate large amounts of quercetin: Prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J. Nutr. Biochem., 2010, 21(5), 397-404.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.014] [PMID: 19278846]
[94]
Krumova, K.; Greene, L.E.; Cosa, G. Fluorogenic α-tocopherol analogue for monitoring the antioxidant status within the inner mitochondrial membrane of live cells. J. Am. Chem. Soc., 2013, 135(45), 17135-17143.
[http://dx.doi.org/10.1021/ja408227f] [PMID: 24111857]
[95]
Deng, X.; Zhang, S.; Wu, J.; Sun, X.; Shen, Z.; Dong, J.; Huang, J. Promotion of mitochondrial biogenesis via activation of AMPK‐PGC1ɑ signaling pathway by Ginger (Zingiber officinale Roscoe) extract, and its major active component 6‐Gingerol. J. Food Sci., 2019, 84(8), 2101-2111.
[http://dx.doi.org/10.1111/1750-3841.14723] [PMID: 31369153]
[96]
Teixeira, J.; Soares, P.; Benfeito, S.; Gaspar, A.; Garrido, J.; Murphy, M.P.; Borges, F. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radic. Res., 2012, 46(5), 600-611.
[http://dx.doi.org/10.3109/10715762.2012.662593] [PMID: 22292941]
[97]
Wu, L.; Lu, P.; Guo, X.; Song, K.; Lyu, Y.; Bothwell, J.; Wu, J.; Hawkins, O.; Clarke, S.L.; Lucas, E.A.; Smith, B.J.; Chowanadisai, W.; Hartson, S.D.; Ritchey, J.W.; Wang, W.; Medeiros, D.M.; Li, S.; Lin, D. β-carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radic. Biol. Med., 2021, 164, 271-284.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.003] [PMID: 33453359]
[98]
Thomas, L.D.; Bandara, S.; Parmar, V.M.; Srinivasagan, R.; Khadka, N.; Golczak, M.; Kiser, P.D.; von Lintig, J. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. J. Biol. Chem., 2020, 295(46), 15553-15565.
[http://dx.doi.org/10.1074/jbc.RA120.015515] [PMID: 32873706]
[99]
Shi, C.; Wu, F.; Xu, J. Incorporation of β-sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity. J. Bioenerg. Biomembr., 2013, 45(3), 301-305.
[http://dx.doi.org/10.1007/s10863-012-9495-3] [PMID: 23225137]
[100]
Tian, Y.Y.; Jiang, B.; An, L.J.; Bao, Y.M. Neuroprotective effect of catalpol against MPP+-induced oxidative stress in mesencephalic neurons. Eur. J. Pharmacol., 2007, 568(1-3), 142-148.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.039] [PMID: 17512520]
[101]
Yan, X.; Zhang, G.; Bie, F.; Lv, Y.; Ma, Y.; Ma, M.; Wang, Y.; Hao, X.; Yuan, N.; Jiang, X. Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells. Sci. Rep., 2017, 7(1), 12920.
[http://dx.doi.org/10.1038/s41598-017-13505-x] [PMID: 29018241]
[102]
Singh, D. Cellular and molecular interactions of dietary flavonoids toward seizures suppression in epilepsy. In: Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders; Academic Press, 2023; pp. 305-325.
[http://dx.doi.org/10.1016/B978-0-323-90052-2.00030-5]
[103]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[104]
Meng, X.; Munishkina, L.A.; Fink, A.L.; Uversky, V.N. Molecular mechanisms underlying the flavonoid-induced inhibition of α-synuclein fibrillation. Biochemistry, 2009, 48(34), 8206-8224.
[http://dx.doi.org/10.1021/bi900506b] [PMID: 19634918]
[105]
Jazvinšćak Jembrek, M.; Oršolić, N.; Mandić, L.; Sadžak, A.; Šegota, S. Anti-oxidative, anti-inflammatory and anti-apoptotic effects of flavonols: Targeting Nrf2, NF-κB and p53 pathways in neurodegeneration. Antioxidants, 2021, 10(10), 1628.
[http://dx.doi.org/10.3390/antiox10101628] [PMID: 34679762]
[106]
Cichon, N.; Saluk-Bijak, J.; Gorniak, L.; Przyslo, L.; Bijak, M. Flavonoids as a natural enhancer of neuroplasticity-an overview of the mechanism of neurorestorative action. Antioxidants, 2020, 9(11), 1035.
[http://dx.doi.org/10.3390/antiox9111035] [PMID: 33114058]
[107]
Bellavite, P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants, 2023, 12(2), 280.
[http://dx.doi.org/10.3390/antiox12020280] [PMID: 36829840]
[108]
Baptista, F.I.; Henriques, A.G.; Silva, A.M.S.; Wiltfang, J. da Cruz e Silva, O.A.B. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(2), 83-92.
[http://dx.doi.org/10.1021/cn400213r] [PMID: 24328060]
[109]
Wen, L.; Yuan, Y.; Jiang, Y.; Xiong, B.; Yang, B. The estrogen receptor modulatory activity and neuroprotective activity of novel prenylated flavonoids and their structure–activity relationship. Food Safety and Health, 2023, 1(2), 184-201.
[http://dx.doi.org/10.1002/fsh3.12018]
[110]
Su, W.; Matsumoto, S.; Banine, F.; Srivastava, T.; Dean, J.; Foster, S.; Pham, P.; Hammond, B.; Peters, A.; Girish, K.S.; Rangappa, K.S. Basappa; Jose, J.; Hennebold, J.D.; Murphy, M.J.; Bennett-Toomey, J.; Back, S.A.; Sherman, L.S. A modified flavonoid accelerates oligodendrocyte maturation and functional remyelination. Glia, 2020, 68(2), 263-279.
[http://dx.doi.org/10.1002/glia.23715] [PMID: 31490574]
[111]
Fredholm, B.B.; Chen, J.F.; Cunha, R.A.; Svenningsson, P.; Vaugeois, J.M. Adenosine and brain function. Int. Rev. Neurobiol., 2005, 63(1), 191-270.
[http://dx.doi.org/10.1016/S0074-7742(05)63007-3] [PMID: 15797469]
[112]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[113]
Momtaz, S.; Memariani, Z.; El-Senduny, F.F.; Sanadgol, N.; Golab, F.; Katebi, M.; Abdolghaffari, A.H.; Farzaei, M.H.; Abdollahi, M. Targeting ubiquitin-proteasome pathway by natural products: Novel therapeutic strategy for treatment of neurodegenerative diseases. Front. Physiol., 2020, 11, 361.
[http://dx.doi.org/10.3389/fphys.2020.00361] [PMID: 32411012]
[114]
Zhang, F.; Shi, J.S.; Zhou, H.; Wilson, B.; Hong, J.S.; Gao, H.M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol., 2010, 78(3), 466-477.
[http://dx.doi.org/10.1124/mol.110.064535] [PMID: 20554604]
[115]
Wang, Y. Stilbenes: Therapeutic interventions targeting amyloid β protein aggregation. In: Alzheimer’s Disease; Scholar Commons; University of South Carolina,, 2017.
[116]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[117]
Son, Y.; Byun, S.J.; Pae, H.O. Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids, 2013, 45(2), 393-401.
[http://dx.doi.org/10.1007/s00726-013-1518-9] [PMID: 23712764]
[118]
Kim, D.W.; Kim, Y.M.; Kang, S.D.; Han, Y.M.; Pae, H.O. Effects of resveratrol and trans-3, 5, 4′-trimethoxystilbene on glutamate-induced cytotoxicity, heme oxygenase-1, and sirtuin 1 in HT22 neuronal cells. Biomol. Ther., 2012, 20(3), 306-312.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.306] [PMID: 24130928]
[119]
Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[120]
Akinwumi, B.; Bordun, K.A.; Anderson, H. Biological activities of stilbenoids. Int. J. Mol. Sci., 2018, 19(3), 792.
[http://dx.doi.org/10.3390/ijms19030792] [PMID: 29522491]
[121]
Chao, J.; Leung, Y.; Wang, M.; Chang, R.C.C. Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr. Rev., 2012, 70(7), 373-386.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00484.x] [PMID: 22747840]
[122]
Singh, V.; Ubaid, S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation, 2020, 43(5), 1589-1598.
[http://dx.doi.org/10.1007/s10753-020-01242-9] [PMID: 32410071]
[123]
Zhao, D.; Kwon, S.H.; Chun, Y.S.; Gu, M.Y.; Yang, H.O. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells. Neurochem. Res., 2017, 42(2), 667-677.
[http://dx.doi.org/10.1007/s11064-016-2123-6] [PMID: 27933547]
[124]
Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102.
[http://dx.doi.org/10.1021/acs.jafc.7b00805] [PMID: 28478680]
[125]
Wu, W.; Li, Y.; Wu, Y.; Zhang, Y.; Wang, Z.; Liu, X. Lutein suppresses inflammatory responses through Nrf2 activation and NF‐κB inactivation in lipopolysaccharide‐stimulated BV‐2 microglia. Mol. Nutr. Food Res., 2015, 59(9), 1663-1673.
[http://dx.doi.org/10.1002/mnfr.201500109] [PMID: 26016441]
[126]
Shen, X.C.; Qian, Z.Y. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Pharmazie, 2006, 61(4), 348-352.
[PMID: 16649553]
[127]
Sachdeva, A.K.; Chopra, K. Lycopene abrogates Aβ(1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J. Nutr. Biochem., 2015, 26(7), 736-744.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.012] [PMID: 25869595]
[128]
Nam, K.N.; Park, Y.M.; Jung, H.J.; Lee, J.Y.; Min, B.D.; Park, S.U.; Jung, W.S.; Cho, K.H.; Park, J.H.; Kang, I.; Hong, J.W.; Lee, E.H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol., 2010, 648(1-3), 110-116.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.003] [PMID: 20854811]
[129]
Lowe, G.M.; Booth, L.A.; Young, A.J.; Bilton, R.F. Lycopene and β -carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radic. Res., 1999, 30(2), 141-151.
[http://dx.doi.org/10.1080/10715769900300151] [PMID: 10193582]
[130]
Lorenzo, Y.; Azqueta, A.; Luna, L.; Bonilla, F.; Domínguez, G.; Collins, A.R. The carotenoid -cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis, 2008, 30(2), 308-314.
[http://dx.doi.org/10.1093/carcin/bgn270] [PMID: 19056931]
[131]
Lakey-Beitia, J.; Doens, D.; Kumar, J.; Murillo, E.; Fernández, P.L.; Rao, K.S.; Durant, A. Anti-amyloid aggregation activity of novel carotenoids: implications for Alzheimer’s drug discovery. Clin. Interv. Aging, 2017, 12, 815-822.
[http://dx.doi.org/10.2147/CIA.S134605] [PMID: 28553090]
[132]
Kim, J.H.; Na, H.J.; Kim, C.K.; Kim, J.Y.; Ha, K.S.; Lee, H.; Chung, H.T.; Kwon, H.J.; Kwon, Y.G.; Kim, Y.M. The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: Role of H2O2 in NF-κB activation. Free Radic. Biol. Med., 2008, 45(6), 885-896.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.019] [PMID: 18620044]
[133]
Kim, J.E.; Clark, R.M.; Park, Y.; Lee, J.; Fernandez, M.L. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr. Res. Pract., 2012, 6(2), 113-119.
[http://dx.doi.org/10.4162/nrp.2012.6.2.113] [PMID: 22586499]
[134]
Kabir, M.T.; Rahman, M.H.; Shah, M.; Jamiruddin, M.R.; Basak, D.; Al-Harrasi, A.; Bhatia, S.; Ashraf, G.M.; Najda, A.; El-kott, A.F.; Mohamed, H.R.H.; Al-malky, H.S.; Germoush, M.O.; Altyar, A.E.; Alwafai, E.B.; Ghaboura, N.; Abdel-Daim, M.M. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed. Pharmacother., 2022, 146, 112610.
[http://dx.doi.org/10.1016/j.biopha.2021.112610] [PMID: 35062074]
[135]
Gammone, M.; Riccioni, G.; D’Orazio, N. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs, 2015, 13(10), 6226-6246.
[http://dx.doi.org/10.3390/md13106226] [PMID: 26437420]
[136]
Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants, 2017, 6(4), 96.
[http://dx.doi.org/10.3390/antiox6040096] [PMID: 29168774]
[137]
Kumar, G.P.; Anilakumar, K.R.; Naveen, S. Phytochemicals having neuroprotective properties from die-tary sources and medicinal herbs. Pharmacogn. J., 2015, 7(1), 1-17.
[http://dx.doi.org/10.5530/pj.2015.1.1]
[138]
Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med., 2014, 72, 76-90.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035] [PMID: 24704972]
[139]
Butterfield, D.A.; Koppal, T.; Subramaniam, R.; Yatin, S. Vitamin E as an antioxidant/free radical scavenger against amyloid β-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: Insights into Alzheimer’s disease. Rev. Neurosci., 1999, 10(2), 141-149.
[http://dx.doi.org/10.1515/REVNEURO.1999.10.2.141] [PMID: 10658956]
[140]
Nishida, Y.; Ito, S.; Ohtsuki, S.; Yamamoto, N.; Takahashi, T.; Iwata, N.; Jishage, K.; Yamada, H.; Sasaguri, H.; Yokota, S.; Piao, W.; Tomimitsu, H.; Saido, T.C.; Yanagisawa, K.; Terasaki, T.; Mizusawa, H.; Yokota, T. Depletion of vitamin E increases amyloid β accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J. Biol. Chem., 2009, 284(48), 33400-33408.
[http://dx.doi.org/10.1074/jbc.M109.054056] [PMID: 19679659]
[141]
Sahebkar, A.; Zahedipour, F.; Hosseini, S.A.; Henney, N.C.; Barreto, G.E. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res., 2022, 17(8), 1675-1684.
[http://dx.doi.org/10.4103/1673-5374.332128] [PMID: 35017414]
[142]
Vejux, A.; Namsi, A.; Nury, T.; Moreau, T.; Lizard, G. Biomarkers of amyotrophic lateral sclerosis: Current status and interest of oxysterols and phytosterols. Front. Mol. Neurosci., 2018, 11, 12.
[http://dx.doi.org/10.3389/fnmol.2018.00012] [PMID: 29445325]
[143]
So, S.Y.; Savidge, T.C. Gut feelings: The microbiota-gut-brain axis on steroids. Am. J. Physiol. Gastrointest. Liver Physiol., 2022, 322(1), G1-G20.
[http://dx.doi.org/10.1152/ajpgi.00294.2021] [PMID: 34730020]
[144]
Sillapachaiyaporn, C.; Chuchawankul, S.; Nilkhet, S.; Moungkote, N.; Sarachana, T.; Ung, A.T.; Baek, S.J.; Tencomnao, T. Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation. Food Res. Int., 2022, 157, 111433.
[http://dx.doi.org/10.1016/j.foodres.2022.111433] [PMID: 35761673]
[145]
Sharma, N.; Tan, M.A.; An, S.S.A. Phytosterols: Potential metabolic modulators in neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(22), 12255.
[http://dx.doi.org/10.3390/ijms222212255] [PMID: 34830148]
[146]
Refaey, M.S.; Shah, M.A.; Fayed, M.A.; Rasul, A.; Siddiqui, M.F.; Qasim, M.; Althobaiti, N.A.; Saleem, U.; Malik, A.; Blundell, R.; Eldahshan, O.A. Neuroprotective effects of steroids. In: Phytonutrients and Neurological Disorders; Academic Press, 2023; pp. 283-304.
[http://dx.doi.org/10.1016/B978-0-12-824467-8.00005-X]
[147]
Pugazhendhi, A.; Suganthy, N.; Chau, T.P.; Sharma, A.; Unpaprom, Y.; Ramaraj, R.; Karuppusamy, I.; Brindhadevi, K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions-A review. Process Biochem., 2021, 111, 9-31.
[http://dx.doi.org/10.1016/j.procbio.2021.08.025]
[148]
Martens, N.; Zhan, N.; Voortman, G.; Leijten, F.P.J.; van Rheenen, C.; van Leerdam, S.; Geng, X.; Huybrechts, M.; Liu, H.; Jonker, J.W.; Kuipers, F.; Lütjohann, D.; Vanmierlo, T.; Mulder, M.T. Activation of liver X receptors and peroxisome proliferator-activated receptors by lipid extracts of brown seaweeds: A potential application in Alzheimer’s disease? Nutrients, 2023, 15(13), 3004.
[http://dx.doi.org/10.3390/nu15133004] [PMID: 37447330]
[149]
Jie, F.; Yang, X.; Yang, B.; Liu, Y.; Wu, L.; Lu, B. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed. Pharmacother., 2022, 153, 113317.
[http://dx.doi.org/10.1016/j.biopha.2022.113317] [PMID: 35772378]
[150]
Javed, H.; Nagoor Meeran, M.F.; Azimullah, S.; Adem, A.; Sadek, B.; Ojha, S.K. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front. Pharmacol., 2019, 9, 1555.
[http://dx.doi.org/10.3389/fphar.2018.01555] [PMID: 30941047]
[151]
Dash, R.; Mitra, S.; Ali, M.C.; Oktaviani, D.F.; Hannan, M.A.; Choi, S.M.; Moon, I.S. Phytosterols: Targeting neuroinflammation in neurodegeneration. Curr. Pharm. Des., 2021, 27(3), 383-401.
[http://dx.doi.org/10.2174/18734286MTA3cNzEvy] [PMID: 32600224]
[152]
Catani, M.V.; Gasperi, V.; Bisogno, T.; Maccarrone, M. Essential dietary bioactive lipids in neuroinflammatory diseases. Antioxid. Redox Signal., 2018, 29(1), 37-60.
[http://dx.doi.org/10.1089/ars.2016.6958] [PMID: 28637354]
[153]
Braidy, N.; Jayasena, T.; Poljak, A.; Sachdev, P.S. Sirtuins in cognitive ageing and Alzheimer’s disease. Curr. Opin. Psychiatry, 2012, 25(3), 226-230.
[http://dx.doi.org/10.1097/YCO.0b013e32835112c1] [PMID: 22327552]
[154]
Bogie, J.; Hoeks, C.; Schepers, M.; Tiane, A.; Cuypers, A.; Leijten, F.; Chintapakorn, Y.; Suttiyut, T.; Pornpakakul, S.; Struik, D.; Kerksiek, A.; Liu, H.B.; Hellings, N.; Martinez-Martinez, P.; Jonker, J.W.; Dewachter, I.; Sijbrands, E.; Walter, J.; Hendriks, J.; Groen, A.; Staels, B.; Lütjohann, D.; Vanmierlo, T.; Mulder, M. Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Sci. Rep., 2019, 9(1), 4908.
[http://dx.doi.org/10.1038/s41598-019-41399-4] [PMID: 30894635]
[155]
Xiao, X.Q.; Wang, R.; Tang, X.C. Huperzine A and tacrine attenuate? -amyloid peptide-induced oxidative injury. J. Neurosci. Res., 2000, 61(5), 564-569.
[http://dx.doi.org/10.1002/1097-4547(20000901)61:5<564:AID-JNR11>3.0.CO;2-X] [PMID: 10956426]
[156]
Wang, W.; Zheng, L.L.; Wang, F.; Hu, Z.L.; Wu, W.N.; Gu, J.; Chen, J.G. Tanshinone IIA attenuates neuronal damage and the impairment of long-term potentiation induced by hydrogen peroxide. J. Ethnopharmacol., 2011, 134(1), 147-155.
[http://dx.doi.org/10.1016/j.jep.2010.11.069] [PMID: 21134432]
[157]
Liu, T.; Jin, H.; Sun, Q.R.; Xu, J.H.; Hu, H.T. The neuroprotective effects of tanshinone IIA on β-amyloid-induced toxicity in rat cortical neurons. Neuropharmacology, 2010, 59(7-8), 595-604.
[http://dx.doi.org/10.1016/j.neuropharm.2010.08.013] [PMID: 20800073]
[158]
Li, B.; Jeong, G.S.; Kang, D.G.; Lee, H.S.; Kim, Y.C. Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. Eur. J. Pharmacol., 2009, 614(1-3), 58-65.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.056] [PMID: 19447102]
[159]
Koo, K.A.; Kim, S.H.; Lee, M.K.; Kim, Y.C. 15-Methoxypinusolidic acid from Biota orientalis attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. Toxicol. In Vitro, 2006, 20(6), 936-941.
[http://dx.doi.org/10.1016/j.tiv.2006.02.001] [PMID: 16564156]
[160]
Kim, S.R.; Koo, K.A.; Sung, S.H.; Ma, C.J.; Yoon, J.S.; Kim, Y.C. Iridoids from Scrophularia buergeriana attenuate glutamate‐induced neurotoxicity in rat cortical cultures. J. Neurosci. Res., 2003, 74(6), 948-955.
[http://dx.doi.org/10.1002/jnr.10828] [PMID: 14648601]
[161]
Youn, K.; Jun, M. Inhibitory effects of key compounds isolated from Corni fructus on BACE1 Activity. Phytother. Res., 2012, 26(11), 1714-1718.
[http://dx.doi.org/10.1002/ptr.4638] [PMID: 22407769]
[162]
Yealland, G.; Battaglia, G.; Bandmann, O.; Mortiboys, H. Rescue of mitochondrial function in -mutant fibroblasts using drug loaded PMPC-PDPA polymersomes and tubular polymersomes. Neurosci. Lett., 2016, 630, 23-29.
[http://dx.doi.org/10.1016/j.neulet.2016.06.065] [PMID: 27412236]
[163]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[164]
Tsai, S.J.; Yin, M.C. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J. Food Sci., 2008, 73(7), H174-H178.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00864.x] [PMID: 18803714]
[165]
Stewart, C.R.; Stuart, L.M.; Wilkinson, K.; van Gils, J.M.; Deng, J.; Halle, A.; Rayner, K.J.; Boyer, L.; Zhong, R.; Frazier, W.A.; Lacy-Hulbert, A.; Khoury, J.E.; Golenbock, D.T.; Moore, K.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol., 2010, 11(2), 155-161.
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[166]
Sinha, M.; Manna, P.; Sil, P.C. Protective effect of arjunolic acid against arsenic‐induced oxidative stress in mouse brain. J. Biochem. Mol. Toxicol., 2008, 22(1), 15-26.
[http://dx.doi.org/10.1002/jbt.20209] [PMID: 18273903]
[167]
Rong, Z.T.; Gong, X.J.; Sun, H.B.; Li, Y.M.; Ji, H. Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H 2 O 2 -induced injury in vitro. Pharm. Biol., 2011, 49(1), 78-85.
[http://dx.doi.org/10.3109/13880209.2010.499130] [PMID: 20684747]
[168]
HoJin, H. Ursolic acid of Origanum majorana L. reduces Aβ-induced oxidative injury. Mol. Cells, 2002, 13(1), 5-11.
[http://dx.doi.org/10.1016/S1016-8478(23)14997-1] [PMID: 11911474]
[169]
Ding, H.; Wang, H.; Zhu, L.; Wei, W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem. Res., 2017, 42(2), 337-346.
[http://dx.doi.org/10.1007/s11064-016-2077-8] [PMID: 27734181]
[170]
Coraci, I.S.; Husemann, J.; Berman, J.W.; Hulette, C.; Dufour, J.H.; Campanella, G.K.; Luster, A.D.; Silverstein, S.C.; El Khoury, J.B. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol., 2002, 160(1), 101-112.
[http://dx.doi.org/10.1016/S0002-9440(10)64354-4] [PMID: 11786404]
[171]
Vastegani, S.M.; Khoshnam, S.E.; Mansouri, E.; Hajipour, S.; Ghafouri, S.; Bakhtiari, N.; Sarkaki, A.; Farbood, Y. Neuroprotective effect of anethole against rotenone induced non-motor deficits and oxidative stress in rat model of Parkinson’s disease. Behav. Brain Res., 2023, 437, 114100.
[http://dx.doi.org/10.1016/j.bbr.2022.114100] [PMID: 36075399]
[172]
Rashidi, R.; Moallem, S.A.; Moshiri, M.; Hadizadeh, F.; Etemad, L. Protective effect of cinnamaldehyde on METH-induced neurotoxicity in PC12 cells via inhibition of apoptotic response and oxidative stress. Iran. J. Pharm. Res., 2021, 20(2), 135-143.
[PMID: 34567151]
[173]
Pan, Z.; He, X.; Zhou, X.; Li, X.; Rong, B.; Wang, F. Combination of ellagic acid and trans-cinnamaldehyde alleviates aging-induced cognitive impairment via modulation of mitochondrial function and inflammatory and apoptotic mediators in the prefrontal cortex of aged rats. Chin. J. Physiol., 2020, 63(5), 218-226.
[http://dx.doi.org/10.4103/CJP.CJP_55_20] [PMID: 33109788]
[174]
Moradi Vastegani, S.; Khoshnam, S.E.; Mansouri, E.; Ghafouri, S.; Bakhtiari, N.; Farbood, Y.; Sarkaki, A. Anti-inflammatory, anti-apoptotic, and neuroprotective potentials of anethole in Parkinson’s disease-like motor and non-motor symptoms induced by rotenone in rats. Metab. Brain Dis., 2023, 38(6), 2159-2174.
[http://dx.doi.org/10.1007/s11011-023-01230-6] [PMID: 37204660]
[175]
Kaur, G.; Athar, M.; Alam, M.S. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol. Carcinog., 2010, 49(3), 290-301.
[http://dx.doi.org/10.1002/mc.20601] [PMID: 20043298]
[176]
Gürer, B.; Kertmen, H.; Kuru Bektaşoğlu, P.; Öztürk, Ö.Ç.; Bozkurt, H.; Karakoç, A.; Arıkök, A.T.; Çelikoğlu, E. The effects of Cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Metab. Brain Dis., 2019, 34(6), 1737-1746.
[http://dx.doi.org/10.1007/s11011-019-00480-7] [PMID: 31444631]
[177]
Gülçin, İ. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food, 2011, 14(9), 975-985.
[http://dx.doi.org/10.1089/jmf.2010.0197] [PMID: 21554120]
[178]
Zare, K.; Eidi, A.; Roghani, M.; Rohani, A.H. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab. Brain Dis., 2015, 30(1), 205-213.
[http://dx.doi.org/10.1007/s11011-014-9604-6] [PMID: 25123753]
[179]
Thrash-Williams, B.; Karuppagounder, S.S.; Bhattacharya, D.; Ahuja, M.; Suppiramaniam, V.; Dhanasekaran, M. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci., 2016, 154, 24-29.
[http://dx.doi.org/10.1016/j.lfs.2016.02.072] [PMID: 26926078]
[180]
Szwajgier, D.; Borowiec, K.; Pustelniak, K. The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients, 2017, 9(5), 477.
[http://dx.doi.org/10.3390/nu9050477] [PMID: 28489058]
[181]
Shang, A.J.; Yang, Y.; Wang, H.Y.; Tao, B.Z.; Wang, J.; Wang, Z.F.; Zhou, D.B. Spinal cord injury effectively ameliorated by neuroprotective effects of rosmarinic acid. Nutr. Neurosci., 2017, 20(3), 172-179.
[http://dx.doi.org/10.1080/1028415X.2015.1103460] [PMID: 26796989]
[182]
Shan, Y.; Wang, D.D.; Xu, Y.X.; Wang, C.; Cao, L.; Liu, Y.S.; Zhu, C.Q. Aging as a precipitating factor in chronic restraint stress-induced tau aggregation pathology, and the protective effects of rosmarinic acid. J. Alzheimers Dis., 2015, 49(3), 829-844.
[http://dx.doi.org/10.3233/JAD-150486] [PMID: 26577520]
[183]
Ojha, S.; Javed, H.; Azimullah, S.; Abul Khair, S.B.; Haque, M.E. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des. Devel. Ther., 2015, 9, 5499-5510.
[PMID: 26504373]
[184]
Naghizadeh, B.; Mansouri, M.T. Protective effects of gallic acid against streptozotocin-induced oxidative damage in rat striatum. Drug Res., 2015, 65(10), 515-520.
[PMID: 24941087]
[185]
Mikami, Y.; Yamazawa, T. Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sci., 2015, 139, 69-74.
[http://dx.doi.org/10.1016/j.lfs.2015.08.005] [PMID: 26285175]
[186]
Lin, W.C.; Peng, Y.F.; Hou, C.W. Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways. Iran. J. Basic Med. Sci., 2015, 18(5), 478-484.
[PMID: 26124934]
[187]
Hemmati, A.A.; Alboghobeish, S.; Ahangarpour, A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. Korean J. Physiol. Pharmacol., 2018, 22(3), 257-267.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.257] [PMID: 29719448]
[188]
Güven, M.; Aras, A.B.; Topaloğlu, N.; Özkan, A.; Şen, H.M.; Kalkan, Y.; Okuyucu, A.; Akbal, A.; Gökmen, F.; Coşar, M. The protective effect of syringic acid on ischemia injury in rat brain. Turk. J. Med. Sci., 2015, 45(1), 233-240.
[http://dx.doi.org/10.3906/sag-1402-71] [PMID: 25790559]
[189]
Gul, Z.; Demircan, C.; Bagdas, D.; Buyukuysal, R.L. Protective effects of chlorogenic acid and its metabolites on hydrogen peroxide-induced alterations in rat brain slices: A comparative study with resveratrol. Neurochem. Res., 2016, 41(8), 2075-2085.
[http://dx.doi.org/10.1007/s11064-016-1919-8] [PMID: 27161374]
[190]
Fetoni, A.R.; Paciello, F.; Rolesi, R.; Eramo, S.L.M.; Mancuso, C.; Troiani, D.; Paludetti, G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic. Biol. Med., 2015, 85, 269-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.021] [PMID: 25936352]
[191]
Fazili, N.A.; Naeem, A. Anti-fibrillation potency of caffeic acid against an antidepressant induced fibrillogenesis of human α-synuclein: Implications for Parkinson’s disease. Biochimie, 2015, 108, 178-185.
[http://dx.doi.org/10.1016/j.biochi.2014.11.011] [PMID: 25461276]
[192]
Andrade, J.M.M.; dos Santos Passos, C.; Kieling Rubio, M.A.; Mendonça, J.N.; Lopes, N.P.; Henriques, A.T. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem. Biol. Interact., 2016, 254, 135-145.
[http://dx.doi.org/10.1016/j.cbi.2016.06.005] [PMID: 27270453]
[193]
Armutcu, F.; Akyol, S.; Ustunsoy, S.; Turan, F.F. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp. Ther. Med., 2015, 9(5), 1582-1588.
[http://dx.doi.org/10.3892/etm.2015.2346] [PMID: 26136862]
[194]
Zhu, Y.G.; Chen, X.C.; Chen, Z.Z.; Zeng, Y.Q.; Shi, G.B.; Su, Y.H.; Peng, X. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol. Sin., 2004, 25(12), 1606-1612.
[PMID: 15569404]
[195]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[196]
Uğuz, A.C.; Öz, A.; Nazıroğlu, M. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J. Recept. Signal Transduct. Res., 2016, 36(4), 395-401.
[http://dx.doi.org/10.3109/10799893.2015.1108337] [PMID: 26608462]
[197]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[198]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[199]
Pandey, N.; Strider, J.; Nolan, W.C.; Yan, S.X.; Galvin, J.E. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol., 2008, 115(4), 479-489.
[http://dx.doi.org/10.1007/s00401-007-0332-4] [PMID: 18189141]
[200]
Ono, K.; Yamada, M. Antioxidant compounds have potent anti‐fibrillogenic and fibril‐destabilizing effects for α‐synuclein fibrils in vitro. J. Neurochem., 2006, 97(1), 105-115.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03707.x] [PMID: 16524383]
[201]
Motaghinejad, M.; Motevalian, M.; Fatima, S.; Hashemi, H.; Gholami, M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed. Pharmacother., 2017, 87, 721-740.
[http://dx.doi.org/10.1016/j.biopha.2016.12.020] [PMID: 28095363]
[202]
Monroy, A.; Lithgow, G.J.; Alavez, S. Curcumin and neurodegenerative diseases. Biofactors, 2013, 39(1), 122-132.
[http://dx.doi.org/10.1002/biof.1063] [PMID: 23303664]
[203]
Liu, Z.J.; Liu, H.Q.; Xiao, C.; Fan, H.Z.; Huang, Q.; Liu, Y.H.; Wang, Y. Curcumin protects neurons against oxygen‐glucose deprivation/reoxygenation‐induced injury through activation of peroxisome proliferator‐activated receptor‐γ function. J. Neurosci. Res., 2014, 92(11), 1549-1559.
[http://dx.doi.org/10.1002/jnr.23438] [PMID: 24975470]
[204]
Liu, Z.; Yu, Y.; Li, X.; Ross, C.A.; Smith, W.W. Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol. Res., 2011, 63(5), 439-444.
[http://dx.doi.org/10.1016/j.phrs.2011.01.004] [PMID: 21237271]
[205]
Liao, L.; Shi, J.; Jiang, C.; Zhang, L.; Feng, L.; Liu, J.; Zhang, J. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem. Int., 2019, 125, 82-90.
[http://dx.doi.org/10.1016/j.neuint.2019.01.026] [PMID: 30771374]
[206]
Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol., 2009, 175(6), 2557-2565.
[http://dx.doi.org/10.2353/ajpath.2009.090417] [PMID: 19893028]
[207]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[208]
Cho, J.W.; Lee, K.S.; Kim, C.W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int. J. Mol. Med., 2007, 19(3), 469-474.
[http://dx.doi.org/10.3892/ijmm.19.3.469] [PMID: 17273796]
[209]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[210]
Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377.
[http://dx.doi.org/10.3233/JAD-2004-6403] [PMID: 15345806]
[211]
Barik, A.; Mishra, B.; Kunwar, A.; Kadam, R.M.; Shen, L.; Dutta, S.; Padhye, S.; Satpati, A.K.; Zhang, H.Y.; Indira Priyadarsini, K. Comparative study of copper(II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur. J. Med. Chem., 2007, 42(4), 431-439.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.012] [PMID: 17240482]
[212]
Zhang, F.; Zhang, J.G.; Yang, W.; Xu, P.; Xiao, Y.L.; Zhang, H.T. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed. Pharmacother., 2018, 107, 1523-1529.
[http://dx.doi.org/10.1016/j.biopha.2018.08.136] [PMID: 30257370]
[213]
Shim, S.; Kwon, J. Effects of [6]-shogaol on cholinergic signaling in HT22 cells following neuronal damage induced by hydrogen peroxide. Food Chem. Toxicol., 2012, 50(5), 1454-1459.
[http://dx.doi.org/10.1016/j.fct.2012.02.014] [PMID: 22381256]
[214]
Peng, S.; Yao, J.; Liu, Y.; Duan, D.; Zhang, X.; Fang, J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct., 2015, 6(8), 2813-2823.
[http://dx.doi.org/10.1039/C5FO00214A] [PMID: 26169810]
[215]
Lee, C.; Park, G.H.; Kim, C.Y.; Jang, J.H. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol., 2011, 49(6), 1261-1269.
[http://dx.doi.org/10.1016/j.fct.2011.03.005] [PMID: 21396424]
[216]
Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet., 2019, 10, 435.
[http://dx.doi.org/10.3389/fgene.2019.00435] [PMID: 31139208]
[217]
Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol., 2010, 127(2), 515-520.
[http://dx.doi.org/10.1016/j.jep.2009.10.004] [PMID: 19833188]
[218]
Hosseinzadeh, A.; Bahrampour Juybari, K.; Fatemi, M.J.; Kamarul, T.; Bagheri, A.; Tekiyehmaroof, N.; Sharifi, A.M. Protective effect of ginger (Zingiber officinale roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes. Cells Tissues Organs, 2017, 204(5-6), 241-250.
[http://dx.doi.org/10.1159/000479789] [PMID: 28877520]
[219]
Angelopoulou, E.; Paudel, Y.N.; Papageorgiou, S.G.; Piperi, C. Elucidating the beneficial effects of ginger (Zingiber officinale Roscoe) in Parkinson’s disease. ACS Pharmacol. Transl. Sci., 2022, 5(10), 838-848.
[http://dx.doi.org/10.1021/acsptsci.2c00104] [PMID: 36268117]
[220]
Ajith, T.A.; Nivitha, V.; Usha, S. Zingiber officinale Roscoe alone and in combination with α-tocopherol protect the kidney against cisplatin-induced acute renal failure. Food Chem. Toxicol., 2007, 45(6), 921-927.
[http://dx.doi.org/10.1016/j.fct.2006.11.014] [PMID: 17210214]
[221]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[222]
Van Acker, S.A.B.E.; Van Den Berg, D.; Tromp, M.N.J.L.; Griffioen, D.H.; Van Bennekom, W.P.; Van Der Vijgh, W.J.F.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med., 1996, 20(3), 331-342.
[http://dx.doi.org/10.1016/0891-5849(95)02047-0] [PMID: 8720903]
[223]
Silva, M.M.; Santos, M.R.; Caroço, G.; Rocha, R.; Justino, G.; Mira, L. Structure-antioxidant activity relationships of flavonoids: A re-examination. Free Radic. Res., 2002, 36(11), 1219-1227.
[http://dx.doi.org/10.1080/198-1071576021000016472] [PMID: 12592674]
[224]
Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure–activity relationship. Biochem. Pharmacol., 2005, 69(6), 903-912.
[http://dx.doi.org/10.1016/j.bcp.2004.12.001] [PMID: 15748702]
[225]
Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med., 2003, 24(6), 345-351.
[http://dx.doi.org/10.1016/S0098-2997(03)00030-X] [PMID: 14585305]
[226]
Stahl, W.; Sies, H. Carotenoids and protection against solar UV radiation. Skin Pharmacol. Physiol., 2002, 15(5), 291-296.
[http://dx.doi.org/10.1159/000064532] [PMID: 12239422]
[227]
Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol., 2018, 120, 681-699.
[http://dx.doi.org/10.1016/j.fct.2018.07.060] [PMID: 30077704]
[228]
Britton, G.; Liaaen-Jensen, S.; Pfander, H. Eds.; Carotenoids: Handbook; Birkhäuser, 2012.
[229]
Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res., 2018, 70, 35-61.
[http://dx.doi.org/10.1016/j.plipres.2018.04.001] [PMID: 29627611]
[230]
Mohammadi, M.; Jafari, S.M.; Hamishehkar, H.; Ghanbarzadeh, B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci. Technol., 2020, 101, 73-88.
[http://dx.doi.org/10.1016/j.tifs.2020.05.004]
[231]
Damirchi, S.A.; Savage, G.P.; Dutta, P.C. Sterol fractions in hazelnut and virgin olive oils and 4,4′‐dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J. Am. Oil Chem. Soc., 2005, 82(10), 717-725.
[http://dx.doi.org/10.1007/s11746-005-1133-y]
[232]
Kamal-Eldin, A.; Appelqvist, L.Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996, 31(7), 671-701.
[http://dx.doi.org/10.1007/BF02522884] [PMID: 8827691]
[233]
Cerecetto, H.; López, G. Antioxidants derived from vitamin E: An overview. Mini Rev. Med. Chem., 2007, 7(3), 315-338.
[http://dx.doi.org/10.2174/138955707780059871] [PMID: 17346221]
[234]
Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A, 2004, 108(22), 4916-4922.
[http://dx.doi.org/10.1021/jp037247d]
[235]
Siquet, C.; Paiva-Martins, F.; Lima, J.L.F.C.; Reis, S.; Borges, F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids-A structure–activity relationship study. Free Radic. Res., 2006, 40(4), 433-442.
[http://dx.doi.org/10.1080/10715760500540442] [PMID: 16517509]
[236]
Farhoosh, R.; Johnny, S.; Asnaashari, M.; Molaahmadibahraseman, N.; Sharif, A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem., 2016, 194, 128-134.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.003] [PMID: 26471535]
[237]
Wright, J.S.; Johnson, E.R.; DiLabio, G.A. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc., 2001, 123(6), 1173-1183.
[http://dx.doi.org/10.1021/ja002455u] [PMID: 11456671]
[238]
Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep., 2020, 10(1), 2611.
[http://dx.doi.org/10.1038/s41598-020-59451-z] [PMID: 32054964]
[239]
Adefegha, S.A.; Okeke, B.M.; Oboh, G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases—In vitro. J. Food Biochem., 2021, 45(3), e13276.
[http://dx.doi.org/10.1111/jfbc.13276] [PMID: 32458455]
[240]
Van Liefferinge, E.; Müller, M.; Van Noten, N.; Degroote, J.; Niknafs, S.; Roura, E.; Michiels, J. Cinnamaldehyde induces release of cholecystokinin and glucagon-like peptide 1 by interacting with transient receptor potential ankyrin 1 in a porcine ex-vivo intestinal segment model. Animals, 2021, 11(8), 2262.
[http://dx.doi.org/10.3390/ani11082262] [PMID: 34438718]
[241]
Rajakumar, D.V.; Rao, M.N.A. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers. Biochem. Pharmacol., 1993, 46(11), 2067-2072.
[http://dx.doi.org/10.1016/0006-2952(93)90649-H] [PMID: 8267655]
[242]
Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J.C.; Guijarro, D.; Alonso, F. Cross-dehydrogenative coupling involving benzylic and allylic C–H bonds. Org. Chem. Front., 2020, 7(13), 1717-1742.
[http://dx.doi.org/10.1039/D0QO00587H]
[243]
Calvert, C.T.; Schnitzler, E.G. Light absorption by cinnamaldehyde constituents of biomass burning organic aerosol modeled using time-dependent density functional theory. ACS Earth Space Chem., 2023, 7(2), 490-500.
[http://dx.doi.org/10.1021/acsearthspacechem.2c00344]
[244]
Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf., 2011, 10(4), 221-247.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00156.x]
[245]
Khayyat, S.A.; Roselin, L.S. Recent progress in photochemical reaction on main components of some essential oils. J. Saudi Chem. Soc., 2018, 22(7), 855-875.
[http://dx.doi.org/10.1016/j.jscs.2018.01.008]
[246]
Freire, R.S.; Morais, S.M.; Catunda-Junior, F.E.A.; Pinheiro, D.C.S.N. Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds. Bioorg. Med. Chem., 2005, 13(13), 4353-4358.
[http://dx.doi.org/10.1016/j.bmc.2005.03.058] [PMID: 15890516]
[247]
Geronikaki, A.; Gavalas, A. Antioxidants and inflammatory disease: Synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High Throughput Screen., 2006, 9(6), 425-442.
[http://dx.doi.org/10.2174/138620706777698481] [PMID: 16842224]
[248]
Bhullar, K.; Jha, A.; Youssef, D.; Rupasinghe, H. Curcumin and its carbocyclic analogs: Structure-activity in relation to antioxidant and selected biological properties. Molecules, 2013, 18(5), 5389-5404.
[http://dx.doi.org/10.3390/molecules18055389] [PMID: 23666006]
[249]
Priyadarsini, K.I. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des., 2013, 19(11), 2093-2100.
[PMID: 23116315]
[250]
Kou, X.; Wang, X.; Ji, R.; Liu, L.; Qiao, Y.; Lou, Z.; Ma, C.; Li, S.; Wang, H.; Ho, C.T. Occurrence, biological activity and metabolism of 6-shogaol. Food Funct., 2018, 9(3), 1310-1327.
[http://dx.doi.org/10.1039/C7FO01354J] [PMID: 29417118]
[251]
Bakht, M.A.; Alajmi, M.F.; Alam, P.; Alam, A.; Alam, P.; Aljarba, T.M. Theoretical and experimental study on lipophilicity and wound healing activity of ginger compounds. Asian Pac. J. Trop. Biomed., 2014, 4(4), 329-333.
[http://dx.doi.org/10.12980/APJTB.4.2014C1012] [PMID: 25182560]
[252]
de Lima, R.M.T.; dos Reis, A.C.; de Menezes, A.A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; Uddin, S.J.; Ali, E.S.; Islam, M.T.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Protective and therapeutic potential of ginger (ZINGIBER OFFICINALE) extract and [6]‐gingerol in cancer: A comprehensive review. Phytother. Res., 2018, 32(10), 1885-1907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[253]
Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem., 2023, 11, 1158198.
[http://dx.doi.org/10.3389/fchem.2023.1158198] [PMID: 37234200]
[254]
Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact., 2017, 11(2), 556-566.
[http://dx.doi.org/10.1007/s11694-016-9423-z]
[255]
Amador-Balderas, J.A.; Ramírez, R.E.; Méndez, F.; Meléndez, F.J.; Richaud, A. Hyperconjugation enhances electrophilic addition to monocyclic monoterpenes: A Fukui function perspective. J. Mol. Model., 2018, 24(10), 300.
[http://dx.doi.org/10.1007/s00894-018-3825-2] [PMID: 30269163]
[256]
Dorman, H.J. Phytochemistry and bioactive properties of plant volatile oils: antibacterial, antifungal and antioxidant activities. Doctoral thesis, University of Strathclyde, 1999.
[257]
Bhattacharya, S. Reactive oxygen species and cellular defense system. In: Free radicals in human health and disease; Springer: New Delhi, 2015; pp. 17-29.
[http://dx.doi.org/10.1007/978-81-322-2035-0_2]
[258]
Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem., 2017, 133, 379-402.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.061] [PMID: 28415050]
[259]
Christianson, D.W. Structural and chemical biology of terpenoid cyclases. Chem. Rev., 2017, 117(17), 11570-11648.
[http://dx.doi.org/10.1021/acs.chemrev.7b00287] [PMID: 28841019]
[260]
Teso Vilar, E.; García Martínez, A.; García Fraile, A.; de la Moya Cerero, S.; Martínez-Ruiz, P.; Moreno Jiménez, F. Electron ionization-induced fragmentation of bridgehead-substituted norbornan-2-ones derived from fenchone. Int. J. Mass Spectrom., 2013, 334, 49-57.
[http://dx.doi.org/10.1016/j.ijms.2012.10.002]
[261]
Sengera, G.O.; Kenanda, E.O.; Onyancha, J.M. Antibacterial, antioxidant potency, and chemical composition of essential oils from dried powdered leaves and flowers of hypericum revolutum subsp. keniense (Schweinf.). Evid. Based Complement. Alternat. Med., 2023, 2023, 1-15.
[http://dx.doi.org/10.1155/2023/4125885] [PMID: 36636606]
[262]
Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des., 2016, 22(21), 3237-3264.
[http://dx.doi.org/10.2174/1381612822666160311115226] [PMID: 26965491]
[263]
Graßmann, J. Terpenoids as plant antioxidants. Vitam. Horm., 2005, 72, 505-535.
[http://dx.doi.org/10.1016/S0083-6729(05)72015-X] [PMID: 16492481]
[264]
Nagoor Meeran, M.F.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol., 2018, 9, 892.
[http://dx.doi.org/10.3389/fphar.2018.00892] [PMID: 30233358]
[265]
Żwawiak, J.; Pawełczyk, A.; Olender, D.; Zaprutko, L. Structure and activity of pentacyclic triterpenes codrugs. A review. Mini Rev. Med. Chem., 2021, 21(12), 1509-1526.
[http://dx.doi.org/10.2174/1389557521666210105110848] [PMID: 33402080]
[266]
Nanda, B.; Nataraju, A.; Rajesh, R.; Rangappa, K.; Shekar, M.; Vishwanath, B. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants--a new role as anti-inflammatory molecule. Curr. Top. Med. Chem., 2007, 7(8), 765-777.
[http://dx.doi.org/10.2174/156802607780487623] [PMID: 17456040]
[267]
Tsao, R.; Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 85-99.
[http://dx.doi.org/10.1016/S1570-0232(04)00764-0] [PMID: 15556490]
[268]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. A thermodynamic study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems. J. Indian Chem. Soc., 1997, 74(7), 548-551.
[269]
Schiraldi, A.; Fessas, D. Calorimetry and thermal analysis in food science. J. Therm. Anal. Calorim., 2019, 138(4), 2721-2732.
[http://dx.doi.org/10.1007/s10973-019-08166-z]
[270]
Gharanjig, H; Gharanjig, K; Hosseinnezhad, M SM Differential scanning calorimetry (DSC) of nanoencapsu-lated food ingredients. Characterization of nanoencapsulated food ingredients. 2020, 295-346.
[271]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. Determination of heat of formation of associated systems by calorimetry. J. Indian Chem. Soc., 1997, 74(2), 103-107.
[272]
Morén, C.; deSouza, R.M.; Giraldo, D.M.; Uff, C. Antioxidant therapeutic strategies in neurodegenerative diseases. Int. J. Mol. Sci., 2022, 23(16), 9328.
[http://dx.doi.org/10.3390/ijms23169328] [PMID: 36012599]
[273]
Moreira, P.I.; Zhu, X.; Wang, X.; Lee, H.; Nunomura, A.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondria: A therapeutic target in neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 212-220.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.007] [PMID: 19853657]
[274]
Jin, H.; Kanthasamy, A.; Ghosh, A.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: Preclinical and clinical outcomes. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1282-1294.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.007] [PMID: 24060637]
[275]
Fields, M.; Marcuzzi, A.; Gonelli, A.; Celeghini, C.; Maximova, N.; Rimondi, E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: Perspectives and limitations. Int. J. Mol. Sci., 2023, 24(4), 3739.
[http://dx.doi.org/10.3390/ijms24043739] [PMID: 36835150]
[276]
Fadaka, A.O.; Ajiboye, B.O.; Adewale, I.; Ojo, O.A.; Oyinloye, B.E.; Okesola, M.A. Significance of antioxidants in the treatment and prevention of neurodegenerative diseases. J Phytopharmacol, 2019, 8(2), 75-83.
[http://dx.doi.org/10.31254/phyto.2019.8210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy